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Abstract

Hyaluronan (HA) is an abundant matrix molecule whose functions in the skin remain to be fully 

defined. To explore the roles of HA in cutaneous injury responses, double-knockout mice 

(abbreviated as Has1/3 null) that lack two HA synthase enzymes (Has1 and Has3) but still express 

functional Has2, were used in two types of experiments: (i) application of 12-O-

tetradecanoylphorbol-13-acetate (TPA), and (ii) full-thickness wounding of the skin. Uninjured 

Has1/3 null mice were phenotypically normal. However, after TPA, the accumulation of HA that 

normally occurs in wildtype epidermis was blunted in Has1/3 null epidermis. In excisional wound 

healing experiments, wound closure was significantly faster in Has1/3 null than in wildtype mice. 

Coincident with this abnormal wound healing, a marked decrease in epidermal and dermal HA and 

a marked increase in neutrophil efflux from cutaneous blood vessels were observed in Has1/3 null 

skin relative to wildtype skin. Has1/3 null wounds displayed an earlier onset of myofibroblast 

differentiation. In summary, selective loss of Has1 and Has3 leads to a pro-inflammatory milieu 

that favors recruitment of neutrophils and other inflammation-related changes in the dermis.

INTRODUCTION

Hyaluronan (HA) is an abundant extracellular matrix molecule in the dermis and epidermis 

of skin whose functions are only now beginning to be elucidated. It is a linear, non-sulfated 

glycosaminoglycan comprised of long chains of disaccharides (N-acetyl-glucosamine and 
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glucuronic acid) repeated thousands of times, thereby reaching >106 Da in molecular weight 

(Itano, 2008; Itano et al., 1999). In the epidermis, HA is present in the extracellular matrix 

around keratinocytes (Tammi et al., 1988); its rapid turnover rate (t1/2 of 1-2 days) (Tammi 

et al., 1991) is determined by a balance between HA degradation (with the exact 

hyaluronidases responsible still undetermined), and synthesis by three hyaluronan synthases 

(Has1, Has2, and Has3) that when active reside in the plasma membrane (Rilla et al., 2005). 

The Has enzymes differ in kinetic properties and length of the HA chain produced (Itano et 

al., 1999). HA is normally extruded directly into the extracellular space (Wang and Hascall, 

2004). The externalized HA interacts with an HA membrane receptor, CD44, which affects 

intracellular signaling and thereby regulates cellular proliferation and differentiation (Toole, 

2004).

The three Has isoforms and their biological activities have been investigated in gene 

targeting studies. Functional deletion of the Has2 gene results in embryonic lethality with 

severe cardiac and vascular malformations (Camenisch et al., 2000). During early 

embryogenesis, Has2 is responsible for HA production, and loss of Has2 is not compensated 

for by Has1 or Has3. Has3 null (knockout) mice on the other hand are viable and fertile, 

with normal lifespans (Bai et al., 2005). Has1 null mice also appear perfectly normal under 

non-stressed conditions (Kobayashi et al., 2010).

In the skin, all three HAS enzymes are expressed throughout the epidermis and dermis 

(Sugiyama et al., 1998). Current studies suggest that Has3 may be more highly expressed in 

keratinocytes (Sayo et al., 2002), Has1 in fibroblasts (Yamada et al., 2004), and Has2 in 

both cell types. In vitro models have been used to evaluate the role of Has enzymes during 

various perturbations of the epidermis. Treatment of 3-D organotypic keratinocyte cultures 

with EGF or KGF results in increased proliferation, increased Has2 and Has3 expression, 

and elevated HA levels (Karvinen et al., 2003; Pasonen-Seppanen et al., 2003). Physical 

injury (needle stick) also triggers HA accumulation in the 3-D organotypic keratinocyte 

cultures, further supporting a causal relationship between inducible Has2 and Has3 

expression and increased epidermal HA levels after injury (Monslow et al., 2009). Elevated 

HA levels are often observed in hyperproliferative epidermis in the setting of acute 

inflammation, so-called inflammatory hyperplasia. Tape-stripping of the skin, a form of 

physical injury, induces epidermal hyperplasia, inflammatory cell infiltration, transient 

induction of HA, and elevations in Has2 and Has3 mRNA levels (Tammi et al., 2005). Skin 

biopsies from patients with acute eczematous dermatitis (an inflammatory process) 

demonstrate increased levels of HA in areas of spongiosis, mediated by preferential 

increases in Has3 mRNA expression (Ohtani et al., 2009). Other evidence also suggests 

important, complex relationships between the production of HA, leukocyte recruitment, 

(e.g., gamma/delta T cells) and cytokine production within cutaneous wounds (Jameson et 

al., 2005). Therefore, strong evidence suggests links between the expression of Has 

enzymes, accumulation of HA, dermal inflammatory cell infiltrates, and epidermal 

hyperplasia after skin injury. How these events are connected mechanistically, however, 

remains to be determined.

We utilized two different injury models to elucidate the associations between HA, cutaneous 

inflammation, and epidermal hyperplasia. The phorbol ester, 12-O-tetradecanoylphorbol-13-
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acetate (TPA) is a well-established pro-inflammatory agent that stimulates inflammatory 

cytokine release, tissue edema, epidermal thickening, and cornified envelope formation 

when topically applied (Wang and Smart, 1999). TPA-driven inflammatory hyperplasia 

involves an imbalance between cell cycle stimulation and growth arrest (Marks and 

Furstenberger, 1993), and protein kinase C (PKC) isoforms are known to be major 

regulators (Cataisson et al., 2005). In studies with PKCα-overexpressing mice harboring an 

epidermally targeted transgene, TPA application was shown to cause the release of pro-

proliferative and chemotactic factors including TNFα, MIP-2, KC, VEGF, and GM-CSF 

(Cataisson et al., 2005). Another type of skin injury that involves cytokine release, 

inflammation, and epidermal hyperplasia is full-thickness incisional wounding (Singer and 

Clark, 1999). Wounding triggers recruitment of leukocytes (neutrophils first, followed by 

macrophages) that have roles in modulating epidermal responses and in regulating the 

differentiation of fibroblasts into myofibroblasts (Singer and Clark, 1999).

In this paper, we examined possible links between changes in HA accumulation and 

epidermal and dermal events after skin injury, using a new mouse model that expresses only 

one of the HA synthetic enzymes, Has2. These mice are nullizygous for Has1 and Has3 

(abbreviated as Has1/3 null). In response to skin injury, HA fails to accumulate in Has1/3 

null mice. Using this model, we show that Has1 and Has3 are dispensable for epidermal 

hyperplasia, but are in fact necessary to properly regulate acute inflammation and fibroblast 

behavior in the skin following injury.

RESULTS

Mice harboring deletions in the Has1 gene (Kobayashi et al., 2010), or the Has3 gene (Bai 

et al., 2005) were intercrossed to create Has1 -/- Has3 -/- animals (Has1/3 null). These mice 

appear grossly normal, with good fertility and normal life spans.

Epidermal induction of HA and CD44 following TPA application is blunted in Has1/3 null 
mice

Dorsal skin was treated with TPA, and the skin was examined histologically for changes in 

morphology, HA, and CD44 (Fig. 1). In wildtype (WT) skin, TPA treatment caused 

epidermal hyperplasia (compare Fig. 1a and 1d) and a strong epidermal induction of HA, 

which rose from nearly undetectable levels (Tammi et al., 2005) to a very high amount 

(compare Fig. 1b and 1e). Immunohistochemical analysis of CD44 revealed strongly 

increased expression after TPA treatment (compare Figs. 1c and 1f). In contrast to WT mice, 

Has1/3 null mice showed a blunted response to TPA in terms of epidermal HA levels 

(compare Figs. 1h and 1k) and CD44 (compare Figs. 1i and 1l). Despite the loss of Has1 and 

Has3, hyperplastic epidermal thickening in response to TPA still occurred in Has1/3 null 

mice, to the same extent as in WT mice (compare Figs. 1g and 1j).

To confirm these findings by an independent method, an ELISA-like assay for HA was 

utilized (Fig. 1m). When compared to the 6.5-fold increase in HA in WT epidermis (Fig. 

1m, left), the 3.6-fold HA induction in Has1/3 null epidermis was significantly less (Fig. 

1m, right).
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Epidermal induction of Has enzymes after TPA application in WT and Has1/3 null mice

To understand the basis for increased HA accumulation after TPA exposure, mRNA 

expression of HA-synthetic enzymes in the epidermis was examined. Epidermal sheets from 

vehicle- and TPA-treated WT mouse skin were separated and evaluated by quantitative real-

time PCR (Fig. 1n, left). Has3 mRNA was preferentially increased by 31-fold, Has2 by 8-

fold, Has1 by 2-fold. In Has1/3 null epidermis, Has2 expression after TPA treatment was 

examined (Fig. 1n, right), and found to be induced to a nearly identical extent (9-fold) as in 

WT epidermis.

Immunostaining revealed identical expression patterns for markers of keratinocyte 

proliferation (Ki67) and differentiation (keratins K10 and K14) in the WT and Has1/3 null 

epidermis (data not shown), indicating that Has1/3 mice mount a normal proliferation and 

differentiation response to TPA even in the absence of a full HA induction in the epidermis.

Wound healing in Has1/3 null mice is abnormal, with accelerated wound closure

In a different model of cutaneous injury, full-thickness excisional wounds were generated in 

WT and Has1/3 null mice, and the course of wound healing in normal versus null mice was 

compared (Fig. 2). A striking difference was observed during the first 9 days post-

wounding; namely, the rate of wound closure was higher in Has1/3 null mice than in WT 

controls (Fig. 2a). Whereas all excisional wounds in mice tended to stretch and expand 

during the first day after wound placement, Has1/3 null wounds had returned to the initial 5-

mm wound diameter by day 3 and achieved 90% wound closure by day 9. WT wounds did 

not reach those benchmarks until days 6 and 10, respectively (Fig. 2b). No other major 

differences were discernable at a macroscopic level.

Both epidermal and dermal levels of HA after skin injury are lower in Has1/3 null mice, 
relative to WT mice

We were also interested in evaluating HA in the dermis, in response to TPA and wounding, 

because dermal HA constitutes the great majority of HA in the skin. To do this, we utilized a 

biochemical technique called FACE (Fluorophore-Assisted Carbohydrate Electrophoresis) 

which measures the total mass of HA in tissues (Calabro et al., 2000). We measured total 

HA in WT and Has1/3 null skin after full-thickness wounding and in TPA treated skin (Fig. 

3a, b). In WT mice, full-thickness wounding significantly induces HA levels by 3 days, to 

~145% of control levels. While a portion of this increase may reflect increased epidermal 

HA, as visualized by bHABP staining (Fig. 3c), the bulk of the measured HA accumulation 

comes from the dermis due to the overwhelming proportion of HA in the dermal 

compartment. In Has1/3 null mice, HA levels in control (uninjured) skin were similar to 

levels in WT controls (Fig. 3a, b). After full-thickness wounding, however, the dermal HA 

content of Has1/3 null wounds was significantly less than in WT wounds (Fig. 3a, b), only 

~55% the level of uninjured controls. This relative decrease in dermal HA content of Has1/3 

null skin after wounding can also be seen by bHABP staining (Fig. 3c, compare lower left 

and right panels). Note also that epidermal HA fails to accumulate in Has1/3 null epidermis 

(Fig. 3c), as was seen with TPA treatment (Fig. 1).
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To determine how changes in Has enzyme gene expression might contribute to the changes 

in overall HA levels after full-thickness injury, a time course experiment using real-time 

PCR was done to examine Has gene expression after wounding in WT and Has1/3 null mice 

(Fig. 3d). In WT mice, strong inductions in Has1 (~100-fold) and Has3 (~200-fold) were 

observed at 2-6 h post-wounding. These inductions were transient, declining toward baseline 

by ~24 h post-wounding. In contrast, Has2 expression was not induced in WT skin, and in 

fact declined after 2 h post-wounding. In Has1/3 null wounds, on the other hand, Has2 was 

strongly induced at all times after wounding. However, as shown in Fig. 3a and 3b, this 

upregulation of Has2 was not sufficient to compensate for loss of Has1 and Has3, as far as 

HA induction is concerned.

Increases in TPA-induced inflammation and wound-induced inflammation and fibrosis in 
Has1/3 null skin are associated with reduced HA levels

Because we observed a decrease in dermal HA in Has1/3 null injured skin, and knowing that 

HA influences inflammation in other systems (Wang et al., 2011; Wang and Hascall, 2004), 

we examined inflammatory responses in our two injury models. After TPA treatment, 

leukocyte infiltration into the dermis was greater in Has1/3 null mice than in control mice 

(Fig. 4a-c), despite the equivalent amounts of epidermal hyperplasia (Fig. 4b and 4c, double 

arrows). This was a mixed inflammatory infiltrate consisting of ~35% neutrophils 

(determined by comparing H&E stains and neutrophil-specific immunostains using the 

RB6/85c antibody; data not shown). Neutrophils displayed a 3-fold relative increase after 

TPA in Has1/3 null mice (Fig. 4j), along with a 5-fold increase in the number of dilated 

blood vessels in the upper dermis (Fig. 4c, k) suggesting an increased release of vasodilatory 

cytokines. In full-thickness wounds, a preferential increase in neutrophil recruitment was 

also seen in the Has1/3 mice (Fig. 4d, e). During normal wound healing, an influx of 

neutrophils begins within a few hours after injury and reaches a maximum between days 1 

and 3 (Dechert et al., 2006). In WT mice at 24 h post-wounding, neutrophils were observed 

transmigrating from vessels of the subdermal vascular plexus (SVP), a region located 

immediately beneath the dermis and easily visualized in the skin adjacent to the wound (Fig. 

4d; also see the drawings in Figs. 4f, g). In Has1/3 null mice at 24 h, the number of 

neutrophils effluxing from the SVP or present in the dermis was markedly increased (Fig. 

4e, m, n). This increase in neutrophil recruitment was reflected in the number of 

intravascular neutrophil aggregates in the SVP that were detected in immunostained sections 

(Supplem Fig. 1c, c’).

Mechanistically, the SVP is of particular interest because this zone appears to contain the 

highest HA levels of the entire skin (Supplem Fig. 1a) and is a major site of neutrophil 

recruitment to vessels (Supplem Fig. 1b, b’). Levels of HA in the SVP region are reduced in 

Has1/3 null skin, both in the unwounded situation (Supplem Fig. 1a’) and at 24 h post-

wounding (illustrated in Fig. 4h and 4i, and quantified in Fig. 4L). Notably, double-staining 

for HA and myeloperoxidase reveals that a robust neutrophil migration from blood vessels 

in the SVP appears to be significantly associated with low HA in the perivascular matrix 

(Fig. 4i, m).
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A time course experiment provided further evidence that neutrophil recruitment is 

accelerated in the Has1/3 null wounds. Whereas more neutrophils were seen at Day 1, fewer 

were seen at Day 5 (relative to WT wounds), an observation consistent with faster resolution 

of the neutrophilic infiltrate (Supplem Table 1), although more detailed experiments will be 

needed to confirm this point. Macrophages, on the other hand, showed similar behavior in 

the Has1/3 null and WT wounds, first appearing at Day 3 and becoming equally abundant at 

Days 5 and 10 (Supplem Table 1).

We also examined the dermal and subcutaneous regions for evidence of relative changes in 

fibroblast proliferation and differentiation. The results suggest an earlier onset of 

myofibroblast differentiation in the Has1/3 null wounds (Supplem Table 1). Beginning at 

Day 5 after wounding, spindle-shaped cells (many of which expressed alpha-smooth muscle 

actin; Supplem Fig. 1d, d’) appeared in Has1/3 null skin at the wound edge and beneath the 

wound bed, but were much less evident in the WT wounds.

DISCUSSION

In this study we examined the epidermal and dermal injury responses in mice lacking Has1 

and Has3, as compared to WT mice. Levels of HA, expression of Has enzymes, 

inflammation, and fibroblast behavior were evaluated. Two different kinds of injury, TPA 

and wounding, were utilized. For both types of injury, similarities in HA responses in the 

epidermis and in the dermis were noted, as follows. In normal epidermis, large 

accumulations of HA were observed, both after TPA (Fig. 1e) and after wounding (Fig. 3c). 

In Has1/3 null epidermis, HA accumulations were smaller than in WT epidermis, but some 

HA induction was still observed. Levels of CD44 (the HA receptor) on keratinocyte plasma 

membranes appeared to correlate with overall HA levels (Fig. 1), consistent with 

suggestions that CD44 levels are controlled by the receptor internalization rate; this rate is 

slowed when CD44 is retained on the surface through binding to extracellular HA ligand 

(Knudson et al., 2002). In the dermis, changes were more difficult to interpret. In WT skin, 

dermal HA was increased after wounding (up ~145%) but not after TPA (Fig. 3a, b). In 

Has1/3 null skin, on the other hand, either wounding or TPA exposure led to a decline in 

dermal HA of ~40-50% (Fig. 3b). We can only speculate that this decline is the result of 

dermal hyaluronidase activity, which becomes unopposed by HA synthesis in mice that lack 

both Has1 and Has3.

Our data also provide information on the relative contribution that changes in Has1, 2, and 3 

expression may be making to the accumulation of HA in epidermal and dermal 

compartments after injury. Epidermal Has1 expression remains low (essentially unchanged) 

after TPA exposure in WT mice (Fig. 1n), suggesting that Has2 and Has3 (which are 

significantly induced after TPA) are the principal enzymes responsible for HA accumulation 

in the epidermis following TPA. Has2 is induced to the same extent in Has1/3 null 

epidermis as in WT epidermis (8-fold in each case, Fig. 1n) following TPA injury, which 

appears to explain why significant amounts of HA can still be synthesized in the Has1/3 null 

mice (Fig. 1m). In the dermis, however, both Has1 and Has3 are highly induced post-

wounding, whereas Has2 is not. This indicates that Has3 is a major responder following 

both types of injury, and in both tissue compartments. Interestingly in Has1/3 null mice, a 

Mack et al. Page 6

J Invest Dermatol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compensatory increase in dermal Has2 expression is observed after wounding as compared 

to WT mice (Fig. 3d); this could have functional implications, as discussed further below.

Two novel injury phenotypes are observed in Has1/3 null mice: (i) faster wound closure 

than in WT mice (Fig. 2), and (ii) an exaggerated neutrophil recruitment following 

cutaneous injury (Fig. 4). Has1/3 null wounds were smaller at all time points measured. The 

enhanced population of myofibrobasts beginning at day 5 in null wounds could account for 

the faster closure at day 5 and beyond. At earlier time points (days 1 and 3), the lower 

amounts of HA in Has1/3 null wounds could lead to drier, less edematous tissue (since HA 

is very hydrophilic), and hence to a smaller wound size. Alternatively, cytokines released by 

neutrophils in Has1/3 null wounds may stimulate premature wound contraction through 

increased fibroblast cytoskeletal contractility, even in the absence of myofibroblast 

transformation (Vishwanath et al., 2003).

Neutrophils are important participants in a number of inflammatory responses of the skin. In 

mice, repeated treatment with topical TPA results in a temporal influx of neutrophils that 

becomes maximal at 3 days (Alford et al., 1992). After acute wounding, neutrophil influx 

into the skin is detectable by 4 hr, and plateaus at ~3 days (Dechert et al., 2006; Kim et al., 

2008). Because the half-life of neutrophils is only a few hours (Kim et al., 2008), neutrophil 

accumulation at wound sites must reflect continuous recruitment of circulating neutrophils, 

regulated in some manner by HA. In Has1/3 null mice, reduced levels of dermal HA are 

associated with an increase in neutrophils at the injury site. In our search for the mechanistic 

link between HA and enhanced neutrophil recruitment, we hypothesize that reduced HA in 

Has1/3 null venular walls (Fig. 4) at sites of injury results in increased neutrophil adhesion. 

Other studies have shown that HA reduces neutrophil adhesion to human endothelial vein 

cells in vitro (Alam et al., 2005; Forrester and Wilkinson, 1981), and that adhesion of 

neutrophils to postcapillary venules in vivo after PMA treatment is inhibited by intravenous 

administration of HA (Alam et al., 2005). An additional hypothesis to explain enhanced 

neutrophil influx into HA-deficient Has1/3 null dermis is that HA inhibits neutrophil 

migration (Alstergren et al., 2004). For example, HA-rich tissues (e.g. cartilage; vitreous of 

the eye) are resistant to influxes of inflammatory cells (Forrester and Lackie, 1981). Other 

indirect mechanisms may exist. For instance, the synthesis or release of neutrophil 

chemotactic factors such IL-6 or IL-8 (Pauloin et al., 2009) might be altered.

Two additional points of interest can be noted regarding functions of Has enzymes in the 

skin. First, epidermal hyperplasia still occurs in Has1/3 null mice despite a failure to induce 

high levels of HA. Therefore, massive epidermal accumulation of HA is not required for 

epidermal hyperplasia following TPA, but at least some HA may still be needed for proper 

epidermal proliferation and stratification since Has2 is still expressed in Has1/3 null 

epidermis. Partial functional redundancy was described in mice hemizygous for Has2 and 

nullizygous for Has3 (Has2 +/−, Has3 −/−) (McDonald and Camenisch, 2002; Spicer et al., 

2002), suggesting that partial compensation by Has2 is likely in the Has1/3 null mice. 

Secondly, our data support a role for all three Has enzymes in cutaneous responses after 

injury. In the WT epidermis, mRNA expression of Has3 and Has2 was increased more than 

Has1 after TPA stimulation (Fig. 1n). In wounded WT whole skin, both Has1 and Has3 

were induced, whereas Has2 expression actually declined (Fig. 3d). This suggests that the 
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relative contribution of different Has enzymes to HA production is dynamic and cell 

specific, and might contribute to subsequent events through different mechanisms. First, 

because the average polymer length of HA synthesized by each type of Has enzyme is 

different (Has1 = Has2 > Has3), a change in the relative amounts of each Has could 

differentially affect cellular responses. For example, lower mass HA (<200,000 Da), such as 

that produced by Has3, can more efficiently activate intracellular signaling via CD44 

(Tammi et al., 2002). Second, as mentioned above, different cell types may express 

distinctly different levels of each Has, leading to different cell-specific responses for 

keratinocytes, vascular endothelium, and fibroblasts after injury. Other investigators have 

noted the relative importance of Has3 in keratinocytes under basal conditions (Sayo et al., 

2002), in response to inflammatory cytokines (Ohtani et al., 2009), and during epidermal 

hyperplasia caused by sonophoresis (Lee et al., 2009). TPA can promote phosphorylation of 

Has3 on a critical serine residue (Goentzel et al., 2006), and phosphorylation regulates Has3 

activity (Vigetti et al., 2009). In mice subjected to ventilator induced lung injury, Has3 was 

required to generate low MW HA, accompanied by induction of MIP-2 and a neutrophilic 

infiltrate (Bai et al., 2005).

For other tissues, however, Has2 may be of relatively greater importance. In mice, 

conditional inactivation of Has2 leads to disruption in mesenchymal (as opposed to 

epithelial) compartments, including defects in skeletal and cartilage development 

(Matsumoto et al., 2009). In the skin of Has1/3 null mice, we have shown that Has2 

expression cannot compensate quantitatively for the loss of dermal HA levels. However, the 

increased Has2 observed in Has1/3 null wounds may be contributing to a pro-fibrotic 

phenotype. Has2 has been implicated in fibrosis following lung injury (Heldin et al., 2008), 

and is thought to have an important role in fibroblast to myofibroblast conversion (Webber 

et al., 2009). Finally, we cannot rule out the possibilty that Has2 induced in Has1/3 null skin 

(Fig. 3d) may cause a qualitative change in HA produced at specific locations within the 

dermis, thus contributing to the pro-inflammatory milieu.

In summary, our study demonstrates that the balance of HA produced by distinct Has 

enzymes is important for regulating inflammatory responses and wound contraction in the 

skin after injury. Future studies will address the question of whether altered HA patterns in 

Has1/3 null mice can affect long-term scar formation and tensile strength, keeping in mind 

that faster healing does not necessarily mean better quality healing. Although detailed 

mechanisms remain to be determined, areas to focus on will be the role of HA in and around 

venules during neutrophil recruitment, and the role that dermal HA plays in the proliferation 

and differentiation of myofibroblasts. .

Materials and Methods

Animals

C57BL/6J mice were obtained from JAX Laboratories. Has1-/- mice (Kobayashi et al., 

2010) and Has3-/- mice (Bai et al., 2005) were generated previously using a strategy that 

eliminates the catalytic site of each enzyme. Has1-/- and Has3-/- mice were intercrossed to 

generate animals nullizygous for both alleles (Has1/3 null). All mice were maintained in 

accordance with guidelines of the American Association for the Accreditation of Laboratory 
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Animal Care, and were approved by our Institutional Animal Care and Use Committee 

(IACUC).

Injury with 12-o-tetradecanoylphorbol-13-acetate (TPA)

For TPA experiments, dorsal skin of 6-10 wk old mice was shaved 48 h prior to application. 

TPA (Sigma, St. Louis, MO) was prepared (5 mg, dissolved in 20 ml DMSO and then 

diluted to 100 ml in acetone) and applied to the animal’s back with a cotton swab and gently 

rubbed (10 μg per application; twice daily for 3 d). Mice were euthanized 2 h after the last 

treatment, and the skin harvested, fixed in 4% paraformaldehyde, and embedded in paraffin.

Wound healing experiments

All procedures were pre-approval by our institution’s Animal Care and Use Committee 

(IACUC). Mice (C57/BL6 wildtype, or Has1/3 null, 9-10 weeks of age) were anesthetized 

with pentobarbital and fur shaved from the upper back. To create full-thickness excisional 

wounds (one wound per mouse), a 5-mm circular template of sticky tape (cut with a biopsy 

punch) was placed ~1 cm posterior to the ears. A 5-mm excisional wound created down to 

fascia, using fine iris scissors. At specified times (from 0 to 11 days), mice were 

anesthetized with isofluorane and photographed at a fixed distance using a digital camera on 

a stand. The area of wounds was determined from the digital photos, using image software 

(pixel counts).

For histological examination, wounds were harvested at 0, 1, 3, 5, and 10 days post-

wounding along with unwounded skin. A ~1 cm square of tissue around the wound and 

beneath the dermis was collected by careful dissection, placed on 3MM Whatman paper 

(with the orientation noted by marking the caudal pole with a pen). The tissue was bisected 

with a razor blade oriented in the cephalad-caudad direction. Tissue was fixed in 

Histochoice (Amresco, Solon, OH), paraffin-embedded, and stored for later sectioning.

Full-thickness linear incisional wounds (1.5 cm long) were made with iris scissors and 

closed using 6-0 nylon interrupted sutures. Wounds were harvested at 2, 6, 12, and 24 hr 

post-wounding (2 mm of tissue on either side of the incision). Tissue was frozen and stored 

at −80 °C for subsequent RNA isolation.

Histology and Immunohistochemistry

Histochoice-fixed or 4% paraformaldehyde-fixed, 5 μm paraffin sections were stained with 

hematoxylin and eosin using standard methods. For collagen visualization, the Masson 

Trichrome staining kit (Thermo Fisher Scientific, Pittsburgh, PA) was used according to the 

manufacturer’s protocol. For detection of HA, sections were rehydrated and hyaluronan 

visualized by immunofluorescence using a biotinylated HA-binding probe (bHABP) and 

streptavidin-Cy3 (Passi et al., 2004). For standard immunohistochemistry, the antibodies 

and staining conditions are described in Supplemental Materials and Methods.
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Quantitation of Hyaluronan by an Enzyme-Linked Immunosorbant Assay (ELISA)-like 
Assay

Solubilized tissues (either from whole skin adjacent to wounds, or from dispase-separated 

epidermis) were prepared and analyzed in a competitive ELISA-like assay for HA, modified 

from Fosang et al. (Fosang et al., 1990). Details are provided in Supplemental Materials and 

Methods.

Quantitation of Hyaluronan by FACE

Fluorophore-assisted carbohydrate electrophoresis (FACE), a technique that quantifies total 

HA mass, was done as previously described (Calabro et al., 2000; Passi et al., 2004).

RNA Isolation and qPCR Analysis

RNA was prepared from total skin adjacent to full-thickness incisional wounds, or from 

dispase-separated epidermis after TPA treatment, then reversed transcribed and subjected to 

real time quantitative PCR (qPCR) as described in Supplementary Materials and Methods.

Digital image analysis of histological sections

Histological specimens were visualized on an Olympus BX-50 microscope with 

epifluorescence attachments and a Polaroid DU-DMC2 digital camera. Image processing 

was done with IPLab Spectrum software as described (Maytin et al., 2004).

Statistical Analysis

Differences between experimental and control groups were evaluated with a two-sided 

Student t-test, assuming equal variance in each group. A P-value of 0.05 or less was 

considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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bHABP biotinylated HA-binding protein

ELISA Enzyme linked immunosorbent assay

FACE Fluorophore assisted carbohydrate electrophoresis

HA Hyaluronic Acid

Hyaluronan Has HA synthase

Hyal Hyaluronidase
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TPA 12-o-tetradecanoylphorbol-13-acetate

WT wildtype
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Figure. 1. TPA-stimulated accumulation of HA in the epidermis is blunted in Has1/3 null mice
(a-l) Dorsal skin was treated with TPA or vehicle alone (x 3 days), biopsied, and evaluated 

histologically for morphologic changes (H&E stains), HA levels (bHABP and streptavidin-

Cy3), and CD44 protein levels (anti-CD44/rhodamine). Specific HA staining was confirmed 

by pretreatment of specimens with hyaluronidase (panel e, Inset). (m, n) TPA-treated or 

control epidermis was separated using dispase, and analyzed for concentrations (ng/mg) of 

HA using an ELISA-like assay (m), or analyzed for relative expression of Has1, Has2, and 

Has3 mRNA using quantitative real-time PCR (qPCR) (n). In Has1/3 null skin, only Has2 

expression was analyzed. The p values from two-sided Student t-test are indicated. Dashed/

dotted lines: epidermal boundaries. Scale bars, 100 μm.
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Figure 2. Wound closure is accelerated in Has1/3 null mice
(a) Typical examples of 5-mm diameter full-thickness excisional wounds. Wounds were 

photographed daily until closure. (b) Graphical summary of changes in wound area, 

expressed relative to the initial size of the wound at day zero. Data are mean ± SEM; the 

number of mice analyzed at each time point is shown beneath each data symbol. Open 

circles, wildtype; Closed circles, Has1/3 null. (*), p < 0.01 ; (**), p < 0.005 by two-sided 

Student t-test.
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Figure 3. HA levels are altered in Has1/3 null mice after wounding
(a) Fluorescence-Assisted Carbohydrate Electrophoresis analysis of HA levels in equivalent 

amounts (weight) of skin from WT or Has1/3 null mice; treatments as shown. Disaccharide 

(Δ di-HA) bands are displayed for individual wounds (5 mice/condition). (b) Integrated 

fluorescent intensity of Δ di-HA bands from 3-day wounds or TPA-treated skin, relative to 

WT non-injured controls (mean ± SD, n=5). (c) HA in skin adjacent to incisional wounds 

(<1 mm from wound edge) at 24 h post-injury, immunostained with bHABP/streptavidin-

Cy3. Bar, 25 μm. (d) Time course of Has mRNA expression post-wounding in WT mice or 

Has1/3 null mice. Mean ± SD, duplicate mice, triplicate qPCR reactions per wound. (*) 

significant increase or (**) significant decrease, at p<0.05 level.
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Figure 4. Preferentially enhanced inflammation in Has1/3 null skin following TPA application (3 
days) or full-thickness wounding (24 hours)
(a-c) H&E stains of non-injured wildtype, TPA-treated wildtype, or TPA-treated Has1/3 

null skin. BV, dilated blood vessels. (d, e) Masson-Trichrome stains of subdermal vascular 

plexus (SVP) immediately adjacent to the wound, in wildtype or Has1/3 null mice. Insets, 

neutrophil-specific immunostains of the SVP. (f, g): Cartoon of events in wildtype skin after 

wounding. (h, i) Tissues in the SVP region, co-stained for HA (green) and neutrophils (red). 

GRAPHS: Data (mean ± SEM) for neutrophils (j) and dilated vessels (k) after TPA 

treatment; or HA staining intensity (l), neutrophils near blood vessels in the subdermis (m), 

and neutrophils in the dermis (n) of wounded skin. Scale bars, 50 μm.
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