
Chinese Medical Journal  ¦  October 5, 2018  ¦  Volume 131  ¦  Issue 192338

Review Article

Introduction

In recent years, cardiovascular disease has become the 
leading cause of disability and death among both urban and 
rural residents in China, driven largely by aging, diabetes, 
hypertension, hyperlipidemia, obesity, and smoking.[1] 
However, vascular endothelial injury is also ubiquitous in 
atherosclerosis, hypertension, diabetic vascular complications, 
and several cardiovascular and cerebrovascular diseases. 
Endothelial cells (ECs) are important components of blood 
vessels, as they are arranged in a single vertical layer and are 
common targets in the development of cardiovascular disease. 
They not only form a barrier against allogenic material but 
also possess endocrine and immunological competence. 
Furthermore, they play an important role in vascular 

homeostasis,[2] including by participating in vasoconstriction 
and vasodilation to control blood pressure, coagulation,[3] 
atherosclerosis, and angiogenesis. Missing or dysfunctional 
ECs will expose damaged blood vessels to a variety of 
pathogenic factors so that the endogenous and extrinsic 
coagulation[4‑7] pathway is activated, and local thrombosis 
produces vessel stenosis or occlusion. At the same time, 
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various inflammatory dielectrics, cytokines, and chemokines[8] 
are produced around the damaged vessels. Under the 
stimulation of these factors, smooth muscle cells proliferate, 
leading to endothelial hyperplasia and complications of 
hemadostenosis which can endanger the patient’s life.

However, it is unclear which key factors or links among 
them trigger endothelial injury and repair. Therefore, several 
studies have explored the characteristics and mechanisms 
of endothelial injury, as well as investigating the roles 
of the harmful or beneficial substances secreted by a 
damaged endothelium. The current research on endothelial 
injury chiefly focuses on inflammatory reactions, physical 
stimulations, chemical poisons, concurrency of related 
diseases, and molecular changes. On the other hand, ECs 
also possess the ability to proliferate and repair themselves. 
A  variety of restorative cells, changes to cytokines and 
molecules, chemical drugs, certain RNAs, regulation of 
blood pressure, and physical fitness training can be beneficial 
to endothelial wound repair [Figure 1]. The research progress 
in both endothelial injury and repair is described below.

Protective Factors Related to Endothelial 
Repair

Endothelial progenitor cells
Since the initial discovery of endothelial progenitor cells 
(EPCs), researchers have made meaningful progress toward a 
strict functional description and a better interpretation of EPCs, 
which have been successfully used to stimulate vascular repair 
and angiogenesis in some experimental settings.[9‑13] Moreover, 
EPC‑containing products (such as bone marrow or mobilized 
peripheral blood), which are a kind of human autologous cell 
therapies, have proven to be viable and valid options in the 
treatment of atherosclerotic disease. Furthermore, significantly 
higher levels of circulating CD34+KDR+ cells are consistent 

with the number of EPCs improving endothelial repair. Thus, 
CD34+KDR+ cells may become the key to successful therapies 
that require targeting several parallel mechanisms for a long 
time. They are also integral to novel molecular strategies and 
translational developments of cerebrovascular treatments in 
patients with type 2 diabetes mellitus.[14] Since circulating 
CD34+ cells have been reported to be beneficial to endothelial 
repair (and thus to vascular repair and the development of 
atherosclerosis), this factor could be a biomarker for the 
activity of the vicious between endothelial damage and 
hypertension common in elderly men.[15]

What’s more, external electric muscle stimulation (EMS) 
reduced symptoms of vascular lesions induced by diabetic 
neuropathy and decreased diastolic blood pressure. A single 
EMS remedy fortified the function of certain molecules which 
can mediate differentiation and attachment on the surface of 
hematopoietic stem cells (HSCs) during blood circulation. 
A  new assumption is that the EMS‑induced increase in 
surface attachment molecules on HSCs allows the HSCs to 
leave blood circulation and that the EMS remedy boosts the 
effect of EPCs and HSCs.[16] However, the downregulation 
of Notch1 also enhanced the proliferation, differentiation, 
migration, and adhesion of EPCs, along with the capacity 
to form human vein ECs.[17] In spite of a number of studies 
revealing correlations between circulating EPC phenotypes 
and patient traits and prognosis, the pathophysiological effect 
of circulating EPC concentrations is still unclear.

Other correlative cells
Endothelial repair can be considered from the cell’s perspective 
as a result of the lesions originating from ECs. Recent evidence 
illuminates the presence of two EPC subtypes: endothelial 
colony‑forming cells  (ECFCs) and early outgrowth 
cells (EOCs). Their different morphological and phenotypic 
characteristics, and more importantly, the release of the 

Figure 1: The diagrammatic drawing in regard to the injury and repair in the common status of endothelial lining. →: Promote; (‑): Inhibition. 
EC: Endothelial cells; EPCs: Endothelial progenitor cells; EMS: Electric muscle stimulation; HSCs: Hematopoietic stem cells; ECFCs: Endothelial 
colony forming cells; EOCs: Early outgrowth cells; NO: Nitric oxide; hAECs: Human amniotic epithelial cells; ADSCs: Adipose‑derived stem cells; 
Tang: Angiogenic T cells; HBMP–2: Human bone morphogenic protein‑2; MSCs: Mesenchymal stromal cells; eNOS: Endothelial nitric oxide synthase; 
apoA‑I: Apolipoprotein A‑I; HO‑1: Heme oxygenase‑1; ZFP580: Zinc finger transcription factor; H2O2: Hydrogen peroxide; IL‑8: Interleukin‑6; 
TNF: Tumor necrosis factor; sCD40L: Soluble CD40 ligand; MCP‑1: Monocyte chemoattractant protein‑1; IL‑6: Interleukin‑6; ZnO: Zinc oxide; 
VEGFR2: Vascular endothelial growth factor receptor 2; CXCR4: CXC chemokine receptor 4; s‑ICAM1: Soluble intercellular adhesion molecule 1; 
ROS: Reactive oxygen species; NADPH: Nicotinamide adenine dinucleotide phosphate; MnSOD: Manganese superoxide dismutase.
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antiaggregating agents prostacyclin 2 and nitric oxide (NO) 
in each EPC subtype, are implicated in their respective roles 
in endothelial function and thus may be linked to the better 
efficiency of ECFCs in inhibiting endothelial injury during 
endothelial regeneration.[18,19] First, in vascular regenerative 
medicine, human amniotic epithelial cells  (hAECs) are 
a promising means for endothelial repair. Vácz et  al.[20] 
concluded that, without immunosuppression, hAECs were 
capable of intruding into the vascular wall but were incapable 
of enhancing vascular condition. She emphasized that this 
process can achieve the aim of morphological implantation 
and cannot gain the functional benefits, highlighting the 
necessity to research other theories of endothelial repair. In 
addition, Hasdemir et al.[21] proposed that, after a radiation 
injury, adipose‑derived stem cells have an underlying capacity 
for strengthening hemokinesis, which might be accompanied 
with endothelial repair and needs further study. More recently, 
angiogenic T cells (Tang) have been recently discovered to 
cooperate with EPCs in endothelial repair. The main aim of 
Rodríguez‑Carrio et al.’s research[22] was to analyze the Tang 
and EPC numbers in relation to traditional cerebrovascular 
risk factors. The increase of Tang has a protective effect on 
the endothelium. At present, cell replacement therapy is 
an idealized and novel strategy for endothelial injury, but 
there are also numerous obstacles and difficulties such as 
immunological rejection, ethical issues involving embryos, 
and a limited number of cells.

Cytokines or molecules
From a microscopic perspective, molecular expression 
plays an important role in endothelial repair. In the case of 
irradiation in rats, severe endothelial injury was produced, 
but treatment with human bone morphogenic protein‑2 
(HBMP‑2) combined with mesenchymal stromal cells 
(MSCs) accelerated repair. By regulating hypoxia‑inducible 
factor‑1 α expression[23]  (which influences endothelial 
formation and recovery), and by upregulating the expression 
of the endothelial NO synthase (eNOS) pathway,[24] HBMP‑2 
exerts its effect. These findings suggest that novel methods 
for adding molecules or cytokines to MSCs should be 
evaluated for remedying chronic radiation‑induced damage 
to the endothelium.

Apolipoprotein A‑I  (apoA‑I) mimetic peptide has many 
antiatherogenic features which improve the impaired 
endothelial proliferation and migration resulting from 
oxidized low‑density lipoprotein, by reducing EC 
apoptosis and upregulating the expression of heme 
oxygenase‑1 (HO‑1) and eNOS. Moreover, the antioxidation, 
proproliferation, and promigration abilities of apoA‑I were 
cut down by the inhibitors of both eNOS and HO‑1.[25] Next, 
increasing high‑density lipoprotein  (HDL) concentrations 
by inhibiting the cholesteryl ester transfer protein reduces 
intimal thickening and regenerates functional endothelia 
in damaged aortas in a scavenger receptor‑B1‑dependent 
and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/
Akt‑dependent manner.[26] In summary, the results suggest 
that apoA‑I and cholesteryl ester transfer protein inhibition 

might be commendable candidates for the protection of ECs 
and the prevention of atherosclerotic disease.

Along similar lines, novel zinc finger transcription factor 
(ZFP580) facilitates not only the differentiation of EPCs into 
ECs by upregulating the availability of NO and the expression of 
eNOS but also endothelial formation.[27] This may demonstrate 
a new theory of ZFP580 in EPC evolution and its meaningful 
value in the remedy of vascular damage. Adepu et al.’s[28] 
research shows that early injury in transplanted kidneys causes 
repair stimulations, specifically tubular syndecan‑1 expression 
for endothelial neogenesis. Syndecan‑1 is a transmembrane 
heparan sulfate proteoglycan involved in regenerative 
growth and cellular adhesion. Increased serum syndecan‑1 
concentrations might be a repair factor relevant to endothelial 
function. Moreover, bone marrow‑derived cellular therapies 
are a new and developing strategy to improve therapeutic 
endothelial neogenesis in atherosclerotic disease. Specifically, 
ixmyelocel‑T is manufactured from a small sample of bone 
marrow aspirate, forming an expanded autologous multicellular 
therapy. Ledford et al.[29] reported that ixmyelocel‑T cooperates 
with ECs in a paracrine manner, leading to endothelial protection 
and angiogenesis. This result shows that ixmyelocel‑T could 
be beneficial for improving endothelial repair in ischemic 
cardiovascular and cerebrovascular diseases. In a word, 
ixmyelocel‑T treatment may offer a novel insight into remedial 
vasculogenesis in patient populations requiring an increased 
number of reborn cells.

Chemical drugs
Endothelial‑protective chemical drugs, including 
lipid‑lowering medicines, anti‑human immunodeficiency 
virus (HIV) drugs, hypoglycemic drugs, hypotensor, and 
Vitamin D, play a role in endothelial repair mainly by 
treating concomitant diseases, which can achieve better 
results. First, in terms of lipid‑lowering medicines, present 
clinical worries center on restraining the proliferation of 
smooth muscle cells by utilizing drug‑eluting stents. It is 
unfortunate that this approach can also suppress endothelial 
proliferation and prevent EC repair. However, Hussner’s 
data offered enough proof and a theoretical basis for using 
atorvastatin in stents to avoid this dilemma.[30] Furthermore, 
Li et al.[31] researched the capacity of atorvastatin to guard 
ECFCs, a subtype of EPCs, and to demonstrate a potential 
protective effect from hydrogen peroxide  (H2O2)‑induced 
oxidative injury. Furthermore, Rosuvastatin improved 
re‑endothelialization by regulation of EPCs, proposing that 
facilitating endothelial recovery offers a fresh therapeutic 
strategy for vascular repair.[32]

Second, one study demonstrates that anti‑HIV drugs can 
promote the repair of impaired endothelia. Recovery 
of the serum concentration of EPCs was higher in 
darunavir‑remedied individuals than in those remedied 
with rilpivirine, suggesting promising endothelial 
repair methods.[33] Third, hypoglycemic medicine can 
effectively reduce blood glucose concentrations, weaken 
the damage of high sugar on ECs, and form an endothelial 
protection mechanism. Metformin has an underlying 
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endothelium‑protective function through promoting the 
level of EPCs and EC and markedly affecting hypoglycemic 
function.[34] Similarly, irisin was proven to promote 
endothelial regeneration in diabetic mice that received EPC 
transplants after vascular damage.[35] Fourth, store‑operated 
calcium entry  (SOCE), a major mode of extracellular 
calcium entry, plays a part in all kinds of cell activities. 
SOCE inhibition can have a favorable influence on EPCs 
after exposure to oxidative stress caused by oxidizing 
agents and may provide an underlying method to compete 
with endothelial damage.[36] Fifth, in Reynolds et  al.’s 
experimental research, calcitriol promoted endothelial repair 
in individuals with systemic lupus erythematosus (SLE). The 
results demonstrate that Vitamin D could be a new treatment 
to decrease atherosclerotic disease and protect the ECs from 
damage.[37,38] Recently, there have been some new reports that 
the prostacyclin has a certain role in the repair of endothelial 
injury, but it is not very clear and needs further study.[39]

Other approaches to endothelial repair
The repair of the endothelium involves a variety of aspects 
including certain RNAs, regulation of blood pressure, physical 
fitness training, number of blood platelets, and physical 
stimulation. Although the whole network of microRNAs 
(miRNAs) involved in the process is still largely unknown, 
present evidence shows that therapeutic replacement of 
23 miRNAs, miR‑126‑5p, miR‑155, and other miRNAs, 
which help maintain the vascular homeostasis of EPCs, may 
restore endothelial health and reduce atherosclerosis.[14,40,41] 
Furthermore, hypertension might indicate an insufficient 
ability for adequate vascular maintenance, so lowering blood 
pressure is a protective strategy and a therapeutic prospect for 
repairing damaged vascular ECs.[42‑45] Next, the number and 
activity of ECs in men and increased CD34+ cells in women 
are enhanced through exercise.[46‑49] Finally, as to physical 
stimulation, external EMS,[16] shear stress,[43] and hypoxia[50] 
are vital nonpharmacologic methods to improve the activity 
of EPCs. These findings provide novel nonpharmacologic 
therapeutic methods for hypertension‑interrelated endothelial 
neogenesis.

Risk Factors Related with Endothelial Injury

Inflammatory reactions
Numerous s tudies  have demonstra ted that  the 
pathophysiological processes of various cardiovascular 
and cerebrovascular diseases, such as atherosclerosis, 
involve inflammatory responses.[51,52] Mitsides et al. proved 
that inflammation reactions were mediated through the 
interleukin‑8 (IL‑8) pathway forecasted microvascular 
endothelial injury, but fms‑like tyrosine kinase‑1  (Flt‑1), 
which is a potential marker of angiogenesis and endothelial 
repair, might have a remarkable protective function. 
Further cognition of IL‑8 and Flt‑1 will be inevitable to 
improve the stationary state of vessels.[53] Except for IL‑8, 
which can exert a harmful effect on ECs, there are some 
aspects relevant to the relationship between inflammation 
and endothelial injury. To start with, as a characteristic of 

rheumatoid arthritis, inflammation results in the activation 
of ECs, which can cause atherosclerosis by means of 
prompting leukocyte adhesion molecules to overexpress.[54] 
Endothelial dysfunction, induced by inflammation, interferes 
with endothelial repair courses. Accardi et al.[55] argued that 
inflamm‑ageing, the chronic low‑grade inflammation that is 
common in elderly populations, complicates general vascular 
condition and gives rise to atherosclerosis, the main predictor 
of cardiovascular and cerebrovascular diseases. As a matter 
of course, oxidative stress and inflammation play an essential 
part in the pathogenic mechanism of endothelial injury, 
generally due to the reduced availability of NO.

Finally, it is worth mentioning that the underlying influences 
of Tan II A on tumor necrosis factor  (TNF)‑α‑motivated 
EPC proliferation, formation ability, and paracrine activity 
in  vitro tubes, as demonstrated by Wang et  al.[56] The 
results predicted that TNF‑α damaged EPC proliferation 
competence and neovascularization capacity in  vitro and 
boosted the EPC excretion of inflammation factors such as 
soluble CD40 ligand, monocyte chemoattractant protein‑1, 
and IL‑6. Nevertheless, these effects were able to be 
reversed by Tan II A. In other words, these results proved 
that Tan II A may possess the ability to defend EPCs from 
lesions triggered by TNF‑α. Consequently, these findings 
may offer proof for the theoretical foundation of Tan II 
A and its underlying value to prevent and remedy early 
atherosclerotic disease related to EPC and endothelial injury. 
In brief, the infiltration and activity of inflammatory cells 
have been key factors in endothelial injury.

Physical stimulation
Physical stimulation refers to external changes in the body 
or the natural environment, including knocking, pressure, 
pulling, fire, ice, radiation, metal ions, and body type 
changes. However, damage to ECs mainly includes the 
following aspects. Pradhan et  al.[57] found that radiation 
during childhood cancer treatment boosts the risk for 
cardiovascular and cerebrovascular diseases among adult 
survivors, which is considered to be mediated by the injury 
to the ECs. ECFCs, a population of EPCs,[58] exhibited some 
changes after exposure to radiation. ECFCs and EPCs in the 
individuals receiving radiation therapy were significantly 
lower (P  <  0.05) than those without radiotherapy. The 
elementary results of this research provide proof that ECFCs 
function as biological targets for endothelial damage. In 
addition, interventional therapy, mainly device implants, 
markedly decreases the incidence of restenosis and the 
necessity for vascular remodeling but is related with 
impaired ECs. Namely, the constant presence of a metal 
stent or spring coil may injure the proliferation of ECs. The 
hysteresis effect of intervention operation on endothelial 
damage was discussed by Tesfamariam.[59] Furthermore, 
another finding implied that zinc oxide nanoparticles restrain 
angiogenesis from ECFCs by downregulating the expression 
of receptors associated with angiogenesis including the 
vascular endothelial growth factor receptor  (VEGFR), 
the VEGFR2, and the CXC chemokine receptor 4. The 
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influences are on the condition of levels of secreted Zn(II).[60] 
Finally, it was surprising that obese patients presented with 
high concentrations of adipokines, plenty of endothelial 
microparticles, and a low number of EPCs, with more 
augmentation in adipokines after surgical stimulation, 
indicating an inflammatory situation that deteriorates after 
surgical stimulation and may influence endothelial repair.[61] 
Physical stimulation, an important factor in endothelium 
damage, should be avoided as much as possible.

Chemical poison
The role of chemical toxicants in endothelial injury 
is also significant, including indoxyl sulfate, nicotine, 
reactive oxygen, H2O2, and oxidative stress. Carmona 
et  al.’s findings[41] confirmed that indoxyl sulfate is 
associated with the poor prognosis of chronic kidney 
disease and cardiovascular disease owing to the injury of 
endotheliocytes, and that it is able to promote the formation of 
endothelial vesicles with varying molecules that maintain the 
homeostasis of EPCs. These particular traits of endothelial 
vesicles could be regarded as original biological targets for 
a diagnosis of atherosclerotic disease. In addition, as we 
all know, smoking is harmful to our health. Specifically, 
nicotine concentrations in hair were dramatically negatively 
interrelated with total antioxidant capacity levels of HDL 
and EPCs, after controlling for body mass index, age, sex, 
education, and consumption patterns.[62] Moreover, nicotine 
exposure during adolescence is disadvantageous to the 
vascular endothelium simply because intercellular adhesion 
molecule 1 is a biomarker for endothelial excitation and 
stress after damage to the endothelium.[63]

Oxidative stress also plays a primary part in the pathogenic 
mechanism of endothelial damage, generally owing to the 
attenuated availability of NO.[55] Furthermore, H2O2 can 
induce oxidative stress to weaken the protective condition 
of EPCs.[36] Amassing reactive oxygen species (ROS) can do 
some harm in the repair of impaired endotheliocytes, but the 
potential theory is undiscovered. EOCs play an important 

role in endothelial repair. Research findings show that p66Shc 
overexpression induced by ROS, through the nicotinamide 
adenine dinucleotide phosphate/manganese superoxide 
dismutase (MnSOD) axis, impairs the paracrine angiogenic 
potential of aged EOCs to aggravate endothelial injury.[64] 
In short, the damage from chemical poisons is widespread, 
causing ECs to be stripped, losing their invisible protective 
barrier, and forming atherosclerosis. These findings form the 
basis for novel therapeutic strategies to improve vascular 
repair after injury and combat atherosclerotic disease in the 
early stages.

Other relevant factors in endothelial injury
There are many connections between the upregulation of 
SM22alpha promoter, sympathoadrenal activation, Red 
Cell Distribution, aging, Vitamin D deficiency, and SOCE. 
Whether these factors or their interactions will produce 
injury to the endothelium needs to be studied further in the 
future [Table 1].[65‑70]

Concurrency of Related Diseases on 
Endothelial Injury

Diseases of some other systems can be accompanied by 
endothelial injury, such as chronic obstructive pulmonary 
disease,[71,72] sepsis,[73] SLE,[70] obstructive sleep apnea,[74] 
end‑stage renal disease,[75] left ventricular hypertrophy,[75] 
Blackfoot disease,[76,77] and type 2 diabetes[78,79]  [Table 1]. 
It may be that many diseases are connected to endothelial 
injuries to varying degrees, but uncovering those connections 
will require tireless scientific efforts.

Conclusion

Endothelial injury is an important pathophysiological step 
toward atherosclerotic stenosis,[80] an overhealing reaction of 
the blood vessels to the injury.[81,82] Studies have shown that 
various factors can lead to damage of the endothelium,[83] 
including inflammatory reactions, physical stimulation, 

Table 1: Other relevant factors on endothelial injury in the literature

References Relevant risk factors Main viewpoint
Jing et al. 2015[65] SM22alpha promoter In VSMC, the SM22alpha promoter, carried by a recombinant lentiviral vector, 

was used to successfully infect and selectively upregulate expression of p27 
protein, which restrains intimal hyperplasia with inhibition of endothelial repair

Wang et al. 2015[66] SOCE The decrease of SOCE led to EPC damage potentially by downregulating SOCC 
and impairing eNOS pathway

Ostrowski et al. 
2017[67]

Sympathoadrenal 
activation

Sympathoadrenal activation, injuring endothelial function, was dramatically 
correlative with hypocoagulability and endotheliopathy

Rodríguez‑Carrio et al. 
2015[68]

RDW RDW was related with endothelial progenitor cells consumption and incremental 
concentrations of various intermediaries connected to endothelial injury, thereby 
which unmask novel insight on the science of RDW as predictive factors

Bochenek et al. 
2016[69]

Aging The damaged proliferation and migration of local endothelial cells as well as 
exhaustion of endogenous endothelial repair mechanisms become worse with 
age by impairing re‑endothelialization

Reynolds et al. 2016[70] Deficiency of Vitamin D Vitamin D shortage is associated with poor vascular repair and weakened 
endothelial function and may regulate inflammatory reaction

VSMC: Vascular smooth muscle cells; EPC: Endothelial progenitor cell; SOCE: Store‑operated calcium entry; SOCC: Store‑operated calcium channel; 
eNOS: Endothelial nitric oxide synthase; RDW: Red cell distribution width.
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chemical poisons, concurrency of related diseases, aging, 
and a deficiency of Vitamin D.[84‑88] However, the exact 
mechanism of endothelial injury is not yet fully understood.

Repairing endothelial injury and recovering endothelial 
function are considered to be the keys to the prevention and 
treatment of atherosclerotic stenosis.[89,90] Numerous studies 
have confirmed that several different sources of EPCs are 
transplanted to the damaged blood vessel; these EPCs can 
locate the vascular lesions, mediate vessels to be endothelial, 
and inhibit neointimal hyperplasia.[91,92] Through the 
deepening of endothelial injury and repair research, especially 
in terms of changes in cytokines and molecules, chemical 
drugs, certain lipid pathways, certain RNAs, regulation of 
blood pressure, and physical fitness training, new targets for 
the protection of the vascular endothelium will be found to 
produce new drugs for the protection of damaged endothelia.
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血管内皮细胞的普遍状态：修复与损伤的抗衡

摘要

目的：内皮细胞是重要的代谢和内分泌器官，在调节血管功能方面起着重要的作用。血管内皮细胞位于血液和血管组织之间，
不仅可以完成血液和组织液的新陈代谢，而且可以合成和分泌多种生物活性物质，以保持血管紧张度，维持正常的血液流动
和长期通畅。因此，本文系统地综述了血管内皮细胞的普遍状态：修复与损伤的抗衡。
方法：通过计算机检索Pubmed数据库，搜索了2003年以后发表的相关研究论文，文章关键词包括“内皮细胞”、“血管”、“损
伤”、“修复”。
结果：多种心脑血管疾病的发生发展与内皮细胞的损伤密切相关。然而，血管内皮细胞损伤的机制尚不完全清楚。大量研究
表明，内皮细胞损伤的机制主要涉及炎症反应、物理刺激、化学毒物和分子改变。内皮祖细胞在损伤后的内皮细胞修复过程
中起着重要作用。此外，多种具有修复功能的细胞、细胞因子和分子的变化、药物、某些RNA、血压调节和体能训练都对内
皮细胞有保护作用，其作用是通过减弱诱发因素、抑制炎症和氧化应激反应、延缓内皮细胞衰老来实现的。
结论：内皮细胞一直处于损伤和抗损伤的过程中。鉴于内皮细胞在脑血管病发展中的重要作用，人们正在寻找保护内皮细胞
和促进内皮细胞修复的治疗靶点和药物。


