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Background: Cerebral palsy (CP) is the most common cause of physical disability

in childhood. Muscle pathologies occur due to spasticity and contractures; therefore,

diagnostic imaging to detect pathologies is often required. Imaging has been used to

assess torsion or estimate muscle volume, but additional methods for characterizing

muscle composition have not thoroughly been investigated. MRI fat fraction (FF)

measurement can quantify muscle fat and is often a part of standard imaging in

neuromuscular dystrophies. To date, FF has been used to quantify muscle fat and assess

function in CP. In this study, we aimed to utilize a radiomics and FF analysis along with

the combination of both methods to differentiate affected muscles from healthy ones.

Materials and Methods: A total of 9 patients (age range 8–15 years) with CP and 12

healthy controls (age range 9–16 years) were prospectively enrolled (2018–2020) after

ethics committee approval. Multi-echo Dixon acquisition of the calf muscles was used

for FF calculation. The images of the second echo (TE = 2.87ms) were used for feature

extraction from the soleus, gastrocnemius medialis, and gastrocnemius lateralis muscles.

The least absolute shrinkage and selection operator (LASSO) regression was employed

for feature selection. RM, FF model (FFM), and combined model (CM) were built for each

calf muscle. The receiver operating characteristic (ROC) curve and their respective area

under the curve (AUC) values were used to evaluate model performance.

Results: In total, the affected legs of 9 CP patients and the dominant legs of 12 healthy

controls were analyzed. The performance of RM for soleus, gastrocnemius medialis,

and gastrocnemius lateralis (AUC 0.92, 0.92, 0.82, respectively) was better than the

FFM (AUC 0.88, 0.85, 0.69, respectively). The combination of both models always had

a better performance than RM or FFM (AUC 0.95, 0.93, 0.83). FF was higher in the

patient group (FFS 9.1%, FFGM 8.5%, and FFGL 10.2%) than control group (FFS 3.3%,

FFGM 4.1%, FFGL 6.6%).
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Conclusion: The combination of MRI quantitative fat fraction analysis and texture

analysis of muscles is a promising tool to evaluate muscle pathologies due to CP in

a non-invasive manner.

Keywords: cerebral palsy, pediatric imaging, dixon imaging, intramuscular fat, magnetic resonance imaging,

radiomics analysis, texture analysis

INTRODUCTION

Cerebral palsy (CP) is the most common cause of physical
disability in childhood, caused by brain injury during the
antenatal or early postnatal period (1). Although primary damage
occurs in the central nervous system, clinical symptoms are
mostly associated with the peripheral neuromuscular system,
particularly with skeletal muscles (2). The severity of the clinical
manifestations depends on the degree of the injury, ranging
from mild movement disorder to severe functional limitation
(2). Muscle pathologies occur due to spasticity and contractures,
and so far, those pathologies are assessed by either clinical
scoring systems, e.g., modified Ashworth scale (MAS), or invasive
procedures, e.g., biopsies (2). Imaging has been used to assess
torsion or estimate muscle volume (3, 4), but additional methods
for characterizing muscle composition have not thoroughly
been investigated.

Quantitative magnetic resonance imaging (MRI) is a
promising non-invasive imaging modality to assess pathologic
changes in muscles. Particularly in neuromuscular muscle
diseases, quantitative MRI methods have already become
standard for disease monitoring (5–8). Among these
quantification methods, fat fraction (FF) measurement is
commonly employed to determine fatty infiltration in a muscle,
providing insights into function and pathophysiology (6, 7, 9, 10).
Most of the quantification methods are based on a mean value
calculation within a region of interest (ROI); however, mean
values cannot entirely capture the heterogeneity or dynamic
variations within the ROI and, therefore, will not show a robust
correlation with tissue characteristics (11, 12). So far, FF analysis
has been rarely employed to evaluate CP patients (13, 14).

Texture analysis (also called radiomics) is an advanced
technique that aims to extract quantitative parameters from
diagnostic images to discover the relationship between imaging
features and the underlying biological information (15). To
date, radiomics analysis has been mostly applied in the field
of oncology—including but not limited to gene-expression
pattern prediction (16), lesion characteristic discrimination (17),
and treatment outcome prediction (18). Radiomics analysis
of skeletal muscles recently gained more attention with the
increased understanding of the relationship between muscle
texture changes and disease pathophysiology (19, 20). Up to
now, few studies have focused on radiomics analysis of skeletal
muscles, and most of them were either animal studies or in
healthy populations (21–27). The potential of the texture analysis
of pathologic muscles in human subjects has rarely been explored
(28, 29). To our knowledge, our study is the first to employ
muscle texture analysis along with FF measurement in children
with CP.

TABLE 1 | All study participant demographics.

Parameter Control group

(n = 12)

Cerebral palsy

group

(n = 9)

Fisher’s

exact test P

value

Age 11.1 (9.6–13.7) 11.5 (10.6–12.0) 0.730

Sex 0.061

Female, n (%)

Male, n (%)

6 (50%)

6 (50%)

1 (11%)

8 (89%)

Height 140.0 (134.0–162.5) 146.0 (135.0–151.0) 0.634

Weight 32.35 (28.15–49.25) 32.7 (26.6–44.6) 0.822

BMI 16.4 (15.7–17.3) 16.1 (14.6–18.3) 0.861

Unless otherwise specified, data are medians and interquartile ranges. BMI, body

mass index.

In this study, we aimed to employ radiomics and FF analysis
along with the combination of both methods to differentiate
pathologic muscles from healthy ones in children with CP and
healthy controls and compare our RM with FFM and with a
combination of both models.

MATERIALS AND METHODS

Study Population
A total of nine patients (median age 11.5 years) with CP and
12 age-/height-/weight-matched healthy controls (median age
11.1 years) were prospectively enrolled between 2018 and 2020
after ethics committee approval (Table 1). All patients were into
consideration for corrective surgery. They had fixed contractures
with a functional component contributing to equinus gait. Six
patients were diagnosed with unilateral spastic hemiparesis and
3 with spastic diparesis. At the time of the study, the MAS ranged
between 0 and 2; only two hemiparetic patients had MAS of 0.
The Gross Motor Function Classification System (GMFCS) level
was mostly I, only two patients had level II, and another had level
III motor function impediment. Passive range of motion (ROM)
andmanual muscle testing (MMT) of the knee joint was reported
in Table 2. Informed consent was obtained from the parents of
the participants and, additionally, from the 12 years old or older
participants at the time of examination. Exclusion criteria were
a history of surgery on the affected limb(s), claustrophobia, and
failing to follow instructions during the acquisition.

Image Acquisition
The same scanner and the same acquisition parameters were
used throughout the study. MRI exams were performed with a
3T whole-body scanner (Siemens Prisma, Siemens Healthineers,
Erlangen, Germany). The patients and healthy controls were
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TABLE 2 | Patient characteristics, results of the clinical examination, passive range of motion, manual muscle testing, and MRI fat fraction.

Patient Patient Characteristics Spasticity ‡ PROM MMT∧ Fat Fraction*

BMI

percentile†

CP GMFCS More

affected side

PF (at 90◦ KF) PF (at KE) KF DF (at KE) KE (at HE) PF KF S GM GL

1 5 Unilateral I Right 1+ 1+ 0 −10◦ 0◦ 2+ 5 6.8 5.5 16.7

2 95 Unilateral I Right 0 1 0 −20◦ −15◦ 2+ 4 24.4 16.5 16.5

3 23 Unilateral I Right 1+ 1 0 15◦ 0◦ 2+ 5 7.1 7.7 19.2

4 49 Bilateral I Left 1 1 0 −10◦ −20◦ 2+ 4 9.4 8.1 5.9

5 3 Bilateral II Left 1+ 4 2 −30◦ −5◦ 3 4 13.6 13.5 11.7

6 4 Bilateral III Left 1 1 1 −5◦ −10◦ 3+ 3 6 8.1 7.4

7 71 Unilateral II Left 2 2 0 10◦ 0◦ 2 4 5.1 5 4.7

8 61 Unilateral I Right 1 1 0 0◦ 10◦ 2+ 5 4.1 3.6 4.3

9 5 Unilateral I Left 0 0 0 10◦ 5◦ 2+ 4 3.3 8.2 5.1

PROM, passive range of motion; MMT, manual muscle testing; BMI, body mass index; CP, cerebral palsy; GMFCS, Gross Motor Function Classification System; PF, plantarflexor

muscles; KF, knee flexion; KE, knee extension; DF, dorsiflexion; HE, hip extension; S, Soleus; GM, Gastrocnemius medialis; GL, Gastrocnemius lateralis.
†
BMI percentile: underweight <5; 5 ≤ normal weight < 85; 85≤ overweight < 95; 95 ≤ obesity.

‡
Modified Ashworth Scale.

∧Medical Research Council scale.

*Fat fraction percentage in calf muscles of the affected legs of unilateral and more affected legs of the bilateral CP patients.

positioned supine on the patient table, and the lower extremity
was restrained with straps at a comfortable resting angle. A
Siemens 18-element-body array coil was placed on the lower
leg. A three-dimensional (3D) multi-echo gradient-echo (Dixon)
sequence was used to reconstruct fat-only and water-only images:
6 echoes: echo times (TEs) 1.41/2.87/4.33/5.79/7.25/8.71ms,
repetition time (TR) = 20ms, voxel size 1.1 × 1.1 × 3.0
mm3, reconstructed matrix = 320 × 190 × 96, flip angle
= 12◦, acceleration factor 2, acquisition time 4min 49 s (30).
Images were acquired without contrast material and without
anesthesia or sedation. Children were offered the possibility
of visual or audio entertainment during the examination to
improve compliance, and in case of suboptimal image quality, the
corresponding acquisition was repeated.

Image Segmentation and Analysis
The images of the second echo (TE = 2.87ms) from the
multi-echo gradient-echo Dixon acquisition were used for the
muscle segmentation. An in-house developed segmentation tool
was employed for manual contour delineation. An experienced
radiologist (T.A.D.) was responsible for all segmentations. The
entire volumes of the calf muscles—soleus (S), gastrocnemius
medialis (GM), and gastrocnemius lateralis (GL)—were
segmented for both legs (Figure 1). Segmentations were then
reviewed by one of the authors (C.W.) to check for errors.

All ROI margins were eroded by one voxel to reduce partial
volume effects from adjacent adipose tissue and to prevent
possible inadvertent overlaps between ROIs.

Water-only images, fat-only images, and fat fraction maps
(defined as the signal intensity of the fat-only images divided
by the sum of the signal intensities of fat-only and water-only
images) were calculated online by the scanner software for all calf
muscles bilaterally (30) (Figure 1).

Texture analysis was applied to the second echo images
of the Dixon image series (TE = 2.87ms). To improve

the reproducibility and robustness of radiomics features, the
voxel intensity range was normalized and quantized to 128
gray levels (31–33).

Radiomics features were extracted using Python version 3.8
(www.python.org) and the PyRadiomics package version 3.0 (34).
A total of 107 features were extracted for each ROI.

Feature Selection and Model Building
Feature selection and dimension reductionmethods were applied
to prevent overfitting (35). Pearsons’s correlation coefficient
was used to test collinearity, and a heatmap was generated
to demonstrate the collinearity between all extracted features.
The least absolute shrinkage and selection operator (LASSO)
regression and 10-fold cross-validation were employed to
reduce the high dimension of all extracted features and
select the most robust prognostic features among them as
recommended (36). Bayesian information criterion was used
for final feature selection. The Image Biomarker Standardization
Initiative (IBSI) reference manual was used for feature definitions
and calculations (37).

Logistic regression was used to build prediction models to
predict the CP-affected muscle, i.e., spasticity. The radiomics
model (RM), the fat fraction model (FFM), and a combination
of both models (CM) were built for each one of the calf muscles
separately. The receiver operating characteristic (ROC) curve and
their respective area under the curve (AUC) values were used
to evaluate model performance. A DeLong’s test was used to
compare performances of the three models (i.e., AUC values)
within a muscle. A goodness-of-fit test was employed to assess
how well the models were fitted. To compare the agreement
between the actual and the predicted outcome, calibration curves
were generated for the final models.

The feature selection and model building steps were
performed in the 12 dominant legs of volunteers, 6 affected legs
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FIGURE 1 | Axial MR images of the more affected calf of a patient (diparetic, boy, 11 years) and the dominant calf of healthy control (a typically developing 11 years

boy with similar BMI). First column: segmented ROIs for soleus (pink), gastrocnemius medialis (light blue), and gastrocnemius lateralis (lilac); second column: 2nd echo

image from the Dixon data set; third column: water-only image calculated from the Dixon dataset; fourth column: fat-only image calculated from the Dixon dataset;

fifth column: fat fraction map ranging from 0 to 100% calculated from the Dixon dataset, showing a higher fat fraction in the CP patient. TE, Echo Time.

of patients with unilateral spastic hemiparesis, and the 3 more
affected legs of bilaterally affected patients.

Statistical Analysis
Statistical analysis was performed with Stata/IC 15.1 (StataCorp
LP, College Station, Texas), and the lassopack (38) package was
used. All continuous data, i.e., age, height, BMI, were given as
either means and standard deviation or median and interquartile
range. The group differences (CP vs. healthy) were assessed using
Student’s t-test or chi-squared test, where appropriate. Shapiro-
Wilk test was used to assess the normality of the distributions.
Alpha level was set to 0.05.

RESULTS

Study Population and Fat Fraction
In total, 21 lower limbs (9 affected, 12 healthy) were included.

Mean FF values were higher in the affected legs of the patients
with unilateral spastic hemiparesis and more affected legs of
patients with spastic diparesis than dominant legs of the healthy
controls. While CP-affected and more affected legs had FFS 9.1%,
FFGM 8.5% and FFGL 10.2%, the control legs had FFS 3.3%, FFGM
4.1%, FFGL 6.6% (p-values 0.009, 0.005, 0.116, respectively). The
FF difference between dominant and non-dominant legs in the
control group was not apparent for S and GM muscles, whereas
the difference was pronounced for GL. Similarly, the FF values
in the contralateral leg of patients were lower than affected/more
affected leg for S and GM muscles, but this difference was not
evident for GL. An overview of the FF values is given in Figure 2.

Feature Selection
Feature selection was performed for the entire dataset.
All selected features and their values are reported in
Supplementary Tables 1–3. The LASSO regression model
successfully reduced the dimensionality of 107 features and

selected the most robust ones (Supplementary Figure 1). Since
LASSO also accounts for collinearity, no further steps were
taken in the Pearson correlation coefficient. A correlation
heatmap of all extracted features shown in Figure 3 and
depicts little redundancy. All chosen texture features with a
non-zero coefficient in the LASSO regression are reported
in Table 3. A different set of features were selected for each
calf muscle. The selected features belonged to 2D shape-based
(maximum 2D diameter row, surface volume ratio), gray level
co-occurrence matrix (information correlation 1, cluster shade),
and gray level size zone matrix (small area low gray-level
emphasis, small area emphasis) feature classes (Table 3 and
Supplementary Data).

Predictive Models
An RM, an FFM, and a CM were built for each muscle
separately. All model performances are reported in Figure 4.
Based on the ROC analysis, the performance of RM was
excellent for soleus and gastrocnemius medialis and very good
for gastrocnemius lateralis (AUCS 0.92; AUCGM 0.92, AUCGL

0.82). The FFM always showed good performance for soleus
and gastrocnemius medialis and moderate performance for
gastrocnemius lateralis (AUCS 0.88; AUCGM 0.85; AUCGL

0.69). The combination of both models always had a better
performance than RM according to ROC analysis (AUCS

0.95; AUCGM 0.93; AUCGL 0.83) (Figure 5). The sensitivity of
RM was between 67 and 89%, and specificity was between
83 and 100%. The accuracy of RM was always higher than
FFM, and the CM model accuracy was either better than or
comparable to RM (Figure 4). The calibration curves of the final
combination models showed a high level of agreement between
the prediction of the affected muscle and actually affected muscle
(Supplementary Figure 2).
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FIGURE 2 | Fat fraction (FF) values for patients and controls for each calf muscle. The FF results of patients with diparesis are depicted in orange.

DISCUSSION

In this study, we employed radiomics analysis of MR images in
CP patients and healthy controls to discriminate affected muscles
from healthy ones. We compared the performance of the RM
with the FFM as well as with the combination of both. Our
radiomics analysis yielded a better performing model than the
FF analysis. Moreover, we found that the combination of both
models always performed better.

So far, quantitative MRI techniques—in particular, FF
analysis—have been employed to explore disease severity or to
monitor treatment response in muscle dystrophies (5–8). Muscle
FF analysis has been rarely used to assess the functional capacity
of CP patients, and researchers have reported higher fat quantity
in muscles of CP patients than in a healthy population (13, 14).
In our analysis, the patient who had the highest FF results for
all muscles was obese with a BMI of 95 percentile. On the
other hand, the patient with the second highest FF results was

underweight with BMI 3 percentile and had the most severe fixed
contracture. All other patients were normal weighted and had
lower FF values than aforementioned 2 patients. In line with
previous studies, our FF results were higher in the patient group
than the control group regardless of their BMI. The FF values
in our patient group are similar to the values in hemiparetic
children reported by D’Souza et al. (14), and lower than the
values in biparetic young adults that reported by Noble et al. (13).
Although FF could be a useful tool to assess muscle diseases, it
is usually restricted to a single value estimation of each muscle,
disregarding the inhomogeneity of muscle structure, especially in
the presence of pathology.

A less expensive and easily accessible alternative to MRI
is ultrasonography (US). The US can be employed to detect
basic structural muscle changes and assess muscle volume in CP
patients (39, 40). Nonetheless, it is highly user-dependent and
does not provide a global view of all muscles (39). Although
new emerging US techniques, e.g., sheer-wave elastography, can
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FIGURE 3 | A heatmap demonstrates the collinearity between all extracted features—correlation coefficient (C) range between −1 and +1. Red depicts the perfect

positive correlation, and blue depicts the perfect negative correlation, and all other colors depict correlation in between on the heat map. The higher the C in each

direction, the more redundant the feature is.

make functional predictions (40), the composition of muscle,
in particular the fat fraction, cannot be detected using only US
(39). On the other hand, MRI can be used not only for global
assessment of muscles but also for compositional assessment.

Texture analysis of diagnostic images is a non-invasive
tool that can shed light on the underlying pathophysiology.
Radiomics analysis can guide biopsies and play a role in
following up the disease progression by longitudinal radiomics
analysis, so called delta radiomics (41). MRI texture analysis has
demonstrated to be a potential tool to evaluate neuromuscular
muscle disorders in animal models (21, 22, 25–27), and
preliminary studies already established some texture biomarkers
for assessing disease progression in a dog model of muscular

dystrophies (25, 27). Moreover, recent studies revealed that MRI
texture analysis could help investigate the effects of repetitive
forces in healthy athletes by detecting texture changes due to
muscle hypertrophy (23, 24). So far, only a few studies have
applied texture analysis to various pathologic skeletal muscles,
e.g., muscle dystrophy, in human subjects (28, 29). Researchers
explored the correlations between texture analysis and the disease
status and found muscle texture features helpful for objective
evaluation of MRI (28, 29). To our knowledge, our study is the
first one that applied radiomics analysis to the MRI of skeletal
muscles of children with CP.

In our study, we applied an FF analysis along with texture
analysis to predict CP affected muscles. The FF analysis has
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TABLE 3 | All selected texture features and their values, LASSO coefficients, and IBSI reference values.

Muscle Selected Features Feature Value LASSO

coefficient

IBSI

Reference

value*

Student’s

t-test P value

Healthy

(n = 12)

Cerebral palsy

(n = 9)

Soleus GLCM cluster shade −0.1 ± 0.3 −0.1 ± 0.3 −0.17 7.0 0.560

GLCM information correlation 1 −0.3 ± 0.1 −0.2 ± 0.1 0.12 −0.1 0.043

GLSZM Small area low

gray-level emphasis

0.4 ± 0.1 0.2 ± 0.2 −0.62 0.02 0.044

Gastrocnemius

medialis

Shape maximum 2D diameter

row

52.9 ± 7.5 40.1 ± 7.4 −0.01 13.1 < 0.001

GLSZM small area emphasis 0.6 ± 0.1 0.5 ± 0.1 −0.07 0.3 0.017

Gastrocnemius

lateralis

Shape surface volume ratio 0.4 ± 0.1 0.5 ± 0.1 0.60 0.7 0.005

Data are means ± standard deviations.

LASSO, least absolute shrinkage and selection operator; IBSI, Image Biomarker Standardization Initiative; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix.

*Reference values that are reported in IBSI reference manual for digital phantom at the highest consensus level.

FIGURE 4 | All model performances. The accuracy, precision, sensitivity, and specificity of the prediction models were based on the radiomics, fat fraction, and

combined model built for each muscle.

been performed based on multi-echo Dixon acquisition with 6
echoes, as at least 3 echoes (Dixon points) are recommended
to overcome main field inhomogeneities (42). Images of the
second echo (TE = 2.87ms) were used for feature extraction.
The RM always performed better than FFM in discriminating
affected muscles with an accuracy between 76 and 95%.
Furthermore, the combination of those methods showed an
excellent performance level with an accuracy between 81
and 95%. Although fat quantification with FF has a relevant
role in evaluating the muscles of the CP patients, our FFM

resulted in only moderate/good performance level with accuracy
between 62 and 81%. This might be due to the calf muscles’
immediate proximity to subcutaneous fat tissue, which was
especially prominent on GL FF analysis. Despite this issue being
addressed by eroding the ROIs by one voxel, the performance
of the FFM was lower than RM or CM. On the other
hand, RM always reached a high-performance level. Therefore,
combining radiomics and FF methods might especially be
recommended for assessing muscles adjacent to subcutaneous
fat tissue.
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FIGURE 5 | Graphs show receiver operating characteristic curves indicating the accuracy of models for predicting disease in children with cerebral palsy. DeLong’s

test P values. GM, gastrocnemius medialis; GL, gastrocnemius lateralis; RM, radiomics model; FFM, fat fraction model; CM, combined model; RM, radiomics model;

FFM, fat fraction model; CM, combined model; ROC, receiver operating characteristic.

We employed the LASSO regression for dimension reduction
and feature selection since those steps are the pillars of the
texture analysis and, consequently, help avoid overfitting (35,
36). Higher-order statistics features were eliminated by LASSO,
presumably due to their sensitivity to noise. In contrast, second-
order statistics and the shape features are less affected by noise
and, therefore, more robust (20, 37). Hence, our LASSO analysis
mostly selected the shape and second-order features instead of
higher-order statistics features. Shape features define the two-
dimensional size and shape of the ROI (37). These features
are independent of the gray level intensity distribution in the
ROI (37). Shape features were the one of the most successful
features in our analysis, and they could be employed as an
imaging biomarker for CP patients since the normal shape
of the muscle can be drastically altered due to spasticity and
contractions (4). The co-occurrence matrix depicts the frequency
of a pair of pixels with the same value in a specified spatial
range within an ROI (37). Co-occurrence matrix features were
also successful in our study since they can reveal the texture
heterogeneity due to fat infiltration within muscle tissue in
CP patients. Gray level distance zone-based features depict the
frequency of groups (zones) of the same gray-level appear in
every direction within a voxel (37). Other successful features
were belonging to this group. Fat infiltration can change the gray
levels, and since this feature takes into account the neighboring
voxel relations, it can reveal the extension of the fat infiltration.
The RM reached a high level of performance to discriminate
CP-affected muscles from the normal ones. It is of particular
interest that although the spasticity was reduced at the time
of the imaging, the muscle alterations, which could be due
to remaining contractions or subtle structural changes, were
successfully detected in radiomics analysis.

Our study had some limitations. Firstly, our study population
was small. However, acquiring MRI data from a specific
cohort, i.e., children with spasticity who can comply with
MRI examination without sedation, was particularly challenging.
Secondly, a single observer performed all segmentations, and
segmentations were done manually. Yet, another observer
controlled the segmentations against errors. It is well-known

that inter-rater agreement is low in segmentation tasks, and
although automated segmentationmethods are desirable, manual
segmentation by a single reader still provides a high degree
of reliability for the reproducibility of radiomics features (20).
Our patient group had fixed calf contractures, and it is known
that muscle changes in patients with fixed contractures are
more dramatic than the patients with dynamic contractures (2).
Therefore, studies in a heterogeneous patient group needed to
demonstrate the applicability of our model on less pronounced
contractures. Moreover, we did not have a radiology-pathology
correlation; therefore, the true relation between radiomics or
fat fraction analysis and muscle histopathology still needs to be
elucidated. Nevertheless, radiomics analysis of skeletal muscles is
a promising tool to provide non-invasive tissue characterization
and reduce muscle biopsies since it is particularly important to
avoid unnecessary interventions in the pediatric population, and
muscle biopsies usually fail to capture tissue heterogeneity or
to reflect the entire tissue. Still, radiology-pathology correlation
studies are required to understand the relationship between
muscle histopathology and imaging biomarkers. Lastly, we have
not tested our model on an independent external dataset.
Nevertheless, we did internal validation with 10-fold cross-
validation; further studies are required for external validation of
the proposed model.

In conclusion, the combination of MRI quantitative fat
fraction analysis and texture analysis of muscles in CP patients
is a promising tool to evaluate skeletal muscle involvement of
the disease in a non-invasive manner. In the long term, our
model could be integrated into clinical decision-making systems,
and a similar approach might be used to assess other muscle
diseases. Further investigations in a large cohort of patients with
CP are needed to optimize and validate our proposed model in a
clinical setting.
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