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ABSTRACT We compared the performance of four open-source in silico Salmonella
typing tools (SeqSero, SeqSero2, Salmonella In Silico Typing Resource [SISTR], and
Metric Oriented Sequence Typer [MOST]) to assess their potential for replacing labo-
ratory serological testing with serovar predictions from whole-genome sequencing
data. We conducted a retrospective analysis of 1,624 Salmonella isolates of 72 sero-
vars submitted to the German National Salmonella Reference Laboratory between
1999 and 2019. All isolates are derived from animal and foodstuff origins. We con-
ducted Illumina short-read sequencing and compared the in silico serovar prediction
results with the results of routine laboratory serotyping. We found the best-
performing in silico serovar prediction tool to be SISTR, with 94% correctly typed iso-
lates, followed by SeqSero2 (87%), SeqSero (81%), and MOST (79%). Furthermore, we
found that mapping-based tools like SeqSero and SeqSero2 (allele mode) were more
reliable for the prediction of monophasic variants, while sequence type and cluster-
based methods like MOST and SISTR (core-genome multilocus sequence type [cg-
MLST]), showed greater resilience when confronted with GC-biased sequencing data.
We showed that the choice of library preparation kit could substantially affect O an-
tigen detection, due to the low GC content of the wzx and wzy genes. Although the
accuracy of computational serovar predictions is still not quite on par with tradi-
tional serotyping by Salmonella reference laboratories, the command-line tools in-
vestigated in this study perform a rapid, efficient, inexpensive, and reproducible
analysis, which can be integrated into in-house characterization pipelines. Based on
our results, we find SISTR most suitable for automated, routine serotyping for public
health surveillance of Salmonella.

IMPORTANCE Salmonella spp. are important foodborne pathogens. To reduce the
number of infected patients, it is essential to understand which subtypes of the bac-
teria cause disease outbreaks. Traditionally, characterization of Salmonella requires
serological testing, a laboratory method by which Salmonella isolates can be classi-
fied into over 2,600 distinct subtypes, called serovars. Due to recent advances in
whole-genome sequencing, many tools have been developed to replace traditional
testing methods with computational analysis of genome sequences. It is crucial to
validate that these tools, many already in use for routine surveillance, deliver accu-
rate and reliable serovar information. In this study, we set out to compare which of
the currently available open-source command-line tools is most suitable to replace
serological testing. A thorough evaluation of the differing computational approaches
is highly important to ensure the backward compatibility of serotyping data and to
maintain comparability between laboratories.
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Since the 1960s, Salmonella species isolates have been differentiated into serovars,
e.g., Salmonella enterica serovar Enteritidis or Typhimurium. This distinction has

proven extremely useful, since characteristics like host specificity, virulence, and patho-
genicity usually correlate well with serovar assignments. For example, one of the most
commonly isolated Salmonella serovars worldwide is S. enterica serovar Enteritidis,
which is often found in contaminated eggs and can cause salmonellosis in humans (1).

Consequently, serovar assignment has provided scientists, public health experts,
veterinarians, and the general public with an effective terminology which has since
shaped the core of any Salmonella monitoring and surveillance scheme. Interestingly,
the process of serotyping does not take markers of virulence or pathogenicity into
account directly but instead is based on natural variations in two cell surface structures.
These two cell surface structures are the O antigen, a cell surface protein, and the H
antigen, which forms part of the flagella. Salmonella spp. feature a wide variety of these
flagellar H and lipopolysaccharide O antigens. Serotyping utilizes these variations by
assigning a number and letter code to each known H and O antigen, followed by
classifying different combinations according to the White-Kauffmann-Le Minor scheme
(2). Currently, the White-Kauffmann-Le Minor scheme denotes more than 2,600 Salmo-
nella serotypes. Besides assigning a specific antigenic formula, the typing scheme also
denotes unique serotype names, which often point to the geographical origin of the
first isolate investigated. Traditionally, serotype names have only been allocated to
isolates belonging to S. enterica subsp. enterica, while serotypes of other subspecies are
denoted solely by their antigenic formula, such as serovar 61:k:1,5,(7) of S. enterica
subsp. diarizonae.

The serotyping process in the laboratory involves a series of serological tests, in
which the presence of a specific O antigen or H antigen is verified through agglutina-
tion between the cells and specific antisera. No expensive equipment is required for
serological testing, and for this reason, laboratory serotyping has become a well-
established gold standard method. However, there are several disadvantages to labo-
ratory serotyping. Most importantly, agglutination tests can only detect O and H
antigens that are currently expressed by the cell. In order to induce the expression of
all possible flagellar H antigens (2nd-phase H antigen), isolates need to be passaged
through different media, which can be a labor-intensive and time-consuming process.
Second, the large number of known serovars makes it impractical for laboratories to
keep all antisera necessary for typing of rare serotypes in stock. Another issue is that,
although conducting serological tests is relatively easy, producing the antisera is not
and requires stringent quality control to prevent false-positive results. To overcome
these drawbacks, several in silico methods have been developed in recent years to
replace traditional serotyping. Among the first implemented is the detection of se-
quence differences that cause the variations in either the O or the H antigen. Although
there is no single gene encoding either the O or the H antigen, it is known that the two
flagellar antigens are encoded by the fliC and fljB gene, respectively, and that the O
lipopolysaccharide is encoded by the O antigen flippase (wzx) and polymerase (wzy) (rfb
gene cluster) genes. Sequencing data derived from whole-genome-sequencing (WGS)
provides the perfect basis for an analysis of these gene sequences for predicting the
serovar. Several tools have been introduced that are able to infer serovar predictions
from the analysis of O and H antigen sequences derived from whole-genome sequenc-
ing data. Among these tools currently available are SeqSero (3), as well as its successor
version, SeqSero2 (4), and the Salmonella In Silico Typing Resource (SISTR) (5). All three
tools implement a mapping step, which aligns the sequencing reads or the assembled
genome to a reference database of O and H antigen allele sequences and then assigns
the antigenic formula and/or the serovar name based on the best-scoring alignments.
In addition, SeqSero2 is capable of breaking reads into k-mers, which are then com-
pared to the frequency of unique k-mers of serotype determinants. Another interesting
approach for in silico serovar prediction is to infer serovars from multilocus sequence
types, which have been shown to correlate well with Salmonella serovars. For example,
isolates of S. enterica serovar Mbandaka usually have sequence type 413, based on the
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7-gene multilocus sequence typing (MLST) scheme (6, 7). Among the tools implement-
ing this method are Metric Oriented Sequence Typer (MOST) (8), which infers serovars
from MLST, and SISTR (5), which can predict serovars based on phylogenetic clustering
of core genome MLST (cgMLST) or based on a k-mer reference search (mash). Several
studies have further investigated the utility of lineage-specific gene markers for the
identification of polyphyletic serovars (9–11). However, we are not aware of any
currently publicly available program that implements the findings from these studies.

A number of benchmarking studies have been conducted to evaluate the perfor-
mance of different in silico serotyping tools. The majority of studies were conducted by
developers of the tools, mostly with their own unique set of samples. For example,
MOST was validated with �6,900 isolates of human origin submitted to the Salmonella
Reference Service at Public Health England (PHE) (12); SeqSero was validated with raw
reads from genomes of �300 Salmonella isolates with known serovars and �3,700
isolates from public databases (3), as well as in a second independent study with
�1,000 isolates from the laboratory inventory collected by the U.S. Food and Drug
Administration (13); its successor SeqSero2 was validated recently with �2,300 isolates
submitted to the National Antimicrobial Resistance Monitoring System at the U.S.
Centers for Disease Control and Prevention (4), while its improved performance over
that of SeqSero was benchmarked on the same sample set as in Zhang et al. (3); and
the SISTR tool was validated with 42,400 isolates from public databases (14), as well as
with �4,200 publicly available sequences (5). Yachison and colleagues (15) compared
the performance of SeqSero to that of SISTR on 813 serotyped isolates from Canada,
while a comparison of the performance of SeqSero2 to that of SISTR was conducted
during the validation of SeqSero2 (4).

To date, the most comprehensive, independent comparative study was published in
the 2018 ENGAGE report (16). In that study, 786 serotyped broad-range isolates were
analyzed with the tools SeqSero, SISTR, MOST, and SalmonellaTypeFinder (Salmonella-
TypeFinder is based on SeqSero2 and MLST). The study found that SISTR achieved the
highest correlation with conventional serotyping (88%), followed by SalmonellaType-
Finder (85%), MOST (85%), and SeqSero (65%). However, in that study, none of the
isolates were retested to ensure correct serotyping. Furthermore, although web-based
online interfaces, such as the SISTR webtool (https://lfz.corefacility.ca/sistr-app/) used in
the ENGAGE study, make in silico serotyping tools easily and widely accessible, they are
not suitable for generating high-throughput, independent, reliable and reproducible
results. Only their command-line program versions can be integrated into in-house
bacterial characterization analysis pipelines, which allow rapid, efficient, customized,
controlled, and reproducible bioinformatic analysis of WGS data on a day-to-day basis.

For this reason, we set out to analyze and compare the performance of four tools,
MOST, SeqSero, SeqSero2 (k-mer and allele mode), and SISTR (all subresults), in their
command-line versions, for in silico Salmonella serovar prediction based on trimmed
raw reads and assembled Illumina short-read sequences obtained from our laboratory
inventory of 1,624 Salmonella species isolates from nonhuman origins.

RESULTS
Comparison of tool performance. (i) Correct serotype predictions overall. The

serovars of about two-thirds of all isolates were correctly and unambiguously predicted
by all four tools (1,057 isolates [65%]). Individually, the best-performing in silico serovar
prediction tool was SISTR (overall result), with 94% correctly typed isolates, followed by
SeqSero2 (k-mer mode) (87%), SeqSero2 (allele mode) (82%), SeqSero (81%), and MOST
(79%). A graphical representation of the comparison is shown in Fig. 1, while exact
percentages are given in Table 1. An extensive overview of tool performance grouped
by serovar is given in Table S2 in the supplemental material.

(ii) Incorrect results. About 10% of all isolates were serotyped with an incorrect
result by at least one tool. SISTR produced the fewest incorrectly typed isolates, with 21
isolates in total. In contrast, MOST, SeqSero, and SeqSero2 each typed a considerable
number, about 4% of all isolates, incorrectly. The majority of serovars wrongly reported
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by SeqSero and SeqSero2 could be traced to a missing somatic O antigen. Both SeqSero
and SeqSero2 were consistently unable to determine an O antigen for a number of S.
enterica serovars, such as Agona, Barelly, Derby, Enteritidis, Infantis, Mbandaka, Para-
typhi B var. Java, Typhimurium, and Virchow, as shown by the results in Table 2.
Interestingly, although SeqSero2 performed better than SeqSero overall, it produced a
slightly higher number of incorrect results. These could mainly be traced back to
SeqSero2 classifying a large number of S. enterica serovar Enteritidis (1,9,12:g,m:�)
isolates wrongly as S. enterica serovar Hillingdon (9,46:g,m:�:�) in k-mer mode, an
error that was not observed in allele mode.

MOST was unable to resolve serovars from subspecies other than S. enterica subsp.
I and classified S. enterica subsp. IIIb 61:k:1,5,7 as S. enterica subsp. arizonae, thereby
producing a large number of incorrect results (54 of the S. enterica subsp. IIIb isolates
in total), as shown by the examples in Table S3.

(iii) Inconclusive results. Not taking into account inconclusive results caused by an
incorrect differentiation into monophasic (1,4,[5],12:i:�) and biphasic S. enterica serovar
Typhimurium, about 11% of isolates received an inconclusive result from either SeqSero
or SeqSero2, while SISTR and MOST did not produce any inconclusive results. Overall,
SeqSero produced the highest number of inconclusive results. Typical serovars that
SeqSero was unable to resolve were S. enterica serovars Enteritidis (typed as Enteritidis
or Gallinarum), Hadar (typed as Hadar or Istanbul), Indiana (typed as Indiana or II
4,12:z:1,7), Kottbus (typed as Kottbus or Ferruch), and Senftenberg (typed as Senften-
berg or Dessau). Its successor version, SeqSero2, featured fewer inconclusive results,

TABLE 1 Overview of tool performance

Serovar prediction
result

% of isolates with result using:

SeqSero

SeqSero2 SISTR

MOSTk-mer Allele Overall Antigen cgMLST mash

Full 80.6 86.88 82.08 94.27 34.54 94.09 93.53 78.57
Inconclusive 12.56 5.79 5.91 1.23 57.64 1.23 1.66 11.64
Incongruent 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14
Incorrect 3.69 4.19 8.87 1.29 4.62 1.54 1.66 4.25
No result 0 0 0 0.06 0.06 0 0 2.4

FIG 1 Graphical representation of the in silico typing results by tool. In silico serotyping results were
compared to laboratory serological testing and categorized as full, inconclusive, incongruent, or incorrect
matches in keeping with the methodology of Yachison and colleagues (15). The stacked-bar chart shows
the results summarized by tool and/or subresult. The percentages of correct results per tool are shown.
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both in allele and in k-mode. However, like SeqSero, SeqSero2 was unable to resolve S.
enterica serovars Enteritidis, Kottbus, and Senftenberg.

(iv) No results. Between 6 and 8% of all isolates could not be typed with a serovar
name by SeqSero or SeqSero2. However, similarly to SISTR, in addition to the serovar
name, SeqSero and SeqSero2 also output the individual O, H1, and H2 antigen
assignments, making it possible to infer a seroformula in cases where no serovar name
could be determined. Taking the seroformula into account, 99% of all isolates (includ-
ing those which were nontypeable in the laboratory) could be assigned a serovar name
or seroformula through in silico serovar prediction. Only MOST was unable to assign a
sequence type and, therewith, a serovar to a number of isolates (47 in total).

(v) Incongruent results. The in silico typing tools were able to successfully predict
serovars for isolates for which no laboratory serotyping result could be obtained. These
isolates, characterized as “rough” or “nonmotile,” made up 3.1% of the total sample set
(51 isolates in total). A serovar could be determined for all 51 isolates by the in silico
serovar prediction tools with consistent results for most isolates across the 4 different
tools. Over half of the rough/nonmotile isolates were typed as S. enterica serovar
Typhimurium, Typhimurium monophasic, or Enteritidis, while other isolates were de-
termined to be of S. enterica serovars Choleraesuis, Derby, Fulica, Infantis, Ohio,
Paratyphi B var. Java, and Livingstone.

(vi) Statistical significance. Fisher’s exact test was used to evaluate the statistical
significance of differences between the successful predictions of each tool. A P value of
less than or equal to 0.05 was considered statistically significant. Incongruent results
were removed from the statistical analyses, and correctly typed serovar results were
compared to the sum of all inconclusive and incorrectly typed isolates. An overview of
the pairwise-calculated P values is shown in Table S4. P values were greater than or
equal to 0.05 for all possible pairwise combinations between SeqSero, SeqSero2 (both
allele and k-mer mode), and MOST. Therefore, SeqSero, SeqSero2, and MOST produce
statistically comparable results. The overall SISTR result, the SISTR mash result, and the
SISTR cgMLST result were significantly better than the results of SeqSero, SeqSero2 in
allele mode, and MOST. Only the SeqSero2 k-mer result was comparable with the SISTR
overall, mash, and cgMLST results. Across the SISTR results, all result types were
comparable, with the exception of SISTR antigen, which performed significantly worse
than all SISTR subresults. In conclusion, SISTR (overall, cgMLST, and mash result) and
SeqSero2 in k-mer mode show significantly better performance than all other tools.

Analysis of shortcomings and issues. (i) Antigen-mapping-based methods are
more suitable for the detection of monophasic variants. The serovar Typhimurium
often occurs in its monophasic variant, which lacks the second flagellar phase (sero-
formula 1,4,[5],12:i:�). Together, mono- and biphasic Typhimurium isolates made up
�25% of the complete sample set used in this study. While MOST is unable to identify
the monophasic variant, SeqSero and SeqSero2 are capable of detecting monophasic
Typhimurium as “potential monophasic variant of Typhimurium.” Similarly, SISTR is able
to recognize the monophasic variation with its seroformula 4,[5],12:i:�. While a majority
of all Typhimurium isolates (�90%) were correctly identified as either mono- or

TABLE 2 Serovar prediction for isolates with missing O antigen

Serovar Seroformula
Serotyping result using
SeqSero/SeqSero2

Agona 1,4,[5],12:f,g,s:[1,2] �:f,g,s:�
Bareilly 6,7,14:y:1,5 �:y:1,5
Derby 1,4,[5],12:f,g:[1,2] �:f,g:�
Enteritidis 1,9,12:g,m:� �:g,m:�
Infantis 6,7,14:r:1,5 �:r:1,5
Mbandaka 6,7,14:z10:e,n,z15 �:z10:e,n,z15
Paratyphi B var. Java 1,4,[5],12:b:1,2 �:b:1,2
Virchow 6,7,14:r:1,2 �:r:1,2
Typhimurium 1,4,[5],12:i:1,2 �:i:1,2
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biphasic in concordance with the laboratory serotyping result by all tools except MOST,
about 32 isolates received a divergent result by at least one tool. These erroneous
results could be classified into the false-positive detection of the second flagellum
antigen (monophasic laboratory result and biphasic in silico typing result) and into the
false-false failure to detect the second antigen when laboratory serotyping verified its
presence (biphasic laboratory result and monophasic in silico typing result). Interest-
ingly, no false-false errors could be attributed to any of the antigen-mapping-based
methods as implemented in SeqSero, SeqSero2, and SISTR antigen, which reliably
detected the presence of the second H antigen. In contrast, non-mapping-based
methods, such as SISTR mash and cgMLST, wrongly classified a number of biphasic
Typhimurium isolates (�10 isolates) as monophasic variants. These erroneous assign-
ments are caused by the high overall similarity of these isolates to a monophasic
reference genome with the antigenic formula I 4,[5],12:i:�, as was also reported by
Yachison and colleagues (15). This error is of particular importance given that SISTR
assigns the cgMLST result as the overall serotyping result whenever the cgMLST
distance from the closest reference genome is very small (less than 0.05). Of course, the
same mechanism potentially causes the classification of monophasic isolates with a
small cgMLST distance from a biphasic reference genome as biphasic, as was observed
in a few cases in this study (e.g., isolate 14-SA01066). False-positive results in which
mapping-based tools predicted the presence of the second flagellum antigen but labora-
tory testing determined the monophasic variant can be attributed to the fact that this
antigen is not always expressed and, therefore, it is often undetectable in the laboratory.
This was verified by confirming the presence of the second H antigen in the genome
sequence through BLAST for about 15 isolates. For a small number of these, BLAST revealed
a truncated H antigen of �500 bp (the full gene length is �1,500 bp).

(ii) GC bias negatively affects O antigen recognition. SeqSero and SeqSero2
failed to determine the O antigen for a considerable number of isolates for which the
O antigen could be detected through serological laboratory testing. Isolates were not
equally affected throughout the sample set, and the problem mainly affected the
serovar prediction of nine S. enterica serovars that can be divided into three groups by
their O antigen: group O:4 (B): 1,4,[5] (serovars Agona, Derby, Paratyphi B var. Java, and
Typhimurium); group O:7 (C1): 6,7,14 (serovars Bareilly, Infantis, Mbandaka, and Vir-
chow), and group O:9 (D1): 1,9,12 (serovar Enteritidis), as shown in Table 2.

SeqSero2 in allele mode was most susceptible to missed O antigens and failed to
recognize the O antigen for a total of 113 isolates. Of those isolates, SeqSero was unable
to determine the O antigen for 41 isolates, while SeqSero2 in k-mer mode was more
successful, only missing the O antigen for 21 isolates. Due to the fact that MOST
exclusively and SISTR optionally infer the serovar from sequence types, missed O
antigens were not apparent from the SISTR and MOST overall prediction results.
However, SISTR alerts the user with a warning whenever it is unable to determine the
wzx/wzy genes through H antigen mapping. All three tools (SISTR, SeqSero, and
SeqSero2) perform a nucleotide BLAST search for the wzx/wzy genes, utilizing the result
of whichever gene gives the best (highest-scoring) BLAST result. From the SISTR
documentation, it is clear that if both give an equally good match, then the result from
the wzx gene is preferred. Over the complete sample set, SISTR classified 312 isolates
(19.2%) as missing the wzx/wzy gene sequences. Unlike SeqSero and SeqSero2, SISTR
does not assign the antigen from the highest scoring BLAST result but instead deter-
mines the respective serogroup, from which it then infers the O antigen through a
lookup table. Therefore, whenever SISTR is unable to detect the O antigen sequence
through alignment of contigs, it produces an antigen result with all possible serogroup
combinations, leading to the observed high number of inconclusive results for the
SISTR antigen subresult.

Zhang and colleagues (3) first observed isolates with no or few reads with homology
to the rfb cluster while validating the performance of SeqSero, but the study did not
find a mechanistic explanation for this artifact. Later, Yachison and colleagues (15), who
also noted the failure of O antigen recognition, reported that the O antigen locus
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features increased fragmentation, which together with a single size selection for insert
sizes above a 500-bp minimum, removes the smaller fragments of the O antigen locus
from the genomic library (generated with the Nextera XT DNA library preparation kit in
this study), thus removing these sequences from the final sequencing data. According
to Yachison et al. (15), this causes the rfb region to be split over two contigs during
genome assembly, thus impeding rfb cluster recognition by in silico tools (in the study
by Yachison et al. [15], both SISTR and SeqSero were run on assembled draft genome
sequences).

Of the sample set used in our study, more than half of all isolates (59%, n � 955)
were processed with the Nextera XT DNA library preparation kit (XT kit), while the
remaining 41% of isolates (n � 669) were processed with the Nextera DNA Flex library
preparation kit (Flex kit). Thus, our sample set afforded us an opportunity to compare
the effect of the choice of library preparation kit on the number of incorrect results.

We noted that all isolates for which the O antigen could not be determined by
SeqSero or SeqSero2 and those which were flagged by SISTR with the missing O
antigen warning were processed with the XT kit (Table 3). We subsequently analyzed
the number and coverage of trimmed reads mapped against the SISTR O antigen
sequence database and found that sequencing data derived from isolates prepared
with the XT kit contained fewer reads with lower coverage of the rfb cluster, as shown
in Fig. 2.

TABLE 3 Comparison of the numbers of isolates of different S. enterica serovars for which in silico serotyping tools failed to determine
the O antigen and the library preparation kits with which isolates were sequenced

O antigen detection result Serovar Library kita No. of isolates with resultb

Detected Agona Flex 28
Agona XT 24
Bareilly Flex 1
Bareilly XT 1
Enteritidis Flex 236
Enteritidis XT 71
Infantis Flex 46
Infantis XT 40
Mbandaka Flex 4
Mbandaka XT 28
Paratyphi B var. Java Flex 11
Paratyphi B var. Java XT 66
Typhimurium Flex 48
Typhimurium XT 135
Typhimurium monophasic (1,4,[5],12:i:�) Flex 53
Typhimurium monophasic (1,4,[5],12:i:�) XT 115

SISTR O antigen detection warningc Agona XT 11
Enteritidis XT 53
Infantis XT 30
Mbandaka XT 6
Paratyphi B var. Java XT 40
Typhimurium XT 20
Typhimurium monophasic (1,4,[5],12:i:�) XT 17

SeqSero and/or SeqSero2 failed to detect O antigen Agona XT 5
Bareilly XT 3
Enteritidis XT 2
Infantis XT 40
Mbandaka XT 24
Paratyphi B var. Java XT 13
Typhimurium XT 10
Typhimurium monophasic (1,4,[5],12:i:�) XT 7
Virchow XT 3

aFlex kit, Nextera DNA Flex library preparation kit; XT kit, Nextera XT DNA library preparation kit, both Illumina.
bNumbers of isolates of S. enterica serovars are as follows: Agona (n � 68), Bareilly (n � 5), Enteritidis (n � 362), Infantis (n � 156), Mbandaka (n � 62), Paratyphi B var.
Java (n � 130), Virchow (n � 3), Typhimurium (n � 213), and Typhimurium monophasic (1,4,[5],12:i:�) (n � 192).

cThe SISTR O antigen detection warning is as follows: “Wzx/Wzy genes missing. Cannot determine O antigen group/serogroup. Cannot accurately predict serovar from
antigen genes.”
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Sample preparation for whole-genome sequencing assumes that genomic DNA
break points are random and sequence independent to produce overlapping frag-
ments. Unfortunately, enzyme-based DNA fragmentation often features sequence bi-
ases. According to Illumina, the producer of both library preparation kits used in this
study, the enzymatic chemistry of the Flex kit is very different from that of the XT kit.
Therefore, it is likely that there is a bias introduced into the sequencing libraries by the
enzymes used in the XT kit, which were later modified in the Flex kit. We suspect that
the bias is caused by base composition. Both the wzx and the wzy gene sequence have
a considerably lower GC content (�29.5%) than the average Salmonella species open
reading frame (�52.6%). To test our hypothesis, we mapped the reads of four Infantis
isolates (two of which were sequenced with the XT kit and two with the Flex kit) against
a reference genome and correlated the normalized read depth against the GC content.
We observed that across regions with low GC content, such as the wzy locus, the
normalized read depth was decreased for isolates sequenced with the XT kit, while no
direct correlation was apparent for those sequenced with the Flex kit, as shown by the
results in Fig. 3a. To verify this effect across the whole genome, we calculated the global
GC bias using Benjamini’s method (17) with the deepTools computeGCBias function
(18). The results presented in Fig. 3b show that the sequencing data of isolates
processed with the XT kit have a strong GC bias, while no similar GC bias is apparent
for those sequenced with the Flex kit. Overall, from our results, it is clear that the use
of the Flex kit is favorable for O antigen detection.

Nomenclature. There were some major differences in how the different tools
employed serovar names, which were standardized prior to the analysis to avoid
false-negative results. For example, SISTR denoted S. enterica serovar Typhimurium
monophasic consistently with its seroformula I 4,5,12:i:�, while SeqSero and SeqSero2
used the term “potential monophasic variant of Typhimurium.” Furthermore, MOST
designated S. enterica serovar Goldcoast as “Gold-Coast” and S. enterica serovar Bovis-
morbificans as “Bovis-Morbificans.” In addition, SeqSero employed the seroformula
61:k,1,5 for S. enterica serovar IIIb 61:k:1,5,(7). This clearly points to the fact that the
underlying databases need to be improved and updated.

Computing time. We allocated one central processing unit (CPU) on a high-
performance computer with 2 terabytes (Tb) of random access memory (RAM) to the
serotype predictions and measured the time necessary for computing the serotype

FIG 2 Quality parameters of reads mapped against the O antigen sequence. Trimmed reads of all 1,624
isolates were mapped with SRST2 (27) against the O antigen sequence database of SISTR (containing
both the wzx and the wzy gene sequences). Only the best-scoring match was considered for each isolate.
Quality parameters (number of reads mapped and percent coverage) for all respective best-scoring
matches were extracted, statistically evaluated, and visualized in box plots. Results are divided into four
categories (A to D) depending on whether the in silico serotyping tools could successfully determine the
O antigen from the sequencing data and which library kit was used; the fill colors indicate the library kit
with which the respective isolates were sequenced (Flex kit, Nextera DNA Flex library preparation kit; XT
kit, Nextera XT DNA library preparation kit [both Illumina]). The number of isolates per category is given
in the key.
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results for a representative selection of 5 isolates (S. enterica serovars Agona, Enteritidis,
Infantis, Bovismorbificans, and IIIb 61:k:1,5,7). The results are shown in Table S5. The
different tools varied greatly in the time they took for calculations. SeqSero2 in k-mer
mode was by far the fastest tool, which on average only took �10 s per isolate. Also
very fast in terms of computing time was SISTR, which generally generated a serovar
prediction result in under 30 s (not taking into account the time needed to generate the
genome assembly). SeqSero2 in allele mode completed computations in under 4 min,
similarly to SeqSero, which was only slightly faster. MOST had the longest calculation
time and required �6 min per isolate on average.

Retesting results confirm in silico serotyping predictions. Sixteen isolates for
which the in silico serovar prediction varied from the laboratory serological test result
were retested to verify the correctness of either the experimental or the computed
result. Results for laboratory retesting are found in Table S6. In most cases, laboratory

FIG 3 (a) Correlation between GC content and read depth across the wzy locus. The colored line graphs (left y axis) display the read depths
of four serovar Infantis isolates mapped against a reference genome (strain NCTC6703; NCBI accession number NZ_LS483479.1). The gray
dashed line (right y axis) displays the GC content graph of the reference genome (the GC content was calculated with a perl script available
from https://github.com/DamienFr/GC-content-in-sliding-window- with a step size of 1 nucleotide). The position of the wzy gene is
highlighted with a gray box and was determined through BLAST of the reference genome against the SeqSero2 O antigen database (best
match, O-7_wzy_1080: 99.8% identity, 1,080 bp in length, 100% coverage, 2 mismatches). (b) The graph shows the normalized
observed/expected read counts per 300 bp across the whole genome. The GC bias was calculated using Benjamini’s method (17) with help
from the computeGCBias function of the deepTools package (18). The function counts the number of reads per GC fraction and compares
them to the expected GC profile, calculated by counting the number of DNA fragments per GC fraction in a reference genome. In an ideal
experiment, the observed GC profile would match the expected profile, producing a flat line at 0. The fluctuations on the ends of the x
axis are due to the fact that only a small number of genome regions have extreme GC fractions, so that the number of fragments that
are picked up in the random sampling can vary. The library kits with which the respective isolates were sequenced are indicated by line
colors in both figures (blue, Nextera XT DNA library preparation kit; red, Nextera DNA Flex library preparation kit [both Illumina]).
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retesting confirmed the in silico serotyping result, while remaining cases could be
traced to mislabeled isolate names, mixed cultures, and transcription and database
entry errors.

DISCUSSION

We determined Salmonella serotypes directly from short reads and assembled draft
genomes of 1,624 isolates using four different command-line in silico tools and com-
pared the serotype prediction results to those of laboratory serotyping performed by
slide agglutination. We found that any of the four in silico serovar prediction tools
tested was able to correctly and unambiguously determine the serovar of �79% of the
sample set. Overall, the Salmonella in silico Typing Resource (SISTR) produced the most
accurate and reliable serotyping results, correctly predicting the serovars of 94% of all
isolates, followed by SeqSero2 (87%), SeqSero (81%), and MOST (79%). Furthermore, all
in silico tools tested were able to determine the serovars of isolates that were non-
typeable with laboratory serological testing.

In comparison to other studies, we observed fewer correct matches for MOST than
did Ashton et al. (12), and we obtained fewer correct serovar predictions for SeqSero
and SeqSero2 than reported by Zhang and colleagues (3, 4). Interestingly, we obtained
more accurate results from SeqSero2 in k-mer mode than from the allele microassembly
mode, while Zhang and colleagues attribute a higher robustness to the microassembly
workflow of SeqSero2.

For SISTR, our study and that of Yoshida et al. (5) show similar numbers of correct
serovar predictions. Compared to the independent ENGAGE report (16), we observed
more correct serovar predictions for SISTR and SeqSero and fewer accurate results for
MOST. Naturally, serotyping comparisons are highly dependent on the compositions of
the respective sample sets, and none of the isolates from the ENGAGE study were
submitted for retesting, leaving the question open whether the original laboratory
serotyping result was correct. Another possible explanation for divergent results is that
sample sets used in different studies may have a geographical bias, since the preva-
lence of certain serovars varies by geographical region. For example, serovars common
to North America (e.g., S. enterica serovars Montevideo and Kentucky) were underrep-
resented in the current study, while serovars common to Europe (e.g., S. enterica
serovars Dublin and Senftenberg) were overrepresented (19).

As shown in the 22nd EURL-Salmonella interlaboratory comparison study (20), 35
national Salmonella reference laboratories were able to correctly determine the sero-
types of 98% of a diverse set of 20 Salmonella isolates through serological testing.
Therefore, the accuracy of in silico serotyping is still slightly behind that of laboratory
serotyping results, although SISTR achieved a comparably high percentage of correctly
typed isolates (94%).

When comparing the different in silico serotyping methodologies, we found that
although SISTR cgMLST and SISTR mash generally yielded more accurate and reliable
serovar predictions than antigen-mapping-based methods as employed by SeqSero,
SeqSero2, and SISTR antigen, antigen mapping was more reliable for serovars with
monophasic variations. For example, both SeqSero and SeqSero2 demonstrated greater
discriminatory power than SISTR and MOST in differentiating S. enterica serovar Typhi-
murium and its monophasic variants, for the reason that sequence types that contain
two or more serovars do not allow an unambiguous serovar assignment. Another often
discussed disadvantage of inferring serovar predictions from sequencing types is that
for isolates with a novel sequence type, no associated serovars are available in the
database and, therefore, no prediction can be obtained. For example, our sample set of
1,624 isolates contained 15 isolates with novel Achtman 7-gene sequence types, for
which MOST was unable to determine a serovar.

On the other hand, mapping-based methods often struggle with closely related
serovars that share the same antigenic seroformula but feature minor differences in
their O antigenic factors, such as S. enterica serovar Kottbus or Ferruch, as is apparent
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from the increased number of inconclusive matches that SeqSero, SeqSero2, and SISTR
antigen produced.

On a positive note, SISTR combines the advantages of cgMLST and individual
antigen detection, making it the most powerful and robust tool in our study. Interest-
ingly, the much simpler algorithm employed by SeqSero2 in k-mer mode was statisti-
cally just as successful as the more complex SISTR application. Combined with the
advantage that the SeqSero2 k-mer mode does not require an assembly step, thus
reducing the effect of genome assembly quality on serovar prediction, and that it had
the fastest overall computing time, this makes SeqSero2 in k-mer mode a viable and
interesting alternative to SISTR.

Finally, our study clearly demonstrates that variations in library preparation can have
significant effects on serotyping results, based on the potential of introducing GC bias
during the fragmentation step and subsequent size selection, which lead to depleted
reads for important antigen sequences. A known issue of mapping-based tools for the
recognition of the rfb cluster was solved through the use of the Nextera Flex DNA
library preparation kit.

Together, our results indicate that any of the four tools tested would be suitable for
replacing traditional laboratory serotyping, which is time and resource consuming,
labor intensive, and can be limited by the nonexpression of surface antigens. In
contrast, in silico serotyping is a rapid, efficient, inexpensive, and reproducible analysis
process. Command-line tools, such as those investigated in this study, can be inte-
grated into in-house analysis pipelines, automating serotyping and characterization
analysis and reducing potential errors introduced through sample labeling and manual
transcriptions.

One of the biggest drawbacks of in silico serotyping, the quality of the underlying
databases, will readily improve with larger and better curated data sets. This will also
improve the serovar prediction for the classification of S. enterica subspecies II to IV,
which is still a challenge, both for mapping-based and whole-genome-based methods,
for the reason that serovars from subspecies other than S. enterica subsp. enterica are
not well represented in the databases. Additionally, we would like to encourage the
standardization of serovar names for easy comparison of serovar predictions, perhaps
through ontology projects, such as GenEpiO and FoodOn (21, 22).

In conclusion, based on the results from our study, we plan to replace traditional
serotyping with serovar information obtained through WGS in our laboratory in the
near future. Finally, we deposited the complete sample set of this study into the NCBI
database, together with the verified serovar information, thus contributing valuable
data to the public repositories. We hope that, together with the data generated in
previous studies, our released sample set will contribute to the improvement of the
underlying databases needed for accurate in silico Salmonella serovar prediction now
and in the future.

MATERIALS AND METHODS
Study design. Illumina short-read sequencing data of 1,624 Salmonella isolates was used to evaluate

the performance of four in silico Salmonella serotype prediction tools: SeqSero, SeqSero2, SISTR, and
MOST. Serovar names were standardized through manual curation, and results were compared to
laboratory serotyping results and categorized as full, inconclusive, incongruent, or incorrect matches in
keeping with the methodology of Yachison and colleagues (15), as shown in Table 4. Comparison and
statistical evaluation of the results were conducted with a customized R script.

Study isolates. 1,624 Salmonella isolates that were submitted to the German National Salmonella
Reference Laboratory were included in this analysis. The National Reference Laboratory receives, on
average, 3,500 to 4,000 Salmonella species isolates from nonhuman sources for routine analysis yearly.
Of those, about 10 to 20% are chosen for whole-genome short-read sequencing as part of outbreak
investigations and for additional study purposes. Therefore, the isolates included in this study realistically
represent serovars from both animals and foodstuffs submitted to the Reference Laboratory between the
years 1999 and 2019. Consequently, the resulting sample set of 1,624 Salmonella enterica isolates is
biased toward the most commonly occurring, public health-relevant foodborne serovars occurring in
Germany, as shown in Fig. 4 (a full list of included serovars is given in Table S2 in the supplemental
material). Almost half of the complete sample set is made up of S. enterica serovar Typhimurium, together
with its monophasic variation (�25%), and S. enterica serovar Enteritidis (�22%). S. enterica serovars
Infantis (�10%) and Paratyphi B var. Java (�8%) are also well represented within the sample set, with
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over 100 isolates each. About 60 isolates each belong to S. enterica serovars Agona (4.2%), Mbandaka
(3.8%), and Derby (3.7%). Less frequently encountered serovars, such as S. enterica serovars Indiana,
Dublin, Choleraesuis, Newport, Senftenberg, Coeln, Saintpaul, and Orion (each with 10 or more isolates),
make up about 10% of the sample set. The remainder of the sample set (�10%) contains rarely
encountered serovars with just a small number or an individual isolate each. Among these are the S.
enterica serovars Agama, Ohio, Bareilly, Hadar, Kottbus, Mikawasima, Montevideo, Napoli, Schwarzengr-
und, Stourbridge, Brandenburg, Heidelberg, Livingstone, Rissen, Virchow, Bovismorbificans, Corvallis,
Give, Oranienburg, Anatum, Blockley, Bredeney, Glostrup, Hessarek, Idikan, Kedougou, Kentucky, and
Wagenia. Furthermore, 56 isolates from S. enterica subsp. IIIb, as well as individual isolates from S. enterica
subspecies II, IIIa, and IV and one Salmonella bongori isolate, were included in the analysis. In addition,
isolates which could not be typed in the laboratory were included as rough or nonmotile serovars (�3%).

Laboratory serotyping. All isolates used in this study were routinely serotyped according to the
White-Kauffmann-Le Minor scheme (23) by slide agglutination with O and H antigen-specific sera (Sifin
Diagnostics, Berlin, Germany). From 2015 onwards, all isolates serotyped as I 4,[5],12:i:� were additionally
confirmed as S. enterica serovar Typhimurium monophasic by real-time PCR (24).

Whole-genome sequencing and assembly. Bacteria were cultivated on LB agar. A single colony was
inoculated into liquid LB and cultivated under shaking conditions (180 to 220 rpm) at 37°C for 14 to 16 h.
Genomic DNA was extracted from liquid cultures using the PureLink genomic DNA minikit (Invitrogen,
Carlsbad, CA, USA). Sequencing libraries were prepared with the Nextera XT DNA library preparation kit
or the Nextera DNA Flex library preparation kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s protocol. Paired-end sequencing was performed on the Illumina MiSeq benchtop se-
quencer using the MiSeq reagent kit version 3 (600 cycle) or on the Illumina NextSeq 500 benchtop

TABLE 4 Categories for classifying results as full, inconclusive, incongruent, or incorrect matches, in keeping with the methodology of
Yachison and colleagues (15)

Match category Description

Example of result(s) by:

Laboratory
serotyping In silico prediction

Full Serovar prediction concordant with traditional typing result Agona Agona
Inconclusive Partial/incomplete serovar prediction or several possible serovars

indicated
Senftenberg Senftenberg or

Dessau
Incongruent Serovar prediction incongruent with traditional typing results due to

antigen genes not being expressed
Rough, nonmotile Paratyphi B var. Java

Incorrect Serovar prediction incorrect with respect to traditional typing results Typhimurium Infantis
No result In silico tool did not produce a serotype prediction, i.e., serovar

name or seroformula
Mbandaka None

FIG 4 Graphical representation of the composition of the sample set by serotypes. The pie chart shows
the composition of the analyzed sample set of 1,624 isolates grouped by serotypes as determined
through serological testing. Isolates that could not be typed in the laboratory are listed in the category
“rough/nonmotile.”
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sequencer using the NextSeq 500/550 midoutput kit version 2 or version 2.5 (300 cycle). Raw reads were
trimmed using fastp version 0.19.5 (25) and de novo assembled using unicycler version 0.4.4 (26).

In silico serotyping. Descriptions of tools and parameters used to obtain the serotype prediction
results are given in Table S1.

Data availability. Sequencing data for all isolates analyzed in this study have been deposited in the
NCBI Sequence Read Archive (SRA) under BioProject accession numbers PRJEB31846, PRJEB23094,
PRJEB30118, PRJEB16326, and PRJEB30493.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.7 MB.
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