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Abstract: The hydrophilic copolyester polyethylene terephthalate (PET) (ENCDP-X) was successfully
synthesized by chemical modification consisting of copolymerization and blending and the
comonomers, including sodium isophthalate-5-sulfonate (SIPE), polyethylene glycol (PEG),
2,2-dimethyl-1,3-propanediol (NPG) and matting agent TiO2 with different content. Moreover,
the structural characterization of sequential structure, crystallization and thermal properties were
studied. The results showed that the comonomers were successfully embedded in the copolyester,
the actual molar ratio in the copolyester was consistent with the relative feed ratio and the degree
of randomness was calculated to be 0.99, showing that the random copolymers synthesized during
the melt polycondensation process and the chemical structure was roughly consistent with the
expected molecular chain sequence structure. The thermal parameters of the modified copolyester,
containing the glass transition temperature (Tg), melting point (Tm), crystallinity (Xc) and thermal
degradation temperature, were decreased, and the cold crystallization temperature (Tc) was increased.
In addition, with the increasing of the TiO2 content, it improves the thermal performance of the
copolyester and it is beneficial to processing and application. The above conclusion is further verified
by non-isothermal kinetic analysis. In addition, the copolyester exhibited the better hydrophilicity
than pure PET.

Keywords: copolyester; hydrophilic; sequential structure; crystallization properties

1. Introduction

Polyethylene terephthalate (PET), which is known for its excellent mechanical properties and
chemical resistance, consisting of high tenacity, excellent dimensional stability and good heat
resistance, have been widely commercialized for many years in the textile industry [1–3]. However,
its hygroscopicity is poor and the fiber moisture regain is only about 0.4%, due to its high crystallinity,
compact amorphous structure and shorting of active hydrophilic groups [4,5]. In addition, owing to
the shortage of cotton resource and the excess capacity of PET fiber industry, the hydrophilic polyester
fibers have become the research trend of modified polyester in the textile field [6–9].

Many studies and practices have proved that introduction of additional monomer into PET
molecular chain changes the hydrophilic properties of PET fibers potentially by introducing
hydrophilic groups [10,11] or reducing the molecular regularity and crystallinity of PET [5,12].
Wang, Qiong et al., [13] used terephthalic acid (PTA), ethylene glycol (EG) and dihydroxyethyl
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isophthalate-5-sulfonate (SIPE) as the third monomer, and the different content polyols as the fourth
monomer, synthesizing a series of hydrophilic copolyester, and the fiber moisture regain was generally
only 0.6–0.8%. Wang Huaping [14] used polyhydric alcohols, diols and polyethylene glycol to prepare
hydrophilic polyester fibers by utilizing the polyhydroxy active sites and the ether bond in the PEG
segment to improve hygroscopic properties of the fibers. However, the polymerization is prone to
crosslinking reactions. In the current research, the improvement of the hygroscopicity for copolyester
PET fibers is still limited [15], and the moisture regain is generally less than 1% [16].

In our previous research, it was showed that the incorporation of monomer dimethyl-1,3-propylene
glycol (MPD/NPG) in the polymerization process led to less perfect crystals and reducing the crystallinity,
improving the hydrophilic properties of the copolyester [4,17]. In this work, the hydrophilic copolyester
was designed and synthesized by introducing additional monomers into the PET molecular chain
to improve the hydrophilic properties of the fibers, combining chemical modification methods of
copolymerization and blending by incorporating 2,2-dimethyl-1,3-propanediol (NPG) as a branched
modified monomer to further reduce the crystallinity and increase the binding capacity with water,
and blending TiO2 to provide access with water and further improve the hydrophilicity, based on
diethylene isophthalate-5-sulfonate (SIPE) and polyethylene glycol (PEG-2000), increasing from the
more aspects hygroscopicity of modified polyester.

However, when different monomers are added to the copolymerization system,
the copolymerization process of various monomers is difficult to control and it is difficult to ensure
the quality of the copolymer. In addition, the properties of the copolymer depend not only on
the composition of the comonomer, but also on the sequence distribution and randomness of the
constituent comonomers [18–20]. The latter directly restricts the macromolecular configuration and
conformation [21,22], which in turn affects the crystallization process of macromolecular and the
performance of products. Therefore, exploring the sequential structure of resulted copolymer is highly
necessary, including that the comonomer sequence distribution is characterized by nuclear magnetic
resonance (NMR) spectroscopy and the ideal microscopic sequence structure is analyzed by a statistical
model [23,24]. To date, the characterization of binary copolymers has been widely reported [25–27].
However, the research on the sequence distribution for third or more comonomers of copolyester
is rare.

The paper focused on the characterization of the structure and properties for synthetic copolymer.
The effects of modified monomers on sequential structures, crystalline structures, thermal properties
and hydrophilicity of prepared copolyester were mutually compared and elucidated in detail by
ubbelohde viscometer, IR-raman spectrometer, nuclear magnetic resonance (1H- and 13C-NMR),
two-dimensional nuclear magnetic resonance (1H-13CCOSY), differential scanning calorimetry (DSC),
thermogravimetric analyzer (TGA) and contact angle meter of OCA15EC (China).

2. Experimental

2.1. Materials

The purified terephthalic acid (PTA) was supplied by Hengli Chemical, Suzhou,
China; ethylene glycol (EG) was supplied by Yangzi Petrochemical, Nanjing, China;
sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate (SIPE) was supplied by Wujiang Wanda, Suzhou,
China; Poly (ethylene glycol) (PEG-2000) and 2,2-dimethyl-1,3-propanediol (NPG) was supplied by
Sinopharm Chemical, Shanghai, China; Titanium Dioxide (TiO2) was supplied by Jianghuai Chemical,
Hefei, China; antimony trioxide (C6H12O6Sb2), trimethyl phosphate (C3H9O4P) and sodium acetate
(CH3COONa) was supplied by Sinopharm Chemical, Shanghai, China. These were not purified further.

2.2. Synthesis of Copolyester

Ordinary PET was synthesized by direct esterification in a 5L reactor. PTA and EG were fed into
the reaction with molar ratio of 1:1.2, and then antimony trioxide (0.05 wt %) and trimethyl phosphate
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(0.07 wt %) were sequentially incorporated into esterification reaction. Esterification was carried out at
240 ◦C for 2–3 h under nitrogen atmosphere to prepare polyester ethylene terephthalate (BHET). At the
end of esterification reaction, the matting agent TiO2 was incorporated into the reactor. Subsequently,
polycondensation reaction occurred at 260–270 ◦C for 2.5–3.5 h and the pressure of 0.3 MPa was
continually decreased to 100 Pa. Then chips of polyesters were discharged, granulated and dried to
prepare ordinary PET with different TiO2 content. Furthermore, the synthetic route is as Scheme 1.
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Scheme 1. Synthesis of (a) ethylene terephthalate (BHET) and (b) of the macromer polyethylene
terephthalate (PET) di-hydroxy ended.

For the preparation of hydrophilic copolyester, after the first esterification reaction, the modified
monomers were added into the second esterification reactor, and the monomer SIPE (molar ratio of
SIPE to PTA = 1.75/100) and sodium acetate (0.005 wt %, preventing the ionization for SIPE) were added
into the reactor at 210 ◦C for 20 min. Then, PEG (molar ratio of PEG to PTA = 0.8/100), NPG (molar
ratio of NPG to PTA = 4.3/100) and matting agent titanium TiO2 were added into the reactor together at
230 ◦C for 1.5 h. Subsequently, the polycondensation reaction was carried out to prepare hydrophilic
copolyester ENCDP-X with different TiO2 content for experiment. All samples were numbered as
shown in Table 1 and the synthetic route is as Scheme 2.

Table 1. Samples and its corresponding numbers.

Numbers Samples TiO2 Proportion (%)

PET-0 PET -
PET-1 PET 0.03
PET-2 PET 0.24

ENCDP-0 ENCDP -
ENCDP-1 ENCDP 0.03
ENCDP-2 ENCDP 0.24

The synthetic routes are schematized in Schemes 1 and 2.

2.3. Characterization of Copolyester

Infrared spectroscopy analysis. It was measured by NEXUS-670 infrared-raman spectrometer
(Nicollet, Minnesota, US). The scanning range is 4500–400 cm−1, the resolution is 2 cm−1 and the
samples were scanned 10 times with the attenuated total reflection ATR method.

Nuclear Magnetic Resonance analysis. 1H-NMR, 13C-NMR and 1H-13CCOSY were carried out
on the nuclear magnetic resonance spectrometer (Avance 400 Bruker, Billerica, MA, USA). Samples of
around 5 mg were put into special sample tube and completely dissolved in deuterated reagent of
trifluoroacetic acid (TFA) with the test frequency of 400 MHz. All chemical shifts are reported in ppm
and tetramethylsilane (TMS) was used as the internal standard.
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Scheme 2. Synthesis of (a) ethylene terephthalate (BHET) and (b) the modified copolyester polyethylene
terephthalate (ENCDP-X).

Differential Scanning Calorimetry (DSC) analysis. The thermal properties of the
copolyester were carried out on the TA Instrument DSC-Q20 Differential Scanning Calorimeter
(PerkinElmer, Waltham, MA, USA). The test was carried out under nitrogen atmosphere and the flow
rate of the nitrogen gas stream was 50 mL/min. The 7 mg sample was put into an aluminum crucible
and sealed. The samples were melted at 280 ◦C with the heating rate of 20 ◦C /min, and then holding
the temperature at 280 ◦C for 3 min to remove thermal history. Subsequently, the temperature was
rapidly cooling to 0 ◦C with the cooling rate of 50 ◦C/min, holding the amorphous state and exploring
the ability of cold-crystallization. Thereafter, the samples were reheated to 280 ◦C at the heating rate of
10 ◦C/min and then holding the temperature at 280 ◦C for 3 min. Then cooling to 0 ◦C at the cooling
rate of 10 ◦C/ min. Which were characterized the thermal properties of the samples.

Thermogravimetric analysis (TGA). It was measured by TGA-4000 Thermogravimetric Analyzer
(PerkinElmer, Waltham, MA, USA) under nitrogen atmosphere. 6 mg samples of the copolyester were
gradually heated from 25 to 600 ◦C at the heating rate of 10 ◦C/min, and the residues were naturally
cooled to room temperature.

The intrinsic viscosity (IV) analysis. According to GB/T 14190-2008 test standard, the intrinsic
viscosity of the samples was tested by NYC-2 semi-automatic ubbelohde viscometer (Silda Scientific
Instruments Co., Ltd., Shanghai, China). Copolyester chips were dissolved in 25 mL mixed solutions of
phenol/tetrachloroethane (1:1, w/w), the tested temperature was 25 ◦C and repeated three times. wherein
the viscosity average molecular weight (Mη) was calculated by the Mark–Houwink Equation (2),
listed in Table 2.

η = KMηα (1)
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ln[η] = lnK + αlnMη (2)

where K is equal to 2.1 × 10−4 and α is equal to 0.8.

Table 2. The intrinsic viscosity and Mη of the copolyesters.

Samples [η] (dL·g−1) Mη (g·mol−1)

PET-0 0.676 18,900
PET-1 0.671 18,800
PET-2 0.647 18,000

ENCDP-0 0.594 16,200
ENCDP-1 0.586 15,900
ENCDP-2 0.568 15,300

The molecular weight has a significant impact on the mechanical strength and thermal resistance
for its products. Owing to the lower molecular weight, it will be difficult for polymer molding and
without mechanical strength. However, the higher molecular weight will increase the flow viscosity
of the polymer and causing processing difficulties. Therefore, the molecular weight of the polymer
should be controlled within a certain range, taking into account the requirements of both application
and processing.

The results of intrinsic viscosity (IV) and viscosity average molecular weight (Mη) of copolyester
are listed in Table 2 shows that Mη of all copolyester from 15,000 to 19,000 g/mol, which are satisfied
requirements for spinning.

Contact angle analysis. It was measured by the optical contact anglemeter of OCA15EC
(Beijing, China). The copolyester chips were melted at 260 ◦C for 2 min, then pressed into pieces by
plate vulcanizing machine and cooled downing quickly by frosty iron nuggets. Measured five times
and averaged.

3. Results and Discussion

3.1. Fourier Infrared Spectroscopy

The infrared spectroscopy analysis is performed to determine the composition of the copolymers.
It is inferred whether the comonomers are incorporated into the molecular chain according to the
position and shape of the absorption peak in the spectrum, apart from the matting agent TiO2 can be
directly judged by visual sense. The chemical spectra of sample PET-0 is same as to PET-1/ PET-2,
and the chemical spectra of sample ENCDP-0 is same as to ENCDP-1/ ENCDP-2. Selecting PET-0
and ENCDP-0 as the targets, and the others will not be repeated. The spectral patterns of PET-0 and
ENCDP-0 are shown in Figure 1, and the wave numbers and vibration mode of chemical groups of
copolymers are shown in Table 3.

In Figure 1, it is revealed clearly that there are three distinct characteristic peaks between PET-0
and ENCDP-0 at 630, 1372 and 2853 cm−1. The absorption peak at 630 cm−1 is caused by S–C
stretching vibration, indicating that the SIPE monomer is successfully incorporated into the PET
macromolecular chain. The copolyester ENCDP-0 has an absorption peak at 1372 cm−1, which is
attributed to the symmetric deformation vibration of the methyl group C–H in the NPG monomer,
indicating that the NPG monomer is successfully incorporated into the macromolecule. In addition,
copolyester ENCDP-0 owns weak stretching vibration peaks at 2853 cm−1 of –CH2– in PEG monomer,
indicating that the PEG monomer successfully incorporated into the macromolecule. It was confirmed
by infrared spectroscopy that all the modified monomers have been successfully incorporated into the
copolymer macromolecule.
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Table 3. The wave numbers and vibrational conformation of chemical groups.

Wave Numbers (cm−1) Vibrational Conformation

3450 cm−1 Stretching vibration peaks for –OH
2853 cm−1 Stretching vibration peaks for –CH2– in PEG
2892 cm−1 feature peaks for –CH2–

1740 cm−1 The asymmetric stretching of –C=O for the
aliphatic-aromatic ester units.

1578–1504 cm−1 Stretching vibration peaks for Benzene

1372 cm−1 Symmetrical deformation vibration peaks for
C–H in NPG

11,011,117 cm−1 Absorbing vibration peaks for (C–O–C)

727 cm−1 Vibration peaks generated by the conjugation of
benzene and –C=O

630 cm−1 Stretching vibration peaks for S–C in SIPE

3.2. Nuclear Magnetic Resonance (NMR) Analysis

More chemical structure details of copolyester were further characterized by NMR spectroscopy.
The chemical groups will be ascertained basing on the chemical shifts in the 1H-NMR spectra and the
relative molar ratio of H protons could be obtained by calculating the areas of resonance peaks [28,29].
13C-NMR characterizes the macromolecular sequence, based on the position and content of the splitting
peak of quaternary carbon. 1H-13CCOSY can be observed the coupling signals of the hydrogen
spectrum and the carbon spectrum, and concluded the connection of the copolymerized monomers.
The 1H-NMR and 13C-NMR spectra of ENCDP-0 copolymers are consistent with ENCDP-1/ENCDP-2,
and which will not be repeated. As an example, the 1H-NMR and 13C-NMR spectra of ENCDP-0
copolymer are indicated.

3.3. 1H-NMR Analysis

Figure 2 shows the 1H-NMR spectra of ENCDP-0 and PET-0 samples, which revealed that the
chemical shifts of ENCDP-0 are distinctly different from PET-0, causing by H protons of PTA, EG,
SIPE, and PEG units. Specifically, the hydrogen protons H1 are derived from aromatic protons in
the PTA unit, and the corresponding chemical shifts are around 8.20 ppm. The aliphatic hydrogen
proton H2 are derived from the EG unit, and the corresponding chemical shift is about 4.7 ppm.
The aromatic hydrogen protons H3 and H4 are derived from the third monomer SIPE unit, and the
corresponding chemical shifts are around 8.70 and 8.90 ppm. The aliphatic hydrogen proton H5 are
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derived from the fourth monomer PEG2000 unit, and the corresponding chemical shift are around
3.9 ppm. The methyl and methylene protons of H6 and H7 is derived from the fifth monomer NPG unit,
and the corresponding chemical shifts are around 1.20 and 4.4 ppm. The aliphatic hydrogen proton
Hx (i) are mainly derived from the unit of the by-product diethylene glycol (DEG), which are mainly
caused by the chemical hydrolysis reaction, and corresponding chemical shift are around 4.0–4.2 ppm.
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According to the relative area of the integral curve of each resonance peaks in the 1H-NMR
spectrum, the relative molar ratio of the modified monomer in the copolyester is quantitatively
calculated by the following equation. The equation which is used to calculate the data is summarized
in Table 4.

nSIPE
nPTA

=
1
3 (H3 + H4)

1
4 H1

(3)

nPEG2000

nPTA
=

1
45 ×

1
4 H5

1
4 H1

=
H5

45H1
(4)

nNPG
nPTA

=
1
6 H6
1
4 H1

=
2H6

3H1
or

nNPG
nPTA

=
1
4 H7
1
4 H1

=
H7

H1
(5)

Table 4. The actual reaction yield calculated from 1H-NMR spectra of samples.

Samples
Feed Ratio Actual Reaction Yield

SIPE/PTA
(mol%)

PEG/PTA
(mol%)

NPG/PTA
(mol%)

SIPE/PTA
(mol%)

PEG/PTA
(mol%)

NPG/PTA
(mol%)

ENCDP-0 1.72 0.61 3.46 98.28 76.25 80.46
ENCDP-1 1.74 0.58 3.21 99.43 72.50 74.65
ENCDP-2 1.73 0.63 3.52 98.85 78.75 81.86

It can be seen from Table 4 that the actual composition of the modified monomers in the copolyesters
is close to the corresponding feed amount, which indicates that most of the modified monomers have
been incorporated into the polymerization and successfully incorporated into the macromolecule.

3.4. 2D NMR HETCOR Spectra Analysis

The Heteronuclear chemical shift correlation Spectroscopy(HETCOR) characterizes the relationship
between the 13C nucleus and 1H protons. The f1 and f2 axes usually represent different nuclei,
the carbon spectrum is on the right, the hydrogen spectrum is on the bottom and the corresponding
correlation spectrum are found on the opposite side of each axis. Their correlation peaks indicate
13C and 1H originated from 2–4 chemical bonds, and the coupling relationship is represented by
nJCH. The correlation mode of the modified monomer in the copolyester is represented by the HMBC
spectrum, which are shown in Figure 3.
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The vertical line is drawn from the f2 axis (C atom) and the f1 axis (H protons), and the intersecting
peaks of the two vertical lines directly reflect the coupled signals of the two atoms. It can be seen from
the Figure 3 that the solid circle is the itself coupling of C and H of the comonomer. The absence of the
agglomeration signal of the modified monomer is due to the low content of the modified monomer
and the feeding process. In order to avoid agglomeration, they are first dissolved in ethylene glycol,
uniformly stirred, and then slowly added during the feeding process. The dashed circle is the coupling
signal between the C and the H of different comonomers. There are intersecting signals between PTA
and EG, SIPE and EG, and PTA and NPG, and there is no signal between PTA and SIPE, as well as
SIPE and NPG. In addition, the chemical shifts of the H protons of the PEG and the byproduct DEG are
well-matched and cannot be distinguished, so the description of the PEG-related sequence structure
is not considered. In short, signal assignment was accomplished by comparing the spectra obtained
from different copolymer compositions and it was supported by relevant data provided by 2D NMR
HETCOR spectra.

3.5. 13C-NMR Analysis

The properties of the copolymer depend not only on the comonomers that make up the
macromolecular chain, but also on the sequence distribution. The sequence distribution includes
randomness, alternation and block copolymerization, which are judged by the value of the randomness.
The most powerful method for comonomer sequence distribution is NMR spectroscopy, and a statistical
model is usually used to summarize the ideal microscopic sequence structure. Comparison of theoretical
and experimental data provides an estimate of the randomness. The number of resonances that can be
observed by the number of dyads, triads and higher sequences in which the two monomers may be
arranged24. For example, if FB and FS represent the composition ratio of isophthalic and terephthalate
in the copolymer, and according to the the Bernoulli distribution model, XB2, 2XBXS and XS2 can,
respectively, represent the theoretical content of the BB, BS and SS dyads sequences in the copolyester.
Similarly, the composition ratio of the triads sequence can also be calculated in the similar method,
and the sequence structure of copolyester synthesized in our experiment are investigated on the basis
of the sequence distribution, randomness and sequence length.

The subject adopts five-units copolymerization, and the characterization of molecular sequences by
NMR spectroscopy is difficult to achieve. According to the actual process of polymerization, PTA and
EG of polymerized monomers are regarded as a substance BHET. Moreover, the chemical shift of the
hydrogen proton for the modified monomer PEG and the by-product DEG is highly coincident, and the
sequence distribution of the fourth monomer is not considered at present. Therefore, the five-unit
copolymerization will be simplified to triads copolymerization for characterization. The substance
BHET is abbreviated as B, the monomer SIPE is abbreviated as S, and the monomer NPG is abbreviated
as N. The entire molecular chain structure is centered on B, which is briefly described as: BBB, BBS,
SBS, BBN, NBN, SBN. However, since the composition ratio of the monomer S is litter, the 13C NMR
spectrum does not show the characteristic peak of SBS.

Figure 4 shows the chemical shifts of the carbon atom and the splitting peaks of the carbon of
carbonyl groups belonging to the aliphatic-aromatic ester units, and calculates the average sequence
lengths LS and LN of the modified monomer links according to the integrated area of the characteristic
peaks. The degree of sequence randomness of ENCDP-0 can be calculated by the following equations.

LB = (FBBB + FBBS/2 + FSBS + FBBN/2 + FNBN)/(FBBS/2 + FSBS + FBBN + FNBN) (6)

Ls = (FBBS/2 + FSBS + FSSS)/(FBBS/2) (7)

LN = (FBBN/2 + FNBN + FNNN)/(FBBN/2) (8)

where Fi denotes the mol fraction of each sequence.
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The calculation equations of the randomness Bi:

Bs = 1/LB + 1/Ls (9)

BN = 1/LB + 1/LN (10)

For the random copolyester, the degree of randomness Bi should be equal to 1. For the alternating
copolyester, the degree of randomness Bi is equal to 2. If Bi is below 1, the repeat-units are supposed to
be arranged in blocks.

For sample ENCDP-0, FB, FS and FN are 95.07%, 1.64% and 3.29%, respectively, according to
1H-NMR data. The molar fraction of the dyads sequence distribution is calculated by the Bernoulli
distribution theory. For the binary system of B and S, FBB, FBS and FSS, this is 95.88%, 3.12% and
0.03%, respectively; for the binary system of B and N, FBB, FBN and FNN, this is 94.03%, 6.26% and
0.11%, respectively. The theoretical molar ratio of triads sequence distribution is calculated by a similar
method, and the actual molar ratios were obtained by the integral area of the 13C-NMR characteristic
peak. The experimental and theoretical values for the different sequence structure of the copolymer
macromolecules are shown in Table 5:

Table 5. The experimental and theoretical values for the different sequence structure.

Results
Triads Sequence (mol%)

BBB BBS SBS BBN NBN SBN SSS NNN

Theoretical values 90.44 2.96 0.03 5.94 0.10 0.05 - -
Experimental values 89.71 2.21 0.03 5.73 0.12 0.07 - -

It can be showed from the above table that the experimental values of the sequence structure of
the ENCDP-0 are substantially consistent with the theoretical values, which confirm that the triad
sequence distribution of the copolymer follows the Bernoulli distribution model.

Table 6 shows the experimental average sequence lengths and randomness of copolyester are
consistent with the ideal polycondensation statistics with randomness. The randomness Bi is very
close to 1, which is a highly expected result since the occurrence of transesterification reactions tends
to be random copolyester in the molten phase.
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Table 6. Theoretical and experimental values of randomness.

Result
Av Ls Randomness

BS (%)
Av LN Randomness

BN (%)LB LS LB LN

Theoretical values 64.72 1.02 99.50 31.45 1.04 99.35
Experimental values 75.45 1.03 99.17 30.61 1.04 99.45

Label: Av Ls—Average sequence length for S (mol%), Av LN—Average sequence length for N (mol%).

3.6. DSC Analysis

As can be seen from Table 7, there is only one glass transition in DSC curves, implying that no
second phase exists in the copolyester ENCDP-X and the glass-transition temperature (Tg) of ENCDP-X
decreases with the adding of modified monomers. This indicates that the incorporation of the methyl
pendant groups (–CH3) from NPG units disrupted the regularity of the molecular chain and increased
the free volume and amorphous regions, leading to less energy required for chain molecular motion
and rearrangement [16]. However, Tg increases gradually with the increasing content of TiO2, which is
caused by the TiO2 enhance the crystallinity of the polyesters and form the perfect crystalline state,
leading to more energy required for rigid chain molecular motion. In addition, the effects of adsorption
and steric hindrance from TiO2, in turn, hinder the movement of macromolecules and causing the Tg

increase. The Tg of samples (PET-1 and PET-2) is gradually increased with the increase of TiO2 content,
which reason is the same as the above copolyester.

Table 7. The thermal parameters of copolyesters.

Sample Tg (◦C) Tc (◦C) Tcc (◦C) Tm (◦C) 4Hm (J/g) Xc (%)

PET-0 70.17 137.69 163.18 245.59 35.82 26.38
PET-1 72.16 136.84 184.54 250.24 39.03 28.74
PET-2 72.65 134.00 196.8 251.55 40.08 29.51

ENCDP-0 64.00 154.37 - 227.94 26.70 19.66
ENCDP-1 67.67 160.19 - 234.12 27.98 20.60
ENCDP-2 67.78 156.87 148.35 234.94 28.50 20.99

Lable: the crystallinity (Xc) = (∆Hm/∆H0) × 100%, where ∆Hm is the melting enthalpy, ∆H0 denotes the melting
enthalpy of PET with perfectly crystalline (∆H0 = 135.8 J/g).

It can be seen from Figure 5 that, comparing to ordinary polyester PET-0, the crystallization ability
of the samples ENCDP-X is weakened. The main reasons are that the methyl groups the modified
monomer NPG disrupt the regularity molecules and the strong polarity of the sulfonic acid group on
the SIPE benzene strengthen the steric hindrance, causing the cold-crystallization temperature increase,
and the crystallization temperature, melting temperature decrease [30]. With the increase of the TiO2

content in the samples ENCDP-X, TiO2 increase the crystallization ability and form perfect grains,
causing the cold-crystallization temperature reduces, the crystallization temperature and melting
temperature increases, which plays a promoting crystallization role. In summary, TiO2 achieves the
effect of matting agent, but the crystallization effect is still not significant, which achieves our purpose
of designing macromolecular structure. However, TiO2 plays a significant crystal nuclei role for
samples (PET-1 and PET-2).

In summary, when both the modified monomer and TiO2 in the copolyester are incorporated,
the influence of the modified monomer is dominant. That is, when the copolyester has a stronger
crystallization ability, the crystal nuclei effect of TiO2 is more significant. However, the incorporating
of TiO2 not only improves the thermal performance of the copolyester which is beneficial to processing
and application, but also provides more channels for moisture enter the copolyester to improve
hygroscopicity, and which can meet the design requirements.
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In order to further study the effect of modified monomers and TiO2 on the crystallization behavior
of copolyester, the non-isothermal crystallization kinetics of samples were explored by DSC. Moreover,
the process of non-isothermal crystallization will be closer to the actual spinning process. The Avrami
equation is directly used to analyze the cold-crystallization processes on the DSC curves of the six
samples, and then the crystallization kinetic parameters are studied and summarized based on the
Jeziorny method.

The relative crystallinity Xt of the samples at different times can be calculated by Equation (11):

Xt =

∫
T
T0
( dHT

dT )dT∫ T∞
T0

( dHT
dT )dT

(11)

In the formula, T corresponded to the crystallization temperature at time t; T0 and T∞ represents
the initial and end temperatures of the crystallization.

In the non-isothermal crystallization process, the relationship between the crystallization
temperature T and the crystallization time t can be calculated by formula (12).

t = (T − T0)/R (12)

where R is the heating rate of the DSC program. The curves between the relative crystallinity Xt and
time t are shown in Figure 6.

Generally, the Avrami equation is one of the most common methods for investigating the isothermal
crystallization behavior of the copolyester.

1 − Xt = exp(−Ztn) (13)

By taking the logarithm, the above equation can be calculated by formula (14).

Ln[−Ln(1 − Xt)] = LnZ + nLnt (14)

where n is the Avrami index and Z is the crystallization-rate constant; the plot of the Ln[−Ln(1 − Xt)]
versus Lnt is shown in Figure 6b. The slope is n and the intercept of the line is LnZ.
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(b) the Ln[−Ln(1 − Xt)] versus Lnt for the non-isothermal crystallization.

Regrettably, the Avrami equation is unsuited for describing non-isothermal crystallization process.
In order to analysis the non-isothermal crystallization process, Jeziorny modied Zt with the cooling
rate, and the modified equation is as following:

LnZc = −
LnZ

R
(15)

where LnZc is the non-isothermal crystallization kinetic constant.
It can be seen from Figure 6a that the curves of the relative crystallinity Xt versus the crystallization

time t of all samples are in the S shape, which directly determines the semi-crystallization time (t0.5),
that is, the time when the relative crystallinity reaches 50% and reflects the rate of cold-crystallization.
The kinetic parameters of non-isothermal crystallization of the copolyester are deduced from Figure 6b
and Equation (15), as shown in Table 8.

Table 8. The parameters of non-isothermal crystallization from Avrami analysis.

Samples Tc (◦C) t1/2 (s) n Zc (min−1)

PET-0 137.69 74.4 2.96 0.57
PET-1 136.84 67.2 3.28 0.79
PET-2 134.00 58.6 3.76 0.91

ENCDP-0 154.37 145.7 2.75 0.41
ENCDP-1 160.19 142.8 3.01 0.43
ENCDP-2 156.87 138.2 3.26 0.46

It can be seen from Table 8 that the n values are not integers, which because the homogeneous
nucleation and heterogeneous nucleation may coexist during the crystallization of the copolyester,
or the second crystallization may also exist. In addition, the macromolecular chain will undergo
entanglement during crystallization, causing it is difficult to completely diffuse as the small molecules
and the crystal growth dimension are not integers. Moreover, the Avrami exponent of the modified
copolyester ENCDP-X, n, ranges from 2.7 to 3.2, indicating that the mode of the nucleation and
growth may be two-dimensional and three-dimensional coexistence. Moreover, this shows that the
addition of modified monomers SIPE, PEG and NPG did not alter the crystallization mechanism,
that is, where did not exist particular nucleating agent in copolyester. The crystallization-rate constant,
Zc, increases and the half crystallization time t1/2 decreases, illustrating the cold-crystallization rate
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increase. Moreover, the role of cold-crystallization nucleation is not significant with the increase
of TiO2 content for copolyester ENCDP-X, due to the small difference in Zc and t1/2. Oppositely,
regarding to the copolyester (PET-0, PET-1 and PET-2), the cold-crystallization nucleation effect for
TiO2 is significantly.

3.7. TG Analysis

The initial weight loss temperature (Td) at which the weight loss rate of polyester reaches 5%
and the maximum thermal degradation rate temperature (Tdm) are important thermal degradation
parameters, which are mainly affected by the factors, such as the copolymerization component,
end group contents, DEG and by-product contents in the macromolecular chain. Figure 7 shows the
TGA and dTGA curves of the copolyester under the nitrogen atmosphere, and the only one thermal
weightless plateau and differential peak showing the only one thermal decomposition stage during the
thermal degradation of the copolyester. The corresponding thermal degradation parameters are listed
in Table 9.
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Table 9. Thermogravimetric data for the copolyester.

Samples Td (5%) Tdm

PET-0 425.48 460.89
PET-1 419.60 455.36
PET-2 417.33 450.61

ENCDP-0 411.48 449.74
ENCDP-1 410.25 448.95
ENCDP-2 410.14 448.09

Relative to copolyester ENCDP-X, Td, Tdm and the thermal degradation temperature corresponding
to the same thermal weight loss rate are lower, owing to the incorporation of modified monomers and
TiO2. The modified monomers PEG and NPG not only disrupted the regularity of the macromolecular
segments, but also embedded more methylene fatty segments and ether bonds. The appearance of
the ether bonds enhanced the electronegativity of the oxygen atoms on the ester carbonyl groups and
enhanced the positive polarity of the H atom on the methylene group at the β position easier to break
the chemical bond around the ester carbonyl group and the methylene group. In addition, as the TiO2

proportion increases, the thermal degradation temperature corresponding to the same thermal weight
loss rate will decrease to a small extent. TiO2-assisted thermal degradation of polymers occurs by
transferring electrons from light-excited TiO2 to molecules to form anionic radicals. The next step
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involves the extinction process of free radicals, which subsequently attack the polymer. In addition,
In the high temperature environment, the crystal is completely destroyed, and the molecular chain is in
a free state. The TiO2 disrupts the regularity of polyester molecular chains, reducing the intermolecular
tightness and intermolecular stress, and the corresponding chemical bonds are more easily broken [31].

In summary, the modified monomer is more destructive to the thermal stability of the modified
copolyester. Therefore, the proportion of modified monomers should be controlled to meet
spinning requirements.

3.8. The Contact Angle

The contact angle is an important parameter to characterize the hydrophilicity of the polymer.
Its value indicates the hydrophilicity (<90◦) and hydrophobicity (>90◦), and the smaller the value,
the better hydrophilicity. The lacking of hydrophilic groups and the closing arrangement of
macromolecular chains, leading to the poor hydrophilicity for PET. The static contact angle of
copolyester is shown in Figure 8.
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It can be seen from Figure 8 that for the addition of the modified monomers in the copolyester
ENCDP-0, the contact angle is reduced from 107◦ to 76◦, and the polymer surface changes from
hydrophobic to hydrophilic. Owing to the modified monomer is embedded in the macromolecular
chain, increasing the steric hindrance effect, weakening the regularity and symmetry of the copolyester
macromolecule, leading to the amorphous region and free volume being increased, increasing space for
water molecules; thus, the hydrophilicity is improved for the copolyester [32]. Moreover, on the basis
of copolymerization modification, TiO2 is further mixed to increase the passage of water molecules
into the copolyester, leading to the hydrophilicity being further improved, and the contact angle being
reduced from 76◦ to 65◦. However, the blending of TiO2 causing the small difference for contact
angle. This is because the high crystallinity and the regular macromolecular structure, causing water
molecules cannot enter the crystal region. Thus, there is no obvious change in hydrophilic effect.

4. Conclusions

A modified poly(ethylene terephthalate) was prepared based on the incorporation of modified
monomer and TiO2. The 1H-NMR spectrum indicates that most of the modified monomers (SIPE,
PEG and NPG) have been successfully incorporated into the macromolecule; the monomer molar
fraction is about 98%–99%, 72%–80% and 74%–82%, sequentially, not limited by TiO2 content.
The 13C-NMR spectrum shows that sequential distribution and degree of randomness and analysis the
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resonances of quaternary carbons in the copolymers unit. The average sequence lengths of the modified
monomers (SIPE, NPG) are 1.02 and 1.04, and randomness of copolyester is about 1, attributing to the
random copolymerization, which is consistent with the ideal copolycondensation statistics.

The DSC curves of modified copolyester shows that the incorporation of modified monomers
weakens the crystallization ability, reducing the Tg, Tm and Xc. The non-isothermal cold-crystallization
kinetics of the copolyester by Jeziorny’s method reveals that the crystallization-rate constant,
Zc increased, the half crystallization time t1/2 decreased, the cold-crystallization rate increased.
In addition, the incorporating of TiO2 improves the thermal performance of the copolyester, which is
beneficial to processing and application. The TGA curves indicate that the thermal degradation
mechanisms are basically the same. Moreover, the addition of modified monomers and TiO2 reduces
the thermal degradation temperature.

The copolyester exhibited a better hydrophilicity than pure PET; the contact angle was reduced
from 107◦ to 76◦. In addition, TiO2 was further incorporated to provide more channels for moisture
entering the copolyester, leading to the hydrophilicity being further improved, and the contact angle
being reduced from 76◦ to 65◦.
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