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Type 2 diabetes mellitus is a complex age-related metabolic disease. Cognitive dysfunction and learning and memory deficits are
main characteristics of age-related metabolic diseases in the central nervous system. The underlying mechanisms contributing to
cognitive decline are complex, especially cognitive dysfunction associated with type 2 diabetes mellitus. SIRT1, as one of the
modulators in insulin resistance, is indispensable for learning and memory. In the present study, deacetylation, oxidative stress,
mitochondrial dysfunction, inflammation, microRNA, and tau phosphorylation are considered in the context of mechanism and
significance of SIRT1 in learning and memory in diabetic and nondiabetic murine models. In addition, future research
directions in this field are discussed, including therapeutic potential of its activator, resveratrol, and application of other
compounds in cognitive improvement. Our findings suggest that SIRT1 might be a potential therapeutic target for the treatment
of cognitive impairment induced by type 2 diabetes mellitus.

1. Introduction

Type 2 diabetes mellitus (T2DM) is one of multiple age-
related metabolic diseases [1]. Several latest studies have
demonstrated severe and progressive abnormalities in brain
structures and cognition during the early stage of T2DM
[2]. T2DM is a risk factor for mild cognitive impairment
(MCI) [3] and can accelerate the rate of functional decline
in patients with mild dementia [4]. Cognitive dysfunction
and learning and memory deficits have been considered
one of the most prevalent and significant T2DM-related
complications [4–8]. In recent years, silent information regu-
lator 2 (Sir2), the highly conserved nicotinamide adenine
dinucleotide- (NAD+-) dependent histone deacetylase [9],
was shown to extend lifespan and delay aging in numerous
studies ranging from Saccharomyces cerevisiae to mammals
[10, 11]. As the ortholog of the yeast Sir2, SIRT1 is the most
evolutionally conserved member [12]. Accumulating evi-
dence has suggested that SIRT1 is expressed in the liver,
skeletal muscle, pancreas, adipose tissues, and brain [13, 14],
but its levels in the brain are notably higher than those in the
other tissues in mammals [12, 15, 16], especially in the

hippocampus, a vital structure closely related to learning and
memoryof the central nervous system [17]. SIRT1participates
in apoptosis [18], autophagy [19], and development [20],
as well as in metabolism [21, 22] and circadian rhythms
[23, 24]; therefore, it is not surprising that SIRT1 affects more
complex biological processes including aging [24–27], MCI
[28], and cognitive decline [29–31].

Present opinion on SIRT1 in cognition, learning, and
memory is inconclusive. Some scholars believe that SIRT1
is positive for memory conservation. The spontaneous
senescence-accelerated P8 mouse strain (SAMP8) is widely
used as an animal model of aging [32–34] due to learning
andmemory deficits and behavioral alterations ofAlzheimer’s
disease (AD) [35–39]. It has been demonstrated that the
expression of SIRT1 declines with age in the brain of SAMP8
and senescence-accelerated mouse resistant 1 (SAMR1) [40],
which have been extensively used as a control model because
of the same genetic background andnormal aging characteris-
tics [41]. However, SIRT1was decreased in the cerebral cortex
and hippocampus [42] of SAMP8 mice [43, 44] compared
with those of age-matched SAMR1. In addition, SIRT1 was
downregulated in diverse models of cognitive impairment
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in vivo and in vitro, such as in juvenile C57BL/6J mice with
dysmetabolism induced by high-caloric diet [45] and neuro-
toxic primary hippocampal neurons caused by toxins [44]. A
study by Yokozawa et al. on antiaging effects of oligomeric
proanthocyanidins found that SIRT1 was increased both in
the cellular senescence model [46] and SAMP8 mouse model
[47]. On the other hand, some researchers believed that SIRT1
has no effect on cognitive improvement and has a counterpro-
ductive effect. Most tellingly, earlier studies have proved that
overexpression of SIRT1 may induce the memory deficit in
transgenic (Tg) mice that overexpresses human SIRT1 in
neurons [48]. Nicotinamide, an inhibitor of SIRT1, has been
shown to attenuate cognitive deficits of 3xTg-AD mice via
inhibition of SIRT1 and phosphorylation of tau [49]. More-
over, recent work has demonstrated that SIRT1 silencing
could promote neuronal survival and protect neurons via the
IGF-1 pathway [50].

Collectively, SIRT1 plays a significant role in learning and
memory and provides enormous insights into T2DM-
associated cognitive dysfunction. It is also rapidly emerging
as a critical regulator of aging. However, positive or negative
effects of SIRT1 on learning and memory have yet to be
further discussed. In the ensuing paragraphs, we highlighted
the involvement of SIRT1 in pathological processes of cogni-
tive impairment in diabetic and nondiabetic models.

2. Role of SIRT1 on Cognition and Learning and
Memory in Nondiabetic Models

2.1. Deacetylation of SIRT1. Many studies have confirmed
that SIRT1 mediates chromatin silencing and chromatin
remodeling through deacetylating histones, including H1,
H3, and H4 [51] and modulates the activity of several protein
targets that will be stated subsequently.

2.1.1. SIRT1-p53 Pathway. It has been claimed that SIRT1
directly bound to and deacetylated p53 with specificity for
its C-terminal Lys382 residue, inhibited acetylation of p53,
and reduced the activity of downstream target genes [52, 53].

Decreased level of SIRT1 and increased level of acetylated
p53 were observed in the hippocampal tissue [54] and cortex
[55] of SAMP8 and in vitro studies [56]. Coincidentally, in
juvenile C57BL/6J mice, low-caloric intake increased learn-
ing and memory function through positively downregulating
p53 and unremarkably upregulating SIRT1 [45]. In the
following studies, although no difference in SIRT1 level was
detected between the control and the resveratrol dietary
groups, researchers found that resveratrol improved learning
and memory through the SIRT1-p53 pathway [57].

2.1.2. SIRT1-AMPK Pathway. SIRT1 improves mitochon-
drial function by activating adenosine monophosphate-
activated protein kinase (AMPK) through acetylating liver
kinase B1 (LKB1) [58]. Conversely, AMPK improves SIRT1
activity by increasing cellular NAD+ levels to trigger the
deacetylation of SIRT1 [59]. In the SAMP8 model, the
increases in phosphorylated AMPK (p-AMPK) that regulate
energy expenditure and the decreases in the production of
reactive oxygen species (ROS) paralleled to the rise in SIRT1

in the hippocampus [54] and cortex [55]. Although without
detection of LKB1, we suggest that this process might be
triggered by SIRT1 deacetylation. In addition, in a rat
model of AD with intracerebroventricular injection of
streptozotocin (ICV-STZ) [60], the level of p-AMPK and
SIRT1 activity were decreased and the level of phosphorylated
tau was increased, while AMPK-specific activator prevented
cognitive impairment through rescuing SIRT1 activity, down-
regulating tau hyperphosphorylation, and repairing mito-
chondrial function reflected by increased ATP levels,
mitochondrial membrane potential, complex I activity, and
SOD activity, as well as decreased ROS generation.

2.1.3. Other Factors Deacetylated by SIRT1. In addition to the
tumor suppressor factor p53 [61, 62] and serine-threonine
protein kinase LKB1 [58, 63], SIRT1 deacetylated several
transcriptional factors participated in transcriptional control
of key genes in multiple cellular processes. These transcrip-
tional factors regulate awide rangeofmetabolic activities, such
as nuclear factor-kappa beta (NFκβ) [64], extracellular signal-
regulated kinase (ERK) [65], the forkhead box subgroup O
(FoxO) family [66, 67], peroxisome proliferator-activated
receptors γ (PPARγ), and its transcriptional coactivator
PPARγ coactivator 1-α (PGC-1α) [68, 69].

Direct in vivo evidence supported the link between SIRT1
and improvement of cognitive decline. The spatial memory
deficit of ICV-STZ-treated rats was improved through
ameliorating activation of SIRT1, which in turn attenuated
tau phosphorylation by decreasing ERK1/2 phosphorylation
[65]. In a study on neuroprotective role of intermittent
fasting (IF) [70], upregulation of SIRT1 in the cortex and
hippocampus of SAMP8 could possess neuroprotection via
modulating downstream factors, including a decrease in
phosphorylated Jun-terminal kinase (JNK), acetylated NFκβ
[71], and acetylated FoxO1, as well as an increase in phos-
phorylated FoxO1. Additionally, in the hippocampus and
cortex of SAMP8 mice [71] and in the hippocampus of
3xTg-AD mice [72], SIRT1 upregulated a disintegrin and
metalloprotease 10 (ADAM10) [73] and downregulated the
phosphorylated form of glycogen synthesis kinase 3 beta
(GSK3β) [55, 70] in order to reduce the production of
amyloid beta (Aβ) peptides and tau phosphorylation, which
have been widely accepted as vital causes of cognitive decline
[74]. SIRT1 was also noted to increase the expression of heat
shock protein 70 (HSP70), a biomarker of neuronal survival,
in SAMP8 models [70] and 3xTg-AD mice [72].

Moreover, an indirect proof of the effect of SIRT1 on
cognition was demonstrated in vitro. In a study on neurite
outgrowth and cell survival, SIRT1 was shown to promote
neuronal growth through negative modulation of the
mammalian target of rapamycin (mTOR)/p70S6 kinase
(p70S6K) pathway in wild-type mouse primary neurons
and human SIRT1 transgenic mice [75]. Furthermore,
Codocedo et al. have suggested that SIRT1 accelerated the
development and maintenance of dendritic branching in
Sprague-Dawley rat primary hippocampal neurons by inhi-
biting the RhoA/Rho-associated protein kinase (ROCK)
pathway and activating the Rac1/JNK pathway [76].
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SIRT1was shown to attenuate glutamate-induced apoptosis
in SH-SY5Y cells by upregulating PGC-1α [77].

Such a point is worthy of further confirmation since
growing evidence has indicated the presence of relationship
between the role of SIRT1 on learning and memory and
histone H2A variant, H2A.Z, which has been considered a
negative regulator of consolidation of recent and remote
memory [78]. H2A.Z was negatively regulated by the expres-
sion and activity of SIRT1 in some tissues [79] (Figure 1).

2.2. Targeting Oxidative Stress (OS). As the basis of aging
theories [80], OS can trigger the pathological processes of
learning and memory deficits [81, 82]. A series of biomarkers
represent the degree of OS, such as superoxide dismutase
(SOD), reactive oxygen species (ROS), and malondialdehyde
(MDA). Mitochondrial dysfunction is the central to oxidative
damage and reflects the aging processes [83].

2.2.1. Amelioration of Mitochondrial Dysfunction by SIRT1.
There is a growing body of evidence supporting that mito-
chondrial dysfunction is critical for synaptic aging induced
by chronic OS [82]. Data gathered from diverse studies have

confirmed that oxidative stress could cause damages in the
brain of SAMP8 mice [84, 85]. SAMP8 primary neurons
had poor mitochondrial function, lower mitochondrial
membrane potential, and higher mitochondrial vulnerability,
all of which was protected by increased SIRT1 expression
[56]. In addition, electron transport chain (ETC) related to
mitochondrial oxidative phosphorylation (OXPHOS) was
changed in vitro [56]. It was remarkable to find that SIRT1
could enhance OXPHOS via increasing the electronic
chain-specific components ranging from complex I to com-
plex V in the hippocampus of SAMP8 [54]. Consistent with
this notion, SIRT1 improved spatial learning and memory
deficits via SIRT1-mediated antioxidant signaling pathways
in the D-galactose-induced aging rats [86]. Manganese
superoxide dismutase (Mn-SOD) is an important antioxida-
tive enzyme present inmitochondria. Recent data have shown
downregulation of Mn-SODmRNA levels by increasing level
of SIRT1 [86].

2.2.2. Interaction of ROS, Inflammatory Factor, and SIRT1.
Lower levels of SOD, as well as higher levels of ROS [87],
MDA [88], and some proinflammatory factors [87, 88], were
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Figure 1: Deacetylation of SIRT1 in cognition and learning and memory. Increased SIRT1 level may reduce the production of ROS, Aβ, and
p-tau, as well as promote neuronal survival and dendritic growth, contributing to improve learning and memory. ADAM10: a disintegrin and
metalloprotease 10; AMPK: adenosine monophosphate-activated protein kinase; p-ERK: phosphorylated extracellular signal-regulated
kinase; p-GSK3β: phosphorylated glycogen synthesis kinase 3 beta; p-JNK: phosphorylated Jun-terminal kinase; Ac-NFκβ: acetylated
nuclear factor-kappa beta; Ac-FoxO1: acetylated the forkhead box subgroup O 1; Ac-p53: acetylated p53; HSP70: heat shock protein 70;
mTOR: mammalian target of rapamycin; p70S6K: p70S6 kinase; PGC-1α: peroxisome proliferator-activated receptor γ transcriptional
coactivator 1-α; ROCK: Rho-associated protein kinase; JNK: Jun N-terminal kinase; Aβ: amyloid beta; ROS: reactive oxygen species; p-tau:
phosphorylated tau.
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found in SAMP8 compared with age-matched SAMR1. OS
aggravated cognitive loss in SAMP8 models through either
generating Aβ1–40 and Aβ1–42 by releasing interleukin-1β
(IL-1β) and interleukin-6 (IL-6) [87] or enhancing neuroin-
flammatory activity by increasing IL-1β, tumor necrosis
factor-α (TNF-α), and IL-6 [88]. In line with above evidence,
in vitro, senescent endothelial cells induced by OS promoted
the senescence of hippocampus neuronal cells through
secretion of several inflammatory cytokines such as IL-6,
interleukin-8 (IL-8), monocyte chemoattractant protein-
1(MCP-1), and TNF-α [85]. Upregulation of SIRT1 could
reverse inflammatory factors to rescue the production of
Aβ and neuronal senescence [85, 87]. In addition, microglial
SIRT1 deficiency elevated levels of IL-1β and exacerbated
memory deficits in human P301S tau mice [29] exhibiting
age-dependent synaptic loss and tau-mediated memory
deficits [89]. All above have demonstrated that neuroinflam-
matory played a significant role in learning and memory
modulated by SIRT1 (Figure 2).

2.3. SIRT1-microRNA Pathway. It is assumed that cyclic
AMP response element-binding protein (CREB), a molecular

switch of long-term memory that maintains cognitive
function [90], binds to several promoters of brain-derived
neurotrophic factor (BDNF) and regulates its expression.
Recent studies have shown that SIRT1 promotes plasticity
and memory in a direct manner via a miR-134-mediated
posttranscriptional mechanism. The results suggested that
SIRT1 cooperated with Yin Yang 1 (YY1) in binding to the
upstream regulatory elements of miR-134 and then limited
the expression of miR-134 resulting in overexpression of
CREB and BDNF, thereby regulating synaptic plasticity and
long-term memory formation in SIRT1-KOmice [91]. Addi-
tionally, resveratrol was shown to improve learning and
memory in normally aged C57BL/6J mice through the
SIRT1-microRNA pathway [92]. Furthermore, SIRT1
increased the expression of BDNF in SAMP8 models [70]
and 3xTg-AD mice [72]. In the hippocampus of rats receiv-
ing lead exposure, SIRT1 and CREB phosphorylation were
decreased in a dose-dependent manner, which could be
reversed by resveratrol [93]. Resveratrol also ameliorated
spatial learning memory impairment induced by Aβ1–42 in
rat hippocampus by elevating SIRT1 expression and CREB
phosphorylation [31]. Although miR-134 was not detected
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Figure 2: Oxidative stress (OS) is regulated by SIRT1 in cognition and learning and memory. SIRT1 may improve learning and memory by
inhibiting OS, inhibiting the inflammatory response and hippocampal neuronal senescence, and decreasing the expression of tau and Aβ. OS:
oxidative stress; OXPHOS: oxidative phosphorylation; Mn-SOD: manganese superoxide dismutase; IL-6: interleukin-6; IL-8: interleukin-8;
MCP-1: monocyte chemoattractant protein-1; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; ROS: reactive oxygen species;
Aβ: amyloid beta.
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in the above three studies, we still suggested that SIRT1 pro-
tects learning and memory via the SIRT1-miR-134 pathway.

3. The Mechanism of SIRT1 on Cognition and
Learning and Memory under the
Condition of Insulin Resistance (IR)

In the above section, we have summarized the role of SIRT1
in cognitive dysfunction and learning and memory deficits
under normal physiological condition. Next, we will discuss
its role under the condition of insulin resistance. It is widely
known that caloric restriction (CR) has benefits on cognition
decline [94]. Emerging evidence has indicated a causal link
between T2DM and cognition decline and learning and
memory deficits [3–5, 95–97], such as MCI [98]. The mech-
anisms that trigger learning and memory deficits in diabetic
models include inflammation [99], loss of neuronal plasticity
[100, 101], alteration of mitochondrial structure and func-
tion [102, 103], elevation of cerebral Aβ, and tau phosphory-
lation [100]. Therefore, cognitive ability is distinctly affected
by metabolic status.

Accumulating evidence has indicated the inhibition of
SIRT1 protein expression and activity in T2DM or IR
[104–107]. Data has shown that activated SIRT1 improves
the insulin sensitivity of the liver, skeletal muscle, and adipose
tissues, as well as protects the function and cell mass of pan-
creatic β-cells [13]. So, does SIRT1 involve in it? And whether
SIRT1 regulates learning and memory directly or indirectly?
Next, we set forth the role of SIRT1 in cognition and learning
and memory under the condition of IR (Figure 3).

3.1. SIRT1 Promotes Neurite Outgrowth. Several studies have
demonstrated that SIRT1 modulates neuronal viability
[36, 37], neuronal differentiation [38–41], neuronal protec-
tion [42–44], and synaptic plasticity [21, 45–47], all of
which are key factors largely linked to cognitive improve-
ment. It is well established that insulin exerts its actions
in a series of biological processes through binding to insu-
lin receptors [108], as well as plays an essential role in IR
and T2DM. Recently, researchers have demonstrated that
insulin-induced neurite outgrowth is regulated by SIRT1,
which is dependent on the PI3K/Akt signaling pathway in
SH-SY5Y cells [109]. In accordance with the above views,
we suggest that SIRT1 may be imbalanced when insulin
signaling is impaired and cause an influence on cognition
and neurodegeneration.

3.2. SIRT1 Improves Mitochondrial Function in the Brain.
SIRT1 activation has a significant coordinating role in
mitochondrial function. It is noteworthy that NeuroD6, as
a regulator of ROS homeostasis [110], is related to learning
and memory. As a marker of mitochondrial biogenesis,
PGC-1α may take part in cognitive decline under metabolic
stress. Moreover, AMPK is a sensor key that controls PGC-
1α activity. In the aged C57BL/6J mouse model of IR induced
by a high-fat diet, SIRT1 improved mitochondrial function
via the SIRT1-AMPK-PGC-1α axis and the neuronal
differentiation 6 (NeuroD6)-PGC-1α-SIRT1 axis to enhance
cognitive decline [102]. Coincidentally, the SIRT1-AMPK-
PGC-1α pathway was also verified in the SAMP8 model of
IR induced by a high-fat diet, albeit the levels of SIRT1 were
not significantly modified [103].

A study by Lennox et al. has demonstrated that increased
SIRT1 enhanced cognitive function and synaptic plasticity
via alleviating IR in high-fat-fed mice [111]. Similarly, upreg-
ulated SIRT1 simultaneously improved synaptic plasticity
and insulin signaling in the hippocampus and cortex of
high-fat-fed mice [112]. Although few studies have examined
the association between IR and cognitive impairment, we
concluded that SIRT1 might contribute indirectly to improve
cognition, because many of SIRT1’s downstream regulators
are involved in memory processes.

4. The Effects of Resveratrol on Cognition and
Learning and Memory

4.1. Resveratrol, Targeting SIRT1 or Not? Resveratrol has
attracted considerable attention for its effects on the improve-
ment of IR [113], cognitive decline [31, 65, 114–116], and
cardiovascular diseases [117, 118]. Although resveratrol is
widely accepted as a natural activator of SIRT1, there is also
evidence showing that resveratrol may not be the direct
agonist of SIRT1.

In vitro, resveratrol regulates brain function through
increasing the biogenesis of α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPAR), a glutamater-
gic receptor,mediated byAMPKand subsequent downstream
PI3K/Akt signaling in rat primary neurons [119]. In vivo,
resveratrol improves learning andmemory through activating
the IGF-1-PI3K-p-CREB signaling pathway in the hippocam-
pal CA1 region of juvenile and healthy C57BL/6J mice [57],
while maintaining the same expression level of SIRT1. In the
same strain with isoflurane-induced cognitive impairment,
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PI3K/Akt 
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Figure 3: The role of SIRT1 in cognition and learning and memory under the condition of IR. SIRT1 has been shown to increase neurite
outgrowth by activating the PI3K/Akt pathway and improve mitochondrial function through the AMPK/PGC-1α and NeuroD6/PGC-1α
pathways. PI3K: phosphoinositide 3-kinase; AMPK: adenosine monophosphate-activated protein kinase; PGC-1α: PPARγ coactivator 1-α;
NeuroD6: neuronal differentiation 6.
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Li et al. have found that resveratrol exerts anti-inflammatory
and antiapoptotic actions to recover cognition without
alteration of SIRT1 [120]. In their work, the factors related to
neuroapoptosis were changed, such as downregulation of
cleaved caspase-3 and Bax and upregulation of Bcl-2. Mean-
while, NLRP3, an intracellular receptor of inflammatory
responses, IL-1β, and TNF-α were decreased.

The effects of resveratrol on cognitive improvement
are likely not to be fully dependent on SIRT1. After treat-
ment with resveratrol, activation of the Wnt/β-catenin
pathway by increasingGSK-3βmight aswell protect cognitive
disturbances in diabetic C57BL/6J mice [102] and SAMP8
mice under the condition of metabolic stress induced by a
high-fat diet [103]. In the latter study, Palomera-Avalos et al.
have put forward that resveratrol improves mitochondrial
morphology, dynamics, and OXPHOS via a decrease in
mitofusin 2 (MFN2) and an increase in optic atrophy-1
protein (OPA1), I-NDUFB8, II-SDNB, III-UQCRC2, V-
ATPase complexes, and voltage-dependent anion channel 1
(VDAC1)/porin [103].

4.2. Resveratrol, Improving Cognition and Learning and
Memory or Not? According to above notions, resveratrol
plays a significant role in cognitive enhancement. However,
its effects on cognition and learning and memory are
still controversial.

4.2.1. The Effects of Resveratrol on Animal Models. In several
studies, the administration of oligomeric proanthocyanidins
[47], pterostilbene [121], and rapamycin [122] displayed
antiaging effects, whereas resveratrol did not show a marked
effect. In the aspect of improvement of spatial learning and
memory, five-week resveratrol administration to SAMP8
mice (90 μmol/kg body weight/day, about equal to 20mg/kg
body weight/day) showed no significant changes compared
to oligomer administration with the same period (50mg/kg
body weight/day). Similarly, eight-week pterostilbene admin-
istration to SAMP8 mice (120mg/kg body weight/day)
exerted beneficial effects on learning and memory, but not
resveratrol at an identical dose for 8weeks. In the aspect of sur-
vival, resveratrol administration (50mg/kg body weight/day
and 200mg/kg body weight/day) did not extend life span of
genetically heterogeneous mice, while low-dose rapamycin-
treated mice (2.24mg/kg body weight/day) showed an
increase in the life span.

4.2.2. The Effects of Resveratrol in Clinical Trials. Data of
several clinical trials about resveratrol acting on cognition
and learning and memory has indicated that resveratrol plays
a protective role not only in diabetic patients but also in non-
diabetic population except for patients with schizophrenia. In
a randomized controlled trial on T2DM adults, a low dose of
resveratrol (75mg at weekly intervals) showed a positive but
chronic effect on cerebrovascular function and cognitive
function [123, 124]. In a 14-week randomized placebo-
controlled intervention trial, resveratrol supplementation
(75mg twice daily) improved cognitive performance, mood,
and cerebrovascular function in postmenopausal women
[125]. However, resveratrol supplementation (200mg/day

for 1 month) did not improve memory and attention in 19
men with a diagnosis of schizophrenia [126].

Taken together, their findings have indicated that dosage
and period of treatment may influence the effects of res-
veratrol. Compared to previous studies on antiaging and
protection of cognitive decline, dosage of resveratrol and
period of treatment are both insufficient. This idea suggests
that resveratrol may not be the optimal choice for improve-
ment of learning and memory in short-term treatment. So
far, preclinical and clinical data in this area are limited,
and an in-depth study of resveratrol on learning and
memory needs to be further investigated.

5. Conclusion

SIRT1 may improve cognition and learning and memory
through several pathways including deacetylation, OS, mito-
chondrial dysfunction, and inflammation and microRNA.
However, the mechanisms of SIRT1 in cognitive decline
under the condition of IR are inadequate and not in-depth
and systematical, for example, a gap in the studies on mech-
anism of SIRT1 regulating neuronal energy metabolism and
function. Meanwhile, the involvement of resveratrol, an acti-
vator of SIRT1, in the protection of cognitive deficits is still
not completely clear. But in most cases, resveratrol can
improve cognition and learning and memory. Thereby, the
neuroprotection of SIRT1 and resveratrol and their interac-
tion should be explored to act on preventing cognitive
impairment in T2DM-associated cognitive dysfunction. In
brief, SIRT1 may provide potential approaches to improve
learning and memory. Long-term therapy of large-dose
resveratrol may offer therapeutic possibilities for preventive
strategies in T2DM-associated cognitive dysfunction.
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