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Abstract: This study aimed to investigate the effects of speed-interactive pedaling training (SIPT)
using a smartphone virtual reality application to improve lower limb motor function, trunk sitting
balance, and gait in stroke patients. Forty-two patients who had previously experienced a stroke
and could sit independently participated in the study. The subjects were assigned to the SIPT group
(n = 21) and the control group (n = 21). The SIPT group had cycle training with SIPT for 40 min a day,
five days a week, in a six-week period, in addition to conventional therapy. The control group had
cycle training without SIPT and conventional therapy. The Fugl–Meyer Assessment, postural sway,
modified functional reach test, trunk impairment scale, and spatiotemporal parameters of gait were
used to assess the changes in lower extremity function, the static balance of sitting, the dynamic
balance of sitting, and gait ability after the intervention. The Fugl–Meyer Assessment, postural sway,
modified functional reach test, trunk impairment scale, and gait ability in the SIPT group were
significantly better compared to that of the control group (p < 0.05). Based on this result, we propose
that SIPT, which improves function, balance, and gait, could be used as an effective training method
to improve patients’ functional activities in the clinical setting. The results of this study suggest that
SIPT could be used as an effective training method to restore a patient’s function by improving trunk
balance and motor function.
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1. Introduction

Strokes are caused by cerebral hemorrhage or infarction, and damage to the cerebral cortex causes
various complications such as cognitive, sensory, and motor disorders [1]. Hemiplegia is one of the
main complications, and the asymmetry of both sides of the hemiplegic patient’s body leads to loss of
function and difficulties in daily life. Paralysis of the upper limbs results in disability of daily activities,
and paralysis of the lower limbs causes difficulty in transferring or walking [2,3]. The main goal of
rehabilitation in stroke patients is to improve the gait ability to be able to recover and move to the
desired location [4].

Gait training is the primary method to improve walking ability, but stationary bicycles are used in
preparatory stages or for patients who cannot apply gait training [5,6]. When pedaling, the lower limb
muscles are very similar to walking, which helps strengthen these muscles and is effective in training
the reciprocal patterns of movement [7–9]. In the previous study, biofeedback training, electromyogram
feedback training, and virtual reality training were combined to improve the effects of bicycle exercise
in stroke patients [5,6,10,11].

Recently, a number of studies have reported the application of advanced technology to
rehabilitation. Robots, functional electrical stimulation, and virtual reality are used as new tools
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for rehabilitation [12–14]. Among them, virtual reality is applied to patients who are unable to
access various environments due to difficulty in movement, and their effects have been proven [15].
Virtual reality provides the patient with a more realistic, immersive, and improved sensory perception
experience and facilitates interesting motor learning based on various feedback mechanisms [16,17].

Virtual reality, which is applied to improve the function of stroke patients, is used as a
method of integrating visual information through the screen [15,18–20]. In the virtual reality
environment, visual information, proprioception, and vestibular sensory information do not
synchronize, causing cybersickness, and body mechanisms necessary for movement in the real
environment may not be trained [21]. To solve this problem, studies on how to match optic flow
and actual movement during walking have been reported, and the results of the study proved
that the synchronization of optic flow and movement induced natural walking and improved
walking ability [22,23]. Lee et al. [15] reported that the speed-interactive treadmill training using
smartphone-based motion tracking technology was applied to stroke patients to improve gait ability.

In this study, we applied the method used to stationary bicycle training in the previous study
and verified its effectiveness. This study aimed to investigate the effects of speed-interactive pedaling
training (SIPT) using smartphone-based motion-tracking technology on lower extremity function,
sitting balance, and the walking ability of stroke patients.

2. Materials and Methods

2.1. Subjects

The subjects of this study were stroke patients admitted to U Rehabilitation Center in Gyeonggi
Province, South Korea with the following characteristics: had chronic hemiplegia for six months or
more due to stroke, able to sit for 30 min or more independently, able to walk more than 10 m using the
assistive device, had the cognitive ability to participate in the study by understanding simple verbal
instructions (Mini-Mental State Examination Score > 24), and had a Brunnstrom motion recovery stage
of 4 or greater.

The exclusion criteria included brain injury except for stroke, orthopedic problems of the legs,
such as fractures or damage to the peripheral nerves, cardiovascular diseases, vision defects, or deafness.
Detailed information about the purpose and procedure of the study were explained to all subjects,
and all subjects provided written informed consent for inclusion in the study. All experimental
procedures in this study were approved by the Institutional Review Board of Kyungdong University.

2.2. Size of the Sample

This was a single-blinded, randomized study. We used a computer program (G-Power 3.19) to
determine the sample size. The effect size was determined based on the sitting balance and walking
speed of the pilot experiment (0.95). To calculate the effect size, we set the alpha error and power
probability to 0.05 and 0.8, respectively. Therefore, we needed 19 patients per group. Twenty-one
subjects per group were randomly recruited by estimating the dropout rate of approximately 10%.

2.3. Procedure

A total of 42 subjects were randomly assigned to the SIPT group (n = 21) and the control group
(n = 21). Random Allocation Software was used to divide the subjects into two groups randomly.
All subjects in both groups received a 60-min conventional rehabilitation program for five days
per week, for six weeks. Subjects in the SIPT group used human tracking technology to perform
smartphone-based pedaling training for 40 min a day, five days a week, for six weeks, and the control
group performed pedaling training without SIPT for 40 min a day, five days a week, for six weeks.
One week prior to training, all subjects assessed sitting balance, gait ability, and function of the
lower extremity. After six weeks of training, they were evaluated in the same way as the pretest.
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All assessments were performed by four physiotherapists who did not participate in the training.
None were dropped during the training, and the results of all 42 subjects were analyzed (Figure 1).
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Figure 1. Flow diagram of the study. SIPT, speed-interactive pedaling training.

2.4. Speed-Interactive Pedaling Training (SIPT) Equipment and Mirroring Device

For SIPT, a stationary bike (MOTOmed viva, RECK-Technik, Betzenweiler, Germany), projector
(BX327, LG, Seoul, South Korea), and smartphone (iPhone 8, Apple, Cupertino, California, USA) were
used. A training environment was established based on previous bicycle training studies. An Apple
TV (Apple, Cupertino, CA, USA) was used to project the images from the smartphone through a
projector, and a High-Definition Multimedia Interface (HDMI) cable (AV10135yw4M-APL, Belkin,
Playa Vista, California, USA) was used for information input and output.

2.5. Motion Tracking and SIPT Equipment

In this study, we used a smartphone application Virtual Active (Bit Gym, Berkeley, CA, USA) for
motion tracking. This application provides shooting videos of mountains, valleys, and cities that are
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famous tourist destinations worldwide. It consists of three modes, including walking, biking, and arm
ergometer. Position the smartphone camera toward the patient to determine the patient’s pedaling
speed with the smartphone camera. When the patient starts pedaling, the smartphone recognizes three
virtual landmarks of the head and shoulders and draws a movement pattern. After 5 s, the pattern
is recognized and the speed is synchronized with each other according to the speed of pedaling.
Synchronization of the speed of optical flow, and pedaling helps the patient focus more on the virtual
reality situation (Figure 2).
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2.6. SIPT and Pedaling Training with a Stationary Bike

We used a stationary bike for pedaling training. The bike training mode was conducted in manual
mode, allowing the patient to adjust his or her own speed. The patient started at a comfortable pace
that he or she normally used for training; subsequently, the pace was determined by the patient.
The SIPT group pedaled while staring at the screen in front of the stationary bike, and the control
group trained without the screen. Safety, while the physical therapist was training, was monitored.
Patients with excessive hip abduction during cycling training had either fixed their thighs with a belt
or lowered their thighs with a pedal. The training consisted of a total of 40 min, including 5 min of
warm-up stretching, 5 min of slow pedaling, 25 min of the main exercise, and 5 min of cooldown.
During the main exercise, each video for the SIPT group consisted of 10 min, and two 10-min videos
were provided to the subjects. Depending on the patient’s condition, a break of 3–5 min was given
during training. The main movement of the control group was performed in the same way as the
SIPT, but no optic flow through the screen was provided. Subjects were instructed to stop at any time.
The training was conducted in a secluded and quiet space.

2.7. Conventional Rehabilitation

The conventional rehabilitation program was conducted in the same way for both groups.
It consisted of therapeutic exercise, occupational therapy, and functional electrical stimulation therapy.
The therapeutic exercise was based on neurodevelopmental therapy and consisted of upper extremity
exercise. Occupational therapy consisted of upper extremity functional exercises to improve the
activities of everyday life. Functional electrical stimulation therapy consisted of application to the wrist
extensor. Each exercise consisted of 30 min of therapeutic exercise, 20 min of occupational therapy,
and 10 min of functional electrical stimulation therapy.
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2.8. Outcome Measurements

The lower-extremity motor subscale of Fugl–Meyer Assessment (FMA-LE) was used to assess the
motor recovery of the lower limb items. The FMA–LE assessment consists of 17 items. The FMA–LE
motor subitems have two items measuring reflex activity, 11 items measuring synergistic movement,
and three items measuring coordination. With the exception of the reflex items in both items, each item’s
score is based on a three-point ordinal scale (0, not possible; 1, partial; 2, complete). The maximum
score in the lower extremity for the FMA was 34. The inter-rater reliability of the lower extremity of
the FMA was r = 0.96 [24].

In this study, a posturography system (GB300; Metitur Ltd., Jyvaskyla, Finland) was used to
evaluate the static sitting balance. The system consists of an equilateral triangle force platform connected
to a computer via a three-channel amplifier. The sampling frequency was 50 Hz. This equipment
measures the balance between older people and patients who have had a stroke and can be used
extensively. The posturography system was used to measure medial-lateral and anterior-posterior
sway velocity and velocity moment of stroke patients in a sitting position. The intra-rater reliability of
the posturography system used in this study was reported to have intra-class correlation coefficients
(r) of 0.51–0.74 (front and rear speed) and 0.63–0.83 (right and left speed) [25]. To measure the static
balance, the patient sat in a chair on the force platform. Patients were asked to watch a black circle at a
point of 1.5 m (5 cm in diameter) for 30 s while measuring balance. The measurement was repeated
three times, and the average value was used. The same procedure was repeated with the patient’s
vision blocked.

The dynamic sitting balance was measured using a modified functional reach test (mFRT). The bar
was fixed to the wall at the top height of the patient sitting comfortably in the chair. The subject’s hip and
knee joints were bent at 90◦, the chair and the popliteal area were 5 cm apart, and the feet were placed in
the footrest of the chair. For the forward reach test, the shoulders were flexed as far as 90◦. For the lateral
reach test, the shoulders were stretched laterally as far as 90◦ abduction. All distance measurements
were measured using a laser distance meter (Glm250vf, Bosch, Germany), and the average value was
repeated three times. The inter-evaluator reliability of this test was reported as r = 0.97, indicating
excellent reliability [26]. In this study, the Trunk Impairment Scale (TIS) was used to evaluate trunk
function. The TIS consists of three subscales: static sitting posture balance, dynamic sitting posture
balance, and coordination. Each subscale has 3 to 10 items. TIS scores range from a minimum of 0 to a
maximum of 23. Higher scores indicate better trunk performance. The test-retest reliability of the TIS
was reported as r = 0.96, and the inter-evaluator reliability was reported as r = 0.9927 [27].

Gait ability was evaluated with the gait analysis system (Optogait, Microgate, Bozen, Italy).
Subjects walk at normal and comfortable speeds between two parallel transmit and receive bars.
Subjects walked three times through the 5-m OptoGait pathway. The data collected included velocity,
cadence, stride time, and step time as temporal gait parameters, and stride length and step length as
spatial gait parameters.

2.9. Statistical Analysis

All data were expressed as mean and standard deviation. The Shapiro–Wilk test was used for the
normality test, and all the resulting variables were found to satisfy the normality assumption. We used
the paired t-test to compare the dependent variables within the group and the independent t-test and the
Chi-squared test to compare the dependent variables between the two groups. Statistical significance
was set to p-value < 0.05. Statistical Package for the Social Sciences (SPSS) version 20.0 (SPSS Inc.,
Chicago, IL, USA) was used for statistical analysis.

3. Results

Both groups participated in all stages of the experiment and participated in pretest and posttest.
Therefore, a total of 42 subjects were included in the analysis, 21 of them in the SIPT group, and
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21 in the control group. There was no significant difference in the general characteristics and the
dependent variables between the two groups, indicating that the two groups were homogeneous
before the experiment (Table 1; age, weight, height, duration of a stroke, gender, stroke type, paretic
side, and cognition).

Outcome measures of lower extremity function, the static balance of sitting, the dynamic balance
of sitting, and gait ability of the SIPT and control groups are shown in Table 2. At baseline, FMA,
sitting balance, mFRT, TIS, and all gait variables results did not differ significantly between the
intervention groups. The changes in the lower extremity function, FMA were significantly improved
from 16.91 to 19.49 in the SIPT group (p < 0.05), and from 17.15 to 18.59 in the control group (p < 0.05).
However, the SIPT group showed a more significant improvement compared to the control group of
the FMA (p < 0.05).

The changes in the static sitting balance ability, the speed of medial and lateral sway, the speed of
the anterior and posterior sway, and the velocity of moment variables showed significant improvement
after intervention in both groups regardless of vision (p < 0.05). However, the SIPT group showed a
more significant improvement compared to the control group (p < 0.05).

The mFRT for all directions increased significantly after intervention in both groups (p < 0.05).
In term of mFRT for forward direction, the SIPT group showed significant improvement from 302.27 mm
to 328.41 mm (p < 0.05), and from 274.97 mm to 279.15 mm in control group (p < 0.05). In terms of
MFRT for the non-affected side, the SIPT group showed significant improvement from 175.23 mm to
197.89 mm (p < 0.05) and from 158.75 mm to 161.13 mm in control group (p < 0.05). In terms of the
mFRT for the affected side, the experimental group showed significant improvement from 88.72 mm to
108.07 mm (p < 0.05) and from 84.31 mm to 85.62 mm in the control group (p < 0.05). However, the SIPT
group showed a more significant improvement compared to the control group (p < 0.05). In the
intragroup analysis, TIS were significantly improved from 12.23 to 13.38 in the SIPT group (p < 0.05),
and from 12.24 to 13.14 in the control group (p < 0.05). However, the SIPT group showed a more
significant improvement compared to the control group (p < 0.05).

The temporal gait parameters, including velocity, cadence, Stride time, and Step time, were a
significant improvement after intervention in the SIPT group (p < 0.05), but nothing significant in
the control group. In addition, the SIPT group showed a more significant improvement compared to
the control group (p < 0.05). The spatial gait parameters, including stride length, step length, were a
significant improvement after intervention in the SIPT group (p < 0.05), but nothing significant in the
control group. In addition, the SIPT group showed a more significant improvement compared to the
control group (p < 0.05).

Table 1. General characteristics of the subjects.

SIPT Group
(n = 21)

Control Group
(n = 21) χ2/t p

Age (year) 61.67 ± 8.42 64.24 ± 10.83 0.859 0.395
Height (cm) 165.62 ± 7.05 162.29 ± 9.32 1.307 0.199
Weight (kg) 62.20 ± 7.04 61.35 ± 9.15 0.334 0.740
BMI (point) 22.67 ± 2.19 23.20 ± 2.05 0.817 0.419

Duration of stroke (month) 14.81 ± 7.30 16.48 ± 7.13 0.748 0.459
MMSE 25.81 ± 1.29 25.76 ± 0.94 0.137 0.892

Gender (male/female) 14/7 13/8 0.747 0.104
Paretic side (right/left) 12/9 10/11 0.537 0.382

Stroke type (infarction/hemorrhage) 15/6 13/8 0.513 0.429

Values are expressed as mean ± standard deviation. The independent t-test and Chi-squared tests are used to
compare the dependent variables between the two groups. SIPT, speed-interactive pedaling training; BMI, body mass
index; MMSE, mini-mental state examination.
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Table 2. Comparison of measures within groups and between groups.

Variables
SIPT Group (n = 21) Control Group (n = 21) Significance of

Change Scores

Baseline Post Change Score Baseline Post Change Score t

Lower extremity function
FMA-LE (point) 16.91 ± 3.62 19.49 ± 3.56 2.58 ± 0.63 * 17.15 ± 3.13 18.59 ± 2.72 1.44 ± 2.41 * 2.347 †

Static sitting balance ability
EO-MLS (mm/s) 3.95 ± 1.27 3.00 ± 0.82 −0.95 ± 0.88 * 3.75 ± 1.21 3.34 ± 1.03 −0.41 ± 0.92 * 2.461 †

EO-APS (mm/s) 5.85 ± 1.41 4.60 ± 1.38 −1.25 ± 0.81 * 5.89 ± 1.18 5.20 ± 1.30 −0.69 ± 0.64 * 2.282 †

EO-VM (mm/s2) 5.06 ± 2.18 3.71 ± 1.68 −1.35 ± 0.97 * 4.74 ± 2.04 4.12 ± 1.93 −0.62 ± 1.07 * 2.313 †

EC-MLS (mm/s) 3.95 ± 1.27 2.85 ± 0.66 −1.10 ± 0.98 * 3.75 ± 1.21 3.24 ± 0.93 −0.50 ± 0.84 * 2.098 †

EC-APS (mm/s) 5.85 ± 1.41 4.73 ± 1.43 −1.12 ± 0.71 * 5.89 ± 1.18 5.20 ± 1.30 −0.69 ± 0.64 * 2.059 †

EC-VM (mm/s2) 4.18 ± 1.30 2.79 ± 1.32 −1.39 ± 0.76 * 4.03 ± 1.13 3.27 ± 1.29 −0.76 ± 1.06 * 2.227 †

Dynamic sitting balance ability
mFRT-forward (mm) 302.27 ± 113.40 328.41 ± 108.52 26.14 ± 22.12 * 274.97 ± 122.87 279.15 ± 126.13 4.18 ± 6.11 * 4.384 †

mFRT-non-affected
(mm) 175.23 ± 48.60 197.89 ± 54.79 22.66 ± 20.57 * 158.75 ± 61.74 161.13 ± 63.61 2.38 ± 5.07 * 4.388 †

mFRT-affected (mm) 88.72 ± 24.24 108.07 ± 33.26 19.35 ± 14.96 * 84.31 ± 37.48 85.62 ± 38.88 1.68 ± 3.07 * 5.302 †

TIS (score) 12.33 ± 1.59 14.38 ± 2.09 2.05 ± 1.20 * 12.24 ± 1.89 13.14 ± 0.48 0.90 ± 1.70 * 2.515 †

Gait ability
Temporal gait parameter

Velocity (cm/s) 0.46 ± 0.15 0.56 ± 0.18 0.10 ± 0.04 * 0.41 ± 0.22 0.42 ± 0.22 0.01 ± 0.03 8.135 †

Cadence (step/min) 76.26 ± 14.43 83.34 ± 16.11 7.08 ± 3.38 * 74.56 ± 15.77 75.40 ± 18.05 0.84 ± 4.09 5.389 †

Stride time (sec) 1.63 ± 0.30 1.49 ± 0.28 −0.13 ± 0.07 * 1.67 ± 0.29 1.67 ± 0.33 0.00 ± 0.09 5.427 †

Step time (sec) 0.81 ± 0.15 0.74 ± 0.13 −0.07 ± 0.04 * 0.83 ± 0.15 0.83 ± 0.17 0.00 ± 0.04 5.247 †

Spatial parameter
Stride length (cm) 71.66 ± 18.57 80.44 ± 20.00 8.77 ± 3.75 * 63.59 ± 21.67 65.63 ± 20.97 2.04 ± 5.81 4.461 †

Step length (cm) 35.87 ± 9.22 40.24 ± 9.96 4.37 ± 1.88 * 31.61 ± 10.40 32.82 ± 10.48 1.20 ± 3.09 4.016 †

Values are expressed as mean ± standard deviation. * means significant difference within group. † means significant
difference between group. SIPT, speed-interactive pedaling training; FMA-LE, lower-extremity motor subscale of
Fugl-Meyer Assessment; EO—eye opened; EC—eye closed; MLS—medial-lateral speed; APS—anterior-posterior
speed; VM—velocity moment; mFRT, modified functional reach test; TIS, trunk impairment scale

4. Discussion

This study aimed to investigate the effects of SIPT using the smartphone virtual reality application
to improve lower extremity motor function, sitting balance, and gait in stroke patients. The control
group with the stationary bicycle training was compared with the SIPT group, and the significant
differences in the groups were identified.

According to the previous studies, the effects of stationary bicycle training on the recovery of stroke
patients were reported to improve the function of the lower limbs, walking ability, dynamic balance,
and activities of daily living, and to reduce spasticity [28].

Early exercise provided to stroke patients can lead to rapid recovery. Therefore, clinicians train
stroke patients to stand and walk early [29,30]. Stationary bicycle training can provide reciprocal
movement of both legs to improve lower limb movement, even in non-walking patients [7–9].
Stationary bicycle training is an effective exercise for the movement of the hip, knee, and ankle joints
and muscles around the joints in stroke patients [7–9]. The movement of the joints and the activation
of the muscles alone will not allow walking, but it can be a good exercise in the preliminary steps for
walking [5,6].

The results of several previous studies have reported improvements in the function of the lower
limbs [28]. The function of the lower extremities was mainly measured by FMA and improved after
training. In this study, both groups also showed improved FMA scores. Pedaling is possible through
the movement of both legs, but there is a limitation that only the movement of the unaffected side is
possible [5]. The results of the FMA show that there is an improvement in the affected side, and the
improved results of the SIPT group using VR means that the affected side was more actively used.
In this study, we focused on improving body balance and function through pedaling training. The body
requires stability and balance while pedaling. Stability and trunk balance are both prerequisites not
only for pedaling but also for training purposes. Open kinetic chain movement of the legs induces
reciprocal activation of the surrounding pelvic muscles. The spatiotemporal variables of gait also
showed significant differences before and after training. The walking speed increased, the spatial
variables also increased the length value, and the double limb support and step width decreased,
indicating the stability of walking. All variables showed differences before and after training between
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the two groups. The difference between the two groups confirmed the effect of SIPT. However, it is
difficult to explain the direct mechanisms of SIPT on the function of the lower extremities, body balance,
and gait. During the training, patients in the control group exercise at a constant speed, while patients
in the SIPT group experience a slow change in speed. The response of the pedaling speed to the
optic flow increased the training commitment of the stroke patient and motivated the increase in
speed. Studies that have applied optic flow to stroke patients have reported improvements in gait
by synchronizing with the treadmill speed, and no researches have been associated with stationary
bicycles [15]. Based on the results of this study, the provision of SIPT to stroke patients before entering
gait training or in the stage of improving trunk stability would improve walking and postural balance
and would be suitable as preparatory training for gait training. As shown in the gait training study,
problems caused by inconsistency between visual and intrinsic sense can be minimized through SIPT,
and various experiences could be made by experiencing the virtual space. The devices used in this
study have the following advantage: the application of advanced technologies at low cost because
applications used are through smartphones on existing stationary bicycles. The technology of mirroring
the screen to a large screen in a smartphone is also widely available; hence, SIPT could be performed at
a low cost.

This study has the following limitation: although the effects of a six-week training were
verified through this study, the sustainability and the patient’s participation or motivation were
not measured. In the future, the methods used in this study are expected to be used by many clinicians
in therapeutic settings.

5. Conclusions

The results of this study showed that SIPT is a useful rehabilitation program for the functional
recovery of the lower extremities of stroke patients, improving sitting balance, trunk control, and gait.
Using the smartphone, the effectiveness and feasibility of training through virtual reality were shown.
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