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Abstract

Background

We recently reported a novel observation that many patients with equal resting supine right

ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract

(RVOT) pressure gradient during upright exercise. The current work details the characteris-

tics of patients who develop such an RVOT gradient.

Methods

We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive car-

diopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined

by the simultaneously measured peak-to-peak difference between RV and PA systolic

pressures.

Results

The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings

suggestive of right heart failure; rather, higher gradients were associated with favorable

exercise findings. The presence of a high peak RVOT gradient (90th percentile,�33mmHg)

was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9

years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001),

higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak car-

diac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when
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treating peak RVOT as a continuous variable and after age and sex adjustment. At peak

exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure

(78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg,

p<0.001).

Conclusions

Development of a systolic RV-PA pressure gradient during upright exercise is not associ-

ated with an adverse hemodynamic exercise response and may represent a normal physio-

logic finding in aerobically fit young people.

Introduction

Fixed right ventricular outflow (RVOT) obstruction, such as seen with pulmonary valve steno-

sis, causes a systolic pressure gradient between the right ventricle (RV) and pulmonary artery

(PA). Clinically significant dynamic RVOT obstruction is thought to be uncommon, but has

been described in a subset of patients after cardiac surgery or after lung transplantation [1–3].

RVOT obstruction can cause right heart failure, though mild or moderate degrees of obstruc-

tion are often clinically well tolerated. Even in the face of adequate compensation, however,

the presence of a pressure difference between the RV and PA during systole confounds echo-

cardiographic estimation of PA pressures based on tricuspid regurgitation flow velocity using

the simplified Bernoulli equation, which assumes RV and PA pressures are equal [4]. This is

important, since echocardiographic assessment of pulmonary hemodynamics during exercise

is an increasingly common and accepted part of clinical practice [5–9], particularly in specific

patient subsets such as congenital heart disease and rheumatologic disease [10–15].

Dynamic left ventricular outflow tract obstruction has been extensively investigated, mainly

in the context of hypertrophic cardiomyopathy [16], but this phenomenon can also occur with

reduced preload [17, 18], increased contractility [19] and Takotsubo cardiomyopathy [20].

Considered anatomically, the RVOT would seem more susceptible to dynamic muscular

obstruction given the presence of a circumferential, muscular, contractile infundibulum in

contrast to the partly fibrous, non-contractile left ventricular outflow. Obstruction to RV ejec-

tion might be expected to impede flow from the RV to PA and cause right heart failure:

decreased cardiac output and increased right heart filling pressures.

We recently presented data suggesting that a substantial number of patients without a rest-

ing RV-to-PA gradient develop a substantial pressure gradient across the RVOT during

upright exercise despite an absence of specific types of structural or congenital heart disease

[21]. Whether such dynamic pressure gradients are associated with disadvantageous hemody-

namics, such as elevated right heart filling pressure or reduced cardiac output, are unknown.

The current study presents hemodynamic and metabolic characteristics corresponding to the

development of an RV-to-PA pressure gradient during exercise.

Methods

Study sample and design

We studied consecutive patients with unexplained exertional intolerance referred to the Dys-

pnea Clinic at Brigham and Women’s Hospital who underwent resting supine right heart cath-

eterization followed by upright invasive symptom-limited cardiopulmonary exercise testing

Exercise RVOT gradient hemodynamics
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between May 2012 and May 2015. We excluded patients without RV pressure tracings during

exercise (i.e., alternative catheter used or RV port located in right atrium [RA], n = 296) and

those with a supine resting RVOT gradient >10mmHg (n = 16, 6 with known pulmonary

valve stenosis). The Partners Human Research Committee approved this retrospective study

and waived the requirement for informed consent (protocol #2011P000272).

Right heart catheterization and exercise

Testing was performed as previously described [22]. A flow-directed, balloon-tipped, 4-port

pacing PA catheter (Swan-Ganz Pacing-TD Catheter, Edwards Lifesciences, Irvine, CA, USA)

was positioned into a branch PA and a radial artery line was also placed. Systemic arterial, RA,

RV, PA, and PA wedge (PAWP) pressures were measured with a hemodynamic monitoring

system (Xper Cardio Physiomonitoring System, Philips, Andover, MA, USA) calibrated before

each study. Pressure measurements were taken at the end of a passive exhalation; when respir-

ophasic variation persisted despite attempted passive exhalation, the electronic average over 3

respiratory cycles was used. The pressure transducer was leveled 5 cm below the axillary fold

in the mid axillary line. We repeated manual measurement of all hemodynamic tracings in a

subset (n = 17) for quality control. For PA systolic pressure at rest and at peak exercise,

r = 0.97 (bias = 2.4±3.0 mmHg) and r = 0.98 (bias = -0.4±3.9 mmHg), respectively. For RV sys-

tolic pressure, r = 0.97 (bias = -0.1±2.5 mmHg) and r = 0.96 (bias = -2.4±4.1 mmHg) at rest

and peak exercise, respectively.

All exercise tests were performed on an upright cycle ergometer with the patient breathing

room air. After 2 minutes of rest followed 3 minutes of unloaded cycling at 55–65 rpm, work

rate was then continuously increased until limited by symptoms. Breath-by-breath pulmonary

gas exchange and minute ventilation (VE) were measured using a commercially available meta-

bolic cart (Ultima CPX, MGC Diagnostics, St. Paul, MN, USA). VE, inspired and expired O2

and CO2 concentrations, heart rate, radial arterial pressure, RA pressure, RV pressure, and PA

pressure were measured continuously; PAWP was obtained at rest and once each minute of

exercise. RVOT gradient was calculated supine, upright at rest and upright at peak exercise as

the difference between RV and PA systolic pressures, measured simultaneously from the

respective catheter ports.

Statistical analysis

Categorical data are expressed as number with percentages, while continuous variables are

reported as mean±standard deviation or median [25th-75th percentile] as appropriate for dis-

tribution. The cohort was divided into 2 groups using a cutoff at the 90th percentile of RVOT

gradient at peak exercise (�33mmHg). Receiver-operating characteristic (ROC) curves

were constructed to determine the diagnostic accuracy of systolic RV versus systolic PA pres-

sure to identify an abnormal PA pressures response, defined as peak mean PA pressure

(mPAP) >30mmHg [23, 24]. Optimal cut-points were identified using the Youden index. We

repeated this analysis using a more comprehensive definition of abnormal pulmonary vascular

response, peak mPAP>30mmHg and peak PVR>120 dynes�sec�cm-5. Predicted peak VO2

was estimated using published equations[25]. Continuous variables were compared between

groups with the Student’s unpaired t-test for normally distributed variables and Mann-Whit-

ney U test for non-normally distributed variables. Categorical variables were compared

between groups using Fisher’s exact test. Pearson correlation analysis was performed to deter-

mine correlation between peak RVOT gradient and clinical and physiological variables. Multi-

variable linear regression, adjusting for age and sex, was used to identify independent

predictors of development of increased RVOT gradient. We used linear regression using

Exercise RVOT gradient hemodynamics
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stepwise selection (p-value <0.10 was set for both entry to and retention in the model) to iden-

tify key clinical, demographic, or resting hemodynamic variables predictive of peak RVOT gra-

dient. This procedure was repeated with the addition of peak exercise response variables using

the same model building approach. The variables considered for inclusion in these models are

listed in S1 Table.

Statistical analyses were performed using SPSS Statistics 23.0 (IBM, Chicago, IL, USA), SAS

9.3 (SAS Institute, Cary, NC, USA) and GraphPad Prism version 5.01 for Windows (GraphPad

Software, La Jolla, CA, USA). A 2-tailed P<0.05 was used as the criterion for statistical

significance.

Results

Demographics and clinical characteristics

The characteristics of the study sample are summarized in Table 1. There were 294 patients

included in the analysis, 49% male with mean age of 59.7±15.5 years. Hypertension (49%), dys-

lipidemia (43%) and obesity (37%, body mass index�30 kg/m2) were common. Average peak

VO2 was 17.1±7.8 mL/kg/min, or 74.8±23.3% predicted. Peak respiratory exchange ratio aver-

aged 1.13, consistent with maximal exercise effort.

Dynamic RVOT gradient with upright posture and during exercise

Supine resting RVOT gradient was negligible (mean 1.6±3.6 mmHg, median 2 [-1-4]; 90th per-

centile 6 mmHg), but there was on average a modest systolic gradient between the RV and PA

at rest while upright (mean 8.8±5.5 mmHg, median 9 [5–12]; 90th percentile 16 mmHg). At

peak exercise, the average RVOT gradient was 18.7±11.2 mmHg (median 18 [11–25]; 90th per-

centile 33 mmHg). Peak exercise RVOT gradient was only modestly correlated with supine

resting RVOT gradient (r2 = 0.14, p<0.001; Fig 1A), upright resting RVOT gradient (r2 = 0.24,

p<0.001; Fig 1B), and change in resting RVOT gradient from the supine to upright position

(r2 = 0.11, p<0.001; Fig 1C). Neither supine RVOT gradient nor change in gradient with posi-

tion was independently associated with peak exercise gradient after adjustment for upright

resting gradient.

Among patients with a peak RVOT gradient at or above the 90th percentile (�33 mmHg,

referred to as a high RVOT gradient, n = 33), the mean gradient was 39.1±6.7 mmHg at peak

exercise, while it averaged 16.1±8.7 mmHg among the other 261 patients (Table 1). Patients

with a high RVOT gradient were younger (43.6±17.7 vs. 61.8±13.9 years, p<0.001), more likely

to be male (70% vs. 46%, p = 0.01) and had lower body mass index (25.9±4.8 vs. 29.3±6.6 kg/

m2, p = 0.004) than those with peak RVOT gradient <33 mmHg. To provide a better under-

standing of differences in baseline characteristics independent of the important differences in

sex and age, we used linear regression to adjust for these variables. While those with high

RVOT gradients were also taller with higher forced expiratory volume in 1 second and hemo-

globin concentration, had higher peak RER, were less likely to have hypertension or diabetes

mellitus, and less likely to be taking cardiovascular medications, these associations appeared to

be related to the different age and sex distribution between groups (Table 1, right column).

Resting hemodynamics

Hemodynamic data at upright rest and peak exercise are presented in Table 2. Patients with a

high exercise RVOT gradient had higher resting cardiac index (3.1±0.9 vs. 2.5±0.8 L/min/m2,

p<0.001) in the context of higher stroke volume (84±36 vs. 68±24 mL, p<0.001), and similar

heart rate (p = 0.48)(Fig 2). The higher cardiac index and stroke volume were accounted for by

Exercise RVOT gradient hemodynamics
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Table 1. Demographic and clinical characteristics of the study sample.

Total

n = 294

RVOT gradient at peak, stratified by: p value adjusted

p value*< 33 mmHg

n = 261

� 33 mmHg

n = 33

Demographics and anthropometrics

Male sex 144 (49) 121 (46) 23 (70) 0.01 -

Age [years] 59.7±15.5 61.8±13.9 43.6±17.7 <0.001 -

Height [cm] 171.3±9.9 170.5±9.8 176.9±9.5 <0.001 0.29

Weight [kg] 85.1±21.1 85.6±21.7 81.1±16.0 0.26 0.06

BSA [m2] 1.97±0.25 1.96±0.26 1.98±0.21 0.79 0.16

BMI [kg/m2] 29.0±6.5 29.3±6.6 25.9±4.8 0.004 0.02

Clinical characteristics

Hemoglobin [g/dL] 13.8±1.9 13.6±1.8 15.0±1.5 <0.001 0.05

FEV1 [% predicted] 82.2±21.8 80.8±22.0 93.2±17.6 0.002 0.07

FVC [% predicted] 83.3±20.3 81.9±20.2 94.3±18.1 0.001 0.09

FEV1 / FVC 0.77±0.1 0.76±0.1 0.8±0.08 0.04 0.54

Peak Work rate [W] 108±83 99±80 179±71 <0.001 0.21

Peak RER 1.13±0.13 1.12±0.13 1.2±0.09 0.001 0.14

Peak VO2 [% predicted] 74.8±23.3 72.6±20.7 92.4±33.8 0.002 <0.001

Peak VO2 [ml/kg/min] 17.1±7.8 15.8±6.4 27.2±9.8 <0.001 <0.001

Cardiovascular risk factors and history

Hypertension 143 (49) 136 (52) 7 (21) 0.001 0.22

Dyslipidemia 125 (43) 117 (45) 8 (24) 0.02 0.68

Diabetes mellitus 42 (14) 41 (16) 1 (3) 0.06 0.25

Current tobacco use 3 (1) 3 (1) 0 1.00 1.00

CABG 21 (7) 21 (8) 0 0.15 1.00

PCI 33 (11) 33 (13) 0 0.04 1.00

Valvular disease 30 (10) 28 (11) 2 (6) 0.55 0.82

Medication

Acetylsalicylic acid 95 (32) 91 (35) 4 (12) 0.01 0.21

Diuretic 89 (30) 85 (33) 4 (12) 0.02 0.44

Beta blocker 88 (30) 84 (32) 4 (12) 0.02 0.54

ACE inhibitor or ARB 59 (20) 57 (22) 2 (6) 0.03 0.12

Calcium channel blocker 54 (18) 51 (20) 3 (9) 0.14 0.48

Diagnosis**

Exercise HFpEF 40 (14) 39 (15) 1 (3) 0.06 0.17

Exercise pulmonary hypertension 76 (26) 75 (29) 1 (3) <0.01 0.06

Isolated low venous filling pressures 59 (20) 44 (17) 15 (45) <0.01 0.09

Impaired peripheral oxygen extraction 35 (12) 31 (12) 4 (12) 1.0 0.60

Demographic and clinical characteristics for the overall study cohort and stratified by the 90th percentile of peak right ventricular outflow tract (RVOT)

gradient, 33 mmHg. Data are presented as mean ± SD or n (%). Data on age, sex, and peak VO2 for those with and without an RVOT gradient, as well as

BMI and the prevalence of hypertension, dyslipidemia, CABG, PCI and beta-blocker use in the overall cohort have been previously published.[21]

*Multivariable logistic regression, adjusted for age and sex.

**Primary diagnosis based on invasive cardiopulmonary exercise test findings in the context of other clinical data. The most common primary

hemodynamic diagnoses are provided; less frequent diagnoses, some of which may exist in conjunction with the primary diagnoses listed, are not

presented including a pulmonary mechanical limit, chronotropic incompetence, heart failure with reduced ejection fraction, hyperventilation, systemic

hypoxemia, and anemia. Likewise omitted are patients with mixed disease (e.g., peak pulmonary capillary wedge pressure >20mmHg and also peak

pulmonary vascular resistance >160 dynes.s.cm-5). Isolated low venous filling pressure was defined as peak right atrial pressure <6mmHg in the absence of

another listed diagnosis. Other diagnoses are defined as described elsewhere [22].

ACE—angiotensin-converting enzyme; ARB—angiotensin receptor blocker; BMI—body mass index; BSA—body surface area; CABG—coronary artery

bypass graft; FEV1 —forced expiratory volume in 1 second; FVC—forced vital capacity; HFpEF—heart failure with preserved ejection fraction; PCI—

percutaneous coronary intervention; RER—respiratory exchange rate.

https://doi.org/10.1371/journal.pone.0179053.t001
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the underlying differences in age and sex (linear regression adjusting for age and sex presented

in the right most column of Table 2). Resting right atrial pressure was lower in those who

developed high exercise RVOT gradient (median 0 [IQR 0–4] vs. 3 [IQR 1–6] mmHg), as was

PAWP (median 4 [IQR 3–8] vs. 8 [IQR 5–11] mmHg) (p<0.001 for both). Resting pulmonary

pressure was also lower at rest (mPAP 12.3±3.6 vs. 18.0±7.4 mmHg, p<0.001), due to both

lower PAWP and lower pulmonary vascular resistance (100±40 vs. 172±98 dynes�s�cm-5,

p<0.001). There was no statistically significant difference between groups in resting systolic

RV pressure (p = 0.39).

Hemodynamics at peak exercise

The hemodynamic pattern at peak exercise was largely, though not entirely, similar to the rest-

ing findings. Those with high exercise RVOT gradient had higher peak cardiac index (8.3±2.3

vs. 5.7±1.9 L/min/m2, p<0.001), in the context of both higher peak heart rate (159±19 vs. 124

±26 bpm, p = 0.001) and stroke volume (104±25 vs. 91±26 mL/beat, p<0.001). The higher

stroke volume was related to differences in age and sex, while the relationship between higher

heart rate and higher RVOT gradient persisted after adjustment for these covariates (Table 2).

Furthermore, both RA pressure and PAWP remained significantly lower during exercise in

the high RVOT gradient group, as did pulmonary vascular resistance. Importantly, mPAP

remained lower in the high RVOT gradient group at peak exercise and there was no difference

between those who did and did not develop a high RVOT gradient in the change in mPAP

during exercise (+13.8±4.7 vs. +15.4±8.1 mmHg, p = 0.11). RV systolic pressure increased by

45.6±11.4 mmHg in patients with high RVOT gradient, but only 32.0±11.9 mmHg for the

patients with RVOT gradient <33mmHg at peak exercise (p<0.001).

Multivariable predictors of higher RVOT gradient

Multivariable linear regression identified several resting/baseline predictors of peak RVOT

gradient (Table 3, top section). The predictors which correlated most strongly with increased

peak exercise RVOT gradient included lower resting mPAP, younger age, and male sex. Other

variables associated with higher gradient were higher resting systolic blood pressure, not tak-

ing a beta-blocker medication, higher forced vital capacity, and higher resting heart rate.

When peak hemodynamic and other exercise variables were considered in addition to the

resting/baseline data, model performance improved and the strongest correlates of higher

Fig 1. Relationships between supine and upright resting right ventricular outflow tract (RVOT) gradient and peak exercise RVOT gradient.

Scatterplots of peak RVOT pressure gradient (i.e., RVSP-PASP) versus supine resting RVOT gradient (Panel A), upright resting RVOT gradient

(Panel B), and the change in RVOT pressure gradient between from supine to upright positions at rest (Panel C). In the small subset of cases where

resting RVSP-PASP was negative, the gradient was set to 0 mmHg. PASP—pulmonary artery systolic pressure; RVSP—right ventricular systolic

pressure.

https://doi.org/10.1371/journal.pone.0179053.g001
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Table 2. Association between resting and exercise hemodynamic variables a with peak RVOT gradient during upright cycle ergometry.

Total

n = 294

Peak RVOT gradient, stratified Peak RVOT gradient, continuous

< 33 mmHg

n = 261

� 33 mmHg

n = 33

p value Univariate Multivariate*

β p value p value

Resting hemodynamics, upright

Systolic BP [mmHg] 146±23 146±24 145±20 0.8 0.02 0.59 0.007

Diastolic BP [mmHg] 79±13 78±13 81±11 0.18 0.16 0.002 0.09

Stroke volume [mL] 69.2±26.1 67.6±24.4 84.1±35.5 0.001 0.04 0.09 0.7

Heart rate [bpm] 75±14 75±13 77±20 0.48 0.08 0.09 0.1

Cardiac output [L/min] 5.0±1.7 4.9±1.6 6.2±1.8 <0.001 1.09 0.005 0.97

Cardiac index [L/min/m2] 2.6±0.8 2.5±0.8 3.1±0.9 <0.001 2.24 0.004 0.54

Right atrial pressure [mmHg] 3 [0–6] 3 [1–6] 0 [0–4] <0.001 -1.09 <0.001 <0.001

PCW pressure [mmHg] 7 [4–11] 8 [5–11] 4 [3–8] <0.001 -0.82 <0.001 <0.001

Mean PA pressure [mmHg] 17.3±7.3 18±7.4 12.3±3.6 <0.001 -0.64 <0.001 <0.001

Systolic PA pressure [mmHg] 25±11.3 25.9±11.6 18.0±5.2 <0.001 -0.38 <0.001 <0.001

Systolic RV pressure [mmHg] 33.8±10.8 34±11.1 32.2±8.1 0.39 -0.16 0.009 0.18

PVR [dynes.s.cm-5] 164±96 172±98 100±40 <0.001 -0.03 <0.001 0.03

RVOT gradient [mmHg] 8.8±5.5 8.1±5.1 14.3±6.2 <0.001 1.01 <0.001 <0.001

Peak exercise hemodynamics

Systolic BP [mmHg] 180±38 179±37 184±45 0.48 0.06 0.001 0.003

Diastolic BP [mmHg] 82±18 82±17 86±20 0.17 0.14 <0.001 0.33

Stroke volume [mL] 92.6±25.8 91.4±25.7 103.7±24.5 0.02 0.08 0.003 0.99

Heart rate [bpm] 128±28 124±26 159±19 <0.001 0.24 <0.001 <0.001

Cardiac output [L/min] 11.8±4.3 11.3±3.9 16.6±4.4 <0.001 1.29 <0.001 <0.001

Cardiac index [L/min/m2] 6±2 5.7±1.9 8.3±2.3 <0.001 2.91 <0.001 <0.001

Right atrial pressure [mmHg] 7 [4–11] 8 [4–12] 5 [3–7] <0.001 -0.57 <0.001 <0.001

PCW pressure [mmHg] 14 [10–20] 14 [10–21] 12 [10–15] 0.04 -0.37 <0.001 0.001

Mean PA pressure [mmHg] 32.5±11.9 33.3±12.2 26.1±5.9 <0.001 -0.34 <0.001 <0.001

Systolic PA pressure [mmHg] 48.7±18.1 50±18.7 38.8±7.6 <0.001 -0.25 <0.001 <0.001

Systolic RV pressure [mmHg] 67.3±17.1 66±17.4 77.9±10.7 <0.001 0.15 <0.001 <0.001

PVR [dynes.s.cm-5] 134±98 140±101 78±41 <0.001 -0.04 <0.001 <0.001

RVOT gradient [mmHg] 18.7±11.2 16.1±8.7 39.1±6.7 <0.001 - - -

Change, rest to peak exercise

Stroke volume [mL] 23.3±24.9 23.7±23.9 19.5±33.2 <0.001 0.04 0.18 0.72

Heart rate [bpm] 53±26 49±24 82±20 0.41 0.26 <0.001 <0.001

Cardiac output [L/min] 6.8±3.8 6.4±3.5 10.4±4.2 <0.001 1.45 <0.001 <0.001

Cardiac index [L/min/m2] 3.4±1.8 3.2±1.7 5.2±2.2 <0.001 3.1 <0.001 <0.001

Right atrial pressure [mmHg] 4 [1–7] 4 [1–7] 3 [0–5] 0.13 -0.47 0.001 0.003

PCW pressure [mmHg] 7 [4–10] 7 [3–11] 7 [4–10] 0.51 -0.02 0.87 0.63

Mean PA pressure [mmHg] 15.2±7.8 15.4±8.1 13.8±4.7 0.11 -0.23 0.006 0.002

Systolic PA pressure [mmHg] 23.7±11.0 24.1±11.4 20.8±7.3 0.03 -0.26 <0.001 <0.001

Systolic RV pressure [mmHg] 33.5±12.6 32±11.9 45.6±11.4 <0.001 0.4 <0.001 <0.001

RVOT gradient [mmHg] 9.8±9.9 7.9±8.2 24.8±9.4 <0.001 0.98 <0.001 <0.001

Hemodynamic variables at rest, peak exercise, and change between rest and peak exercise are presented for the whole cohort and stratified according to

the 90th percentile of peak RVOT gradient, 33mmHg. Data are presented as mean ± SD or median [25th– 75th percentile] as appropriate for distribution.

Univariate linear regression coefficients are presented. The upright resting and peak RVOT gradients for the overall cohort (8.8 ± 5.5 mm Hg and

18.7 ± 11.2 mm Hg, respectively) have been published previously [21].

*Multivariable linear regression, adjusted for age and sex.

BP—blood pressure; PA—pulmonary artery; PCW—pulmonary capillary wedge pressure; PVR—pulmonary vascular resistance; RV—right ventricle;

RVOT—right ventricular outflow tract.

https://doi.org/10.1371/journal.pone.0179053.t002
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peak RVOT gradient were higher peak heart rate and lower peak mPAP (Table 3, bottom sec-

tion). Several other variables, including peak cardiac output and right atrial pressure, were

only weakly predictive of peak RVOT gradient after multivariable adjustment. Higher hemo-

globin concentration as well as both higher systolic and lower resting diastolic resting blood

pressure, were also associated with higher peak RVOT gradient, albeit quite modestly. As

Fig 2. Association between selected exercise hemodynamic variables and right ventricular outflow tract (RVOT) systolic pressure

gradient at peak exercise. Scatterplots showing the relationship of various peak exercise hemodynamic variables with RVOT systolic

pressure gradient at peak exercise. The best-fit linear regression line is plotted with 95% confidence intervals. Panel A—Peak cardiac index

versus peak RVOT gradient; Panel B—Peak RAP versus peak RVOT gradient; Panel C—Peak stroke volume versus peak RVOT gradient;

Panel D—Peak heart rate versus peak RVOT gradient. RAP—right atrial pressure; RVOT—right ventricular outflow tract.

https://doi.org/10.1371/journal.pone.0179053.g002
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importantly, when exercise variables were considered neither age nor sex remained an inde-

pendent predictor of RVOT gradient.

Sensitivity analyses

There was no apparent heterogeneity among demographic, hemodynamic or diagnostic sub-

groups in terms of the positive relationship between higher RVOT gradient at peak exercise

and greater peak VO2. These analyses included stratification by sex, age (by median value),

peak RAP (< vs.�7mmHg), peak PAWP (< vs.�21mmHg), peak arterial-venous O2 content

difference (< vs�90% of resting hemoglobin concentration), peak heart rate (< vs�85% pre-

dicted peak heart rate) and body mass index (< vs.�26 kg/m2). We further assessed for 2-way

interaction between peak RVOT gradient and each of these variables, as both continuous and

categorical variables. There were no statistically significant 2-way interactions. That is, there

Table 3. Multivariable predictors of peak RVOT gradient during upright cycle ergometry.

Baseline/Resting Variables Alone

Variable β coefficient P value Partial r2

Mean PAP, upright -0.48 <.0001 0.102

Age -0.19 <.0001 0.086

Sex, male 4.69 <.0001 0.071

SBP, rest 0.08 0.0004 0.046

Taking beta-blocker -4.15 0.0008 0.042

FVC, % predicted 0.08 0.01 0.025

Heart rate, rest 0.07 0.06 0.013

Baseline/Resting Plus Peak Exercise Variables

Variable β coefficient P value Partial r2

Peak HR 0.17 <.0001 0.164

mPAP, peak -0.37 <.0001 0.153

Cardiac output, peak 0.46 0.003 0.037

SBP, rest 0.09 0.003 0.036

PAWP, peak 0.31 0.003 0.036

[Hgb] 0.81 0.009 0.028

RAP, peak -0.28 0.02 0.023

DBP, rest -0.12 0.03 0.018

Top: A multivariable model of baseline predictors of the magnitude of RVOT pressure gradient with exercise,

continuous variable per mmHg. Variable selection was performed in a stepwise manner, with a p-value <0.1

required for both entry and retention in the model.

Use of a simpler forward selection approach with p for entry <0.1 resulted in inclusion of the same variables,

but with the addition of hemoglobin concentration in the model (for hemoglobin concentration, final p = 0.16

and partial r2 = 0.007).

Bottom: A multivariable model of independent correlates of development of an RVOT pressure gradient with

exercise, including both baseline/resting data and peak exercise variables. The same approach to model

selection was applied as for the resting model. Use of a simpler forward selection approach with p for entry

<0.1 produced the same result.

Variables considered for inclusion in both models are listed in S1 Table. Type II partial Pearson correlation

coefficients are also presented.

BPM—beats per minute; FVC—forced vital capacity; [Hgb]—hemoglobin concentration; PAWP—pulmonary

artery wedge pressure; mPAP—mean pulmonary artery pressure; PVR—pulmonary vascular resistance;

RAP—right atrial pressure; S/DBP—systolic/diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0179053.t003
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was no indication that higher RVOT gradient may be related to worse aerobic capacity in any

subset.

Relationship between pulmonary artery and right ventricular pressure

response

As noted in our prior report [21], there was a close relationship between invasively measured

systolic and mean PA pressure at peak exercise (r2 = 0.88, Fig 3A). Due to the presence of a var-

iable pressure gradient across the RVOT during exercise, RV systolic pressure systematically

overestimated systolic PA pressure or mean PA pressure (r2 = 0.63 and r2 = 0.57, respectively;

Fig 3B and 3C). Half (n = 147) of the patients demonstrated an abnormal pulmonary pressure

response during exercise, defined as peak mPAP >30 mmHg. Almost all patients with a

hypertensive pulmonary pressure response also had elevated RV systolic pressure (99%,

n = 145/147 >50mmHg). However, many patients with normal exercise PA pressure also

had elevated RV systolic pressure at peak exercise (>50mmHg in 75%, >60mmHg in 37%,

and>70mmHg in 15.6%).

Receiver operating characteristic analysis identified optimal cutoff points for RV systolic

pressure and PA systolic pressure for an abnormal pulmonary pressure response during

exercise (mPAP>30 mmHg). PA systolic pressure >43 mmHg provided sensitivity and

specificity of 93% and 84%, respectively, to identify abnormal mPAP response (AUC = 0.97,

95% CI 0.95–0.98) (Fig 4, blue dashed-dotted line). Systolic RV pressure was less predictive; a

value >61 mmHg had sensitivity and specificity of 84% and 63%, respectively (AUC = 0.82,

95% CI 0.77–0.87)(Fig 4, red solid line). To provide context, both resting supine right heart

catheterization PA systolic and RV systolic pressures (Fig 4, AUC = 0.86 and 0.83, respectively)

were at least as predictive of abnormally elevated peak exercise mPAP. Both PA and RV sys-

tolic pressure were modestly less predictive when a more comprehensive definition of abnor-

mal pulmonary vascular response was used (peak mPAP>30mmHg and peak PVR>120

dynes�sec�cm-5, n = 82); for PA systolic pressure and RV systolic pressure, AUC were 0.92 and

0.76, respectively.

Discussion

We recently reported that a subset of patients referred for invasive evaluation of effort intoler-

ance develop a pressure gradient across the RVOT during upright exercise, despite the absence

of a resting gradient or known anatomic reason for dynamic obstruction [21]. That brief

report, from the same cohort included in the present analysis, noted that the presence of an

RVOT gradient was more common in younger, male patients and was associated with higher

peak VO2. The current paper further describes clinical, hemodynamic and metabolic features

associated with the development of such a gradient. Most importantly, the existence of an exer-

cise RVOT gradient was not accompanied by clinical or hemodynamic features of right heart

failure. In fact, the converse was seen: a high RVOT gradient during exercise was associated

with low biventricular filling pressures, more robust cardiac output response, and higher peak

VO2. These findings suggest that a pressure difference between the RV and PA may represent

a newly appreciated but possibly normal hemodynamic response to exercise in well-condi-

tioned young people. Confirmation of that hypothesis will require validation in independent

cohorts of healthy people.

We can only speculate as to a possible functional reason for the finding described based on

the available data. The RVOT, or infundibulum, is anatomically and embryologically distinct

from the main body of the RV, as described by Arthur Keith in 1924 [26]. Sir Keith also

hypothesized a function for the RVOT in normal humans: “the safeguarding of the capillary
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system of the lungs from high and prolonged accessions of blood pressure”, as would be seen

during periods of exertion or stress [26]. This would parallel the function of the bulbus cordis

in lower vertebrates. Alternatively, elevated RV systolic pressure at high levels of exercise may

help preserve advantageous ventricular interaction (e.g., prevent collapse of the RV inflow,

which could impede right-sided early diastolic filling) when left ventricular systolic pressure is

markedly elevated. It is also possible that this finding is simply an epiphenomenon, the logical

extreme consequence of left ventricular and septal contribution to RV contraction.

The RVOT has distinct contraction patterns and responses to inotropic agents [27]. Under

normal conditions, the infundibulum contracts ~20–50 msec after the body of the RV and

maintains contraction into diastole [28–30]. Sympathetic stimulation or norepinephrine injec-

tion can suppress this delay [31]. One might hypothesize that the infundibulum’s catechol-

amine response protects the pulmonary vasculature from high pressure during episodes of

extreme exertion while maintaining advantageous peristaltic contraction. Keith’s early 20th-

century hypothesis and more recent physiologic observations, therefore, are consistent with

our findings that a dynamic RVOT gradient occurs more frequently in the presence of high

cardiac output. On the other hand, this observation could simply reflect higher flow across a

similar anatomic obstruction. RVOT anatomy (relatively long and narrow) would seem to pre-

dispose to such a response. A flow-based mechanism alone, though, could not explain the

increase in gradient from supine to upright position, since cardiac output is lower in the

upright compared with supine position [32]. The slow frequency response of a fluid filled cath-

eter precludes comment on the timing of gradient during systole. Clarification of the underly-

ing mechanism of the observed RVOT gradient will require more detailed investigation.

Whatever the underlying causes and consequences of dynamic RVOT obstruction with

exercise, this finding has implications for the use of echocardiography to quantify pulmonary

pressure response during exercise. The current data suggest echocardiography would substan-

tially overestimate pulmonary artery systolic pressure in a subset of patients. This concern,

though, may be more relevant when screening lower risk populations; there was a low preva-

lence of exercise pulmonary hypertension among patients with high RVOT gradients. Studies

Fig 3. Relationships between peak right ventricular systolic and pulmonary artery systolic and mean pressures at peak exercise. (Panel

A) Scatterplot showing the close correspondence of invasively measured peak exercise systolic pulmonary artery (PA) pressure and mean PA

pressure. (Panel B) Scatterplot of invasively measured peak exercise systolic right ventricular (RV) pressure against peak exercise systolic PA

pressure. Peak RV systolic pressure is systematically higher than peak PA systolic pressure. Also, the correlation between RV and PA systolic

pressures is less robust than would be expected. (Panel C) As a result of the systematic but variable RV-to-PA systolic pressure gradient, the

relationship between peak systolic RV pressure and peak mean PA pressure is only moderately strong. For all panels, the solid black line

represents the best-fit regression line with dotted lines representing 95% prediction limits. The dashed red line in panel B signifies identity (x = y).

PA- pulmonary artery; RV- right ventricle.

https://doi.org/10.1371/journal.pone.0179053.g003
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have shown that assessment of the pulmonary circulation during exercise can identify early or

latent pulmonary vascular disease in patients at risk of developing pulmonary hypertension

[10, 12, 33]. It may also help define underlying pathophysiology among patients with high-

normal pulmonary artery pressure, who are at increased risk for adverse outcomes [34]. An

abnormal pulmonary vascular response during exercise has furthermore been associated with

decreased exercise capacity and development of resting pulmonary arterial hypertension,

highlighting the clinical importance of ‘exercise-induced’ pulmonary hypertension and the

possible role for noninvasive screening in high-risk patient subgroups [35–38].

Of note, while high RVOT gradients during exercise were not associated with a clear patho-

logic finding in terms of usual definitions of cardiovascular dysfunction (i.e., higher filling

pressure, lower cardiac index, lower VO2), the subjects studied were referred because of exer-

tional symptoms. In that context, it is possible that such high RVOT gradients may play a path-

ologic role in specific patient groups, as has been described in those recovering from cardiac

surgery [1]. Patients with low venous pressure during exercise were prone to develop high

RVOT gradients. Dynamic RVOT obstruction could presumably be part of the mechanism of

symptoms in such patients [39], as it may in a subset of patients with hypertrophic cardiomy-

opathy [40]. This could help explain the divergent response of such patients to pharmacologic

Fig 4. Receiver operating characteristic curve analysis of resting and peak exercise right heart pressures to identify peak

exercise mean pulmonary artery pressure >30 mmHg. Peak exercise PA systolic pressure is able dependably to identify patients

with abnormally high mean PA pressure at peak exercise (AUC 0.97, blue dotted-dashed line). Peak exercise RVSP is less well able

to discriminate between normal and elevated exercise mean PA pressure (AUC 0.82, red solid line). Resting supine right heart

catheterization RV systolic pressure (AUC 0.83, brown dashed double-dotted line) and PA systolic pressures (AUC 0.86, green

dashed line) each provided similar or slightly better discrimination between normal and elevated exercise PA pressure. PA—

pulmonary artery; PASP—pulmonary artery systolic pressure; RV—right ventricle; RVSP—right ventricle systolic pressure.

https://doi.org/10.1371/journal.pone.0179053.g004
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agents (e.g., beta-blockers). Patients for whom RVOT obstruction is playing a role may selec-

tively benefit from these medications. These remain speculative hypotheses; we were unable to

identify any subset of patients where higher RVOT gradient was associated with lower aerobic

capacity. This could, however, be due to limited subgroup sample size or confounding mecha-

nisms underlying symptoms. It will be necessary to study normal, asymptomatic individuals to

better understand whether it is truly normal to develop a dynamic pressure gradient across the

RVOT.

We did not perform a direct comparison of invasive measurement and echocardiographic

estimation of the PA pressure, but precise invasive measurement of RV systolic pressure

should be the best possible scenario for the use of Doppler tricuspid regurgitant systolic veloc-

ity to estimate PA systolic pressure. Moreover, while using mPAP>30mmHg is not a compre-

hensive definition of abnormal exercise pulmonary vascular response, this approach only

favors RV systolic pressure, whether invasive or non-invasive. Of note, though these findings

strongly imply that upright exercise echocardiographic estimation of PA systolic pressure

would be non-specific, echocardiography is able to provide a more nuanced and comprehen-

sive view of pulmonary vascular physiology including estimates of resistance [41, 42].

These results must be interpreted within the limitations intrinsic to the study design. Most

fundamentally, the study sample was comprised of symptomatic patients with heterogeneous

pathophysiology. This limits inference about whether the findings described may be normal, a

normal variant, a beneficial physiologic response to high flow, or a novel pathophysiologic

underpinning of dyspnea in a discrete set of patients. The spectrum of underlying disease is

also particular to this setting, both because of institutional referral patterns and since invasive

exercise testing is usually reserved for situations where non-invasive and resting invasive test-

ing are insufficient. This would tend to enrich the study sample for patients with difficult to

diagnose conditions such as disorders of oxygen extraction (e.g., mitochondrial disorders),

exercise pulmonary hypertension, and isolated impairment of venous return. These biases do

not threaten the fundamental validity of our observations, but do limit their generalizability.

That is, the prevalence and magnitude and relevance of exercise RVOT gradients in the general

population cannot be inferred from the available data. We also cannot entirely exclude the pos-

sibility that the gradient described is artifactual. One could propose, for example, there may be

selective ring artifact (overshoot) for the RV port/lumen but not the PA or RA port/lumens

related to the higher frequency components of RV pressure. Alternatively, one could hypothe-

size a local pressure effect of contracting RV muscle bundles. Artifact, however, seems unlikely

to explain our findings for a number of reasons. First, an RVOT gradient was never seen dur-

ing supine rest but was present during upright rest and with exercise in a subset of patients.

One would expect the conditions that create the artifact to be present in at least a small number

of patients in the supine position. Second, the finding was consistent; there was never a

reversed gradient with PA pressure being substantially higher than RV pressure. Third, RV

diastolic pressures were not affected. Fourth, prior studies using this catheter in supine animals

and humans have not reported the presence of a systolic pressure difference between the RV

and PA, [43, 44] while others have reported in post-operative patients a similar phenomenon

(in that context, however, it was associated with reduced cardiac output) that was reversible by

medical intervention [1, 44]. Sex and body size were associated with RVOT gradient severity.

It is plausible that the RV port is located more distally (i.e., in the RVOT distal to any obstruc-

tion) in larger patients. This, however, would bias towards a lower mean RVOT gradient in tal-

ler patients, the converse of what was seen. Finally, it remains unknown whether such an

RVOT gradient occurs during supine or semi-supine exercise. Further study is required to

define whether these findings have any direct ramifications for standard clinical stress echocar-

diography, which is usually performed supine. If this phenomenon is limited to exercise in the
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upright position, however, it adds to the list of fundamental positional differences in physio-

logic exercise response; since most day-to-day physical work is performed while upright, this

implies supine exercise testing may be suboptimal.

Conclusion

The development of a pressure gradient between the RV and PA during upright exercise does

not appear to be associated with an adverse hemodynamic profile. Further investigation is

needed to determine whether the finding described is due to normal physiology or represents

a specific pathophenotype among patients with unexplained effort intolerance. In either case,

however, these findings raise questions about the application during exercise of echocardio-

graphic methods commonly used to estimate systolic pulmonary artery pressure.

Supporting information

S1 Table. Variables considered for inclusion in the linear regression model. Top: A list of

variables considered for inclusion in a multivariable model to indicate independent resting

predictors of development of an RVOT pressure gradient with exercise. Variable selection was

performed in a stepwise manner, with p value <0.1 required for entry and retention in the

model. We selected a subset of variables among those that were highly correlated or mathemat-

ically related (e.g., resting upright systolic, mean and diastolic PA pressure; resting supine and

upright systolic PA pressure; PVR, transpulmonary gradient, PAWP and cardiac output). Var-

iables that could define resting upright RV pressure gradient were also omitted from consider-

ation (i.e., upright right ventricular and pulmonary artery systolic pressure).

Use of a simpler forward selection approach with p for entry <0.1 resulted in inclusion of the

same variables, but with the addition of hemoglobin concentration in the model (for hemoglo-

bin concentration, final p = 0.16 and partial r2 = 0.007).

Bottom: A list of variables considered, in addition to all resting data listed, for inclusion in a

multivariable model to indicate independent correlates of development of an RVOT pressure

gradient with exercise. Use of a simpler forward selection approach with p for entry<0.1

resulted in the same final model.

ACE—angiotensin converting enzyme; ARB—angiotensin receptor blocker; BMI—body mass

index; BSA—body surface area; CABG—coronary artery bypass graft; FEV1 —forced expira-

tory volume in 1 second; FVC—forced vital capacity; PCI—percutaneous coronary interven-

tion; PAWP—pulmonary artery wedge pressure; PA—pulmonary artery; PVR—pulmonary

vascular resistance.
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