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Abstract

Studies have reported that different brain regions/connections possess distinct fre-

quency properties, which are related to brain function. Previous studies have pro-

posed altered brain activity frequency and frequency-specific functional connectivity

(FC) patterns in autism spectrum disorder (ASD), implying the varied dominant fre-

quency of FC in ASD. However, the difference of the dominant frequency of FC

between ASD and healthy controls (HCs) remains unclear. In the present study, the

dominant frequency of FC was measured by FC optimal frequency, which was

defined as the intermediate of the frequency bin at which the FC strength could

reach the maximum. A multivariate pattern analysis was conducted to determine

whether the FC optimal frequency in ASD differs from that in HCs. Partial least

squares regression (PLSR) and enrichment analyses were conducted to determine the

relationship between the FC optimal frequency difference of ASD/HCs and cortical

gene expression. PLSR analyses were also performed to explore the relationship

between FC optimal frequency and the clinical symptoms of ASD. Results showed a

significant difference of FC optimal frequency between ASD and HCs. Some genes

whose cortical expression patterns are related to the FC optimal frequency difference

of ASD/HCs were enriched for social communication problems. Meanwhile, the FC

optimal frequency in ASD was significantly related to social communication
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symptoms. These results may help us understand the neuro-mechanism of the social

communication deficits in ASD.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a kind of neurodevelopmental dis-

order that is related with atypical brain function; it is primarily charac-

terized by severely deficient social and communication ability and

stereotyped behavior (Alexander-Bloch et al., 2013). In 2020, the esti-

mated prevalence of ASD among American children was 1/54

(Maenner et al., 2020). The symptoms of ASD are related to the atypi-

cal functional communications across brain regions. Using resting-

state functional magnetic resonance imaging (fMRI), several studies

have explored the FC networks in ASD. In particular, atypical FCs of

the triple network consisting of the salience network, central execu-

tive network, and default mode network (DMN) were frequently

reported (Chen et al., 2017; Menon, 2011; Menon, 2019; Walsh

et al., 2019; Yerys et al., 2015).

Human brain regions/connections have different frequency prop-

erties. Electroencephalogram (EEG) studies suggested that the human

brain neuron activities are frequency-specific and associated with dif-

ferent human brain functions. The theta band (4–8 Hz) is related to

memory, whereas alpha band (8–14 Hz) cognition (Herweg

et al., 2020; Klimesch, 1999), beta band (14–30 Hz) motor control

(Jurkiewicz et al., 2006), and gamma band (30–70 Hz) synchronization

play a core role in cognition (Fries et al., 2008). The communication

through coherence hypothesis suggests that information is transmit-

ted between brain regions through oscillation phase synchronization

at a specific frequency (Fries, 2015). Previous studies have reported

the frequency specificity of the FC network in the human brain and

the different spatial distributions of FC across different frequency

bands. The insula, amygdala, and primary auditory cortex showed high

connectivity in the >0.08 Hz frequency band, whereas the frontal lobe

showed high connectivity in the <0.08 Hz frequency band (Salvador

et al., 2008). The FC of three cortical networks, namely, sensorimotor,

default mode, and visual, is most apparent at the 0.01–0.06 Hz fre-

quency band, whereas that in limbic system regions is distributed over

a wide frequency range (0.01–0.14 Hz) (Wu et al., 2008). These stud-

ies showed the existence of dominant frequency of brain connections.

Previous studies have reported that alteration of brain activity

and FC in ASD were related to frequency. Gregory and coworkers

found that the posterior dominant EEG rhythm in ASD was higher

than that in controls, and the difference was more pronounced in the

children subgroup (Gregory & Mandelbaum, 2012). Chen and

coworkers constructed FC networks under Slow-4 (0.027–0.073 Hz)

and Slow-5 (0.01–0.027 Hz) frequency bands to classify ASD and

HCs. The results showed that the classification performance of the

model trained with the FC of two frequency bands was better than

that of the models trained with a single frequency band and low-

frequency band (0.01–0.08 Hz); moreover, the classification scores

between the cingulo-opercular network (CON) and DMN in Slow-4

were correlated with ASD symptom severity (Chen, Duan,

et al., 2016). Duan and coworkers reported different under-

connectivity patterns across slow-3–5 frequency bands in ASD, and

the decreased connectivity of the Slow-3 band was significantly asso-

ciated with the total and communication scores of autism diagnostic

observation scale (ADOS) (Duan et al., 2017). Both studies have

reported atypical FC patterns of ASD were frequency-specific and

related with ASD behavior. These results might imply the alteration of

the dominant frequency of FC in ASD. However, the atypical pattern

of the dominant frequency of FC in ASD is still unclear.

In the present study, we aimed to explore the difference of the

dominant frequency of FC between ASD and HCs by using an FC

optimal frequency method. Then, we explored the relationship

between the FC optimal frequency patterns and the clinical symptoms

in ASD. On the basis of studies showing different dominant frequen-

cies of the brain (Gregory & Mandelbaum, 2012) and frequency-

specific FC patterns in ASD compared with HCs (Chen, Duan,

et al., 2016; Duan et al., 2017), we hypothesized that the dominant

frequency of FC in ASD has changed and may be related to ASD

symptoms.

2 | MATERIALS AND METHODS

2.1 | Explanations of technical terms

The explanations of technical terms are presented here to help

readers understand the methods section.

FC optimal frequency: the intermediate of the frequency bin at

which the functional connection strength could reach the maximum.

FC optimal frequency strength: the functional connection

strength under optimal frequency, which is the strongest connection

across 16 frequency bins.

2.2 | Subjects

All resting-state fMRI images were obtained from the Autism Brain

Imaging Data Exchange open-access database (ABIDE, https://fcon_

1000.projects.nitrc.org/indi/abide/) (di Martino et al., 2014, 2017).

The following inclusion criteria and final dataset were the same as

those in a previous study (Duan et al., 2017): (1) Male subjects;
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(2) Studies have shown that the abnormal brain function in ASD is

highly related to age and tends to onset early (Lee et al., 2017; Long

et al., 2016). Child period is critical as it is near the onset age and

could avoid some environment confounding factors. Therefore, only

child subjects aged 7–12 years were included in the present study;

(3) Subjects with information of full-scale IQ, handedness, and eye sta-

tus values; (4) Low head motion (lower than 2 mm translation, 2� rota-

tion, the framewise displacement [FD] was used to assess head

motion and less than 50% frames with FD above 0.5 mm) (Pang

et al., 2022; Power et al., 2012); (5) Scan with complete cortical cover-

age; (6) A data-driven method was applied to subjects within each site

to maximize the p values of group difference on age, full-scale IQ,

handedness, eye status, and mean FD (Duan et al., 2017). For each

step, we excluded one subject, with which the p values could increase

the most. This step was repeated until the p values could not increase

by excluding any subject; and (7) Sites with less than 10 subjects per

group were excluded. Finally, 105 children with ASD and 102 HCs

from six sites were included in this study. The detailed demographics

of the subjects are shown in Table 1. The ABIDE id of each subject is

shown in the Subject ID file.

2.3 | Image preprocessing

All resting-state fMRI data were preprocessed using the DPABI tool-

box version 4.3 (http://rfmri.org/dpabi). The preprocessing steps were

as follows. (1) Exclude the first 10 volumes of each subject. (2) Perform

slice-timing and spatial head motion realign to correct the remaining

volumes. (3) Despike via 3Ddespike in the AFNI toolbox (https://afni.

nimh.nih.gov/afni/). The Despike step could remove the potential

motion artifacts in resting-state fMRI data and retain continuous

temporal information of signals. (4) Remove the linear trends. (5) Nor-

malize resting-state fMRI maps to the standard MNI space by using

EPI template. (6) Regress the noise signals, including 24 head motion

parameters and mean signals of white matter and cerebrospinal fluid.

(7) Smooth with Gaussian kernel of 6-mm full width at half maximum.

(8) Filter 16 times. Of note, the TR has a maximum of 3 s, and the fre-

quency interval is set to 0.01. Therefore, 16 frequency bins (0.01–

0.17 Hz) were used in this study.

2.4 | Site-specific effect

Given that the fMRI dataset came from multiple sites, the results

might rely on a specific site and be affected by site difference. We

selected the site that have more than 10 samples to maintain data bal-

ance between sites and verified that there was no difference in site

composition between ASD and HCs by chi-square test (p = .90). Then,

we performed the regression on each FC network with the site as a

covariant using the dummy coding scheme. One-way ANOVA was

conducted on the FC optimal frequency of high-weight FCs of all sub-

jects across sites to determine whether the site difference affects the

results. The maximum p value was 1, and the minimum was 0.5 (FDR

corrected), which indicated that the site difference has little influence

on the FC optimal frequency. The site scan parameters are shown in

Table S2.

2.5 | FC optimal frequency

A total of 160 coordinates were used to define the regions of interest

(ROIs) across the brain in a previous study (Dosenbach et al., 2010).

TABLE 1 Demographics of the subjects

ASD HCs p value

Count 105 102 -

Age (years mean ± SD) 10.15 ± 1.26 10.02 ± 1.38 .48a

Handedness (R/L/mix) 83/9/13 82/5/15 .54b

Full scale IQ (mean ± SD) 110.53 ± 17.42 113.78 ± 11.98 .12a

Mean FD (mm mean ± SD) 0.17 ± 0.08 0.16 ± 0.08 .16a

Subject number from each site 16/14/34/14/11/16 15/14/34/14/11/14 .90a

Eye status (open/closed) 91/14 88/14 .93b

ADOS Gotham scores

Social affect (mean ± SD) 8.91 ± 3.35 - -

RRB (mean ± SD) 3.02 ± 1.84 - -

Total (mean ± SD) 11.92 ± 4.06 - -

Severity (mean ± SD) 6.89 ± 1.86 - -

Abbreviations: ADOS Gotham scores, standardized scores of ADOS using Gotham algorithm, which has an improved prediction capacity for ASD; HCs,

healthy controls; Mean FD, mean framewise displacement.
aTwo-sample T-test.
bChi-square test.
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These brain ROIs were divided into six networks, including sensorimo-

tor network (SMN), CON, DMN, fronto-parietal network (FPN), occip-

ital network (ON) and cerebellum network (CN). In the present study,

CN was excluded because the primarily focus was on cortical net-

works. Therefore, the remaining 142 coordinates were used to create

5-mm-radius spherical ROIs, which represent the network nodes.

The averaged fMRI signals in the 142 ROIs were extracted and

band-pass filtered using the 16 predefined frequency bins (0.01–0.02,

0.02–0.03, …, 0.16–0.17 Hz). Then, the Pearson correlation coeffi-

cient was calculated to determine the FC between pairwise ROIs, and

16 FC networks were constructed across 16 frequency bins. For each

connection, 16 FC strengths were obtained across 16 different fre-

quency bins. The FC optimal frequency was defined as the intermedi-

ate value of the frequency band at which the FC strength could reach

the maximum. The FC optimal frequency was used to measure the

dominant frequency of FC. Therefore, a 142 � 142 FC optimal fre-

quency network was obtained for each subject (Figure 1).

2.6 | Multivariate pattern analysis of the FC
optimal frequency

Multivariate pattern analysis (MVPA) was applied to the FC optimal

frequency network of each subject to assess whether the FC optimal

frequency in ASD is significantly different from that of HCs. The anal-

ysis course was the same as that in a previous study (Chen, Duan,

et al., 2016). Here, the FC optimal frequency between ROIs was used

as the classification feature. As the number of features is greater than

the number of subjects, “overfitting” may occur. Therefore, the F-

score method was applied for feature selection to obtain the most

important features, and features with a larger F-score were more

likely to have potential to discriminate ASD from HCs. A range of fea-

ture numbers were utilized because the optimal feature number was

unknown. The model construction and evaluation were performed at

a computational server (Sugon I840-G20; Dawning Information Indus-

try Co., LTD., Beijing, China).

F IGURE 1 Flowchart of FC optimal frequency analyses. (a) Preprocessed resting-state functional magnetic resonance imaging (rs-fMRI) data
of 105 autism spectrum disorder (ASD) and 102 healthy controls (HCs). (b) Calculate the functional connectivity (FC) network across
16 frequency bins, and each connection has 16 connection strengths. (c) Calculate the intermediate of the frequency bin that has the maximum
FC strength, which is called the FC optimal frequency. (d) The FC optimal frequency was used as the feature of the linear support vector machine
(SVM) to distinguish ASD from HCs. (e) Weight analyses were conducted to identify high-weight FCs and brain regions, which indicate
significantly different FC optimal frequency between ASD and HCs. (f) Partial least squares regression (PLSR) analysis was conducted to explore
the relationship between optimal frequency of high-weight FCs and social affect score of ASD. (g) PLSR analysis was conducted to explore the
relationship between cortical gene expression and FC optimal frequency difference of ASD/HCs.
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Support vector machine (SVM) classifier works well in cases with

small sample size and large feature size. As a type of supervised learn-

ing, SVM constructs the decision function from the training dataset

and labels (ASD or HCs). Then the model could predict the class labels

of the test dataset. In the present study, a linear kernel was used

because it could reduce the risk of overfitting (Pereira et al., 2009).

The LIBLINEAR toolbox (Fan et al., 2008) with default parameters was

utilized to conduct SVM classification. The leave-one-out cross-

validation (LOOCV) strategy was used to calculate the accuracy, sensi-

tivity, and specificity to evaluate the classification performance.

Following MVPA, a permutation test with 1000 trials was per-

formed to determine whether the accuracy was significantly higher

than random cases. In each trial, the labels of all subjects were shuf-

fled, and then MVPA was applied to the original features and shuffled

labels. This procedure was the same as the MVPA on the original

dataset. The permutation p value was calculated by the number of tri-

als, whose accuracy was higher than that based on the original data-

set. As a comparison, MVPA was also applied to the FC optimal

frequency strength of each subject to determine whether the FC opti-

mal frequency strength is different between ASD and HCs.

2.7 | Optimal frequency weight analyses

The classification weights for all FCs were calculated to determine the

importance level of each connection in the classification model. The

classification weights could be obtained for each trial of LOOCV. The

classification weight of each connection was calculated by averaging

the absolute values of classification weights across all LOOCV trials,

and the weights of connections that were not included in the classifi-

cation model were set as zero (Chen, Duan, et al., 2016; Liu

et al., 2015). Connections with classification weight above mean ± SD

across all connections were considered as high-weight FCs. For each

ROI, the classification weight was then calculated by summing up the

classification weights of the high-weight FCs associated with the ROI.

2.8 | Relationship between the FC optimal
frequency difference of ASD/HCs and cortical gene
expression

ASD is known to have strong genetic underpinnings. PLSR analysis

was conducted to explore the relationship between the FC optimal

frequency difference of ASD/HCs and the genotype (Li et al., 2021;

Romero-Garcia et al., 2019). The optimal frequency of each ROI for

each subject was defined as the mean optimal frequency of the con-

nections that connect the ROI, and we calculated it across subjects in

the ASD and HC groups. The FC optimal frequency difference levels

of each ROIs in ASD/HCs were defined as the mean optimal fre-

quency in ASD minus the one in HCs. The brain-wide gene expression

data came from the Allen Institute for Brain Science (AIBS) dataset,

which were measured in six postmortem brains of 3702 spatially dis-

tinct samples. Each sample's MNI coordinate and the expression

values of 20,647 genes were also provided. As the gene expression

values were from six different postmortem brains, the gene expres-

sion values were first z-transformed. For each brain ROI in the Dosen-

bach atlas, the gene expression values were linearly interpolated by

the six nearest samples of the AIBS dataset (Hawrylycz et al., 2015).

Then, 20,647 regional gene expression values were obtained for each

brain ROI. The PLSR method was used to identify which genes were

significantly associated with the FC optimal frequency difference of

ASD/HCs. The PLSR component number was set as 35, which is the

same as that in a previous study (Romero-Garcia et al., 2019). The

PLSR component with the most explanatory contribution was consid-

ered significant. For the significant component, the PLSR weights of

20,647 genes were z-transformed based on one-tail Z distribution (Li

et al., 2021), and genes with p < .05 (FDR corrected) were considered

to have significant association with the FC optimal frequency differ-

ence of ASD/HCs. Enrichment analysis was utilized to determine the

function of the significant genes. The Kobas toolbox (http://kobas.cbi.

pku.edu.cn/kobas3) was used, and the result with p < .05 (FDR cor-

rected) was retained (Bu et al., 2021).

2.9 | Relationship between FC optimal frequency
and clinical symptoms of ASD

PLSR analyses were also conducted to further determine the relation-

ship between the FC optimal frequency and the clinical symptoms in

ASD. Similar to the cortical gene expression analysis, the PLSR com-

ponent number was set as 35 and the one with the largest explana-

tory power was used to calculate the Pearson correlation coefficient

with the ADOS Gotham diagnostic score. Statistical significance was

considered at p < .05 (FDR corrected). Here, the ADOS Gotham social

affect score, ADOS Gotham RRB score, and ADOS Gotham diagnostic

score were included in the PLSR analysis. The social affect score is a

standardized score of ADOS raw score, which combines the ADOS

social score and communication score (Dorlack et al., 2018; Gotham

et al., 2007). The RRB score is the restricted and repetitive behavior

total subscore, and the severity score is the individually calibrated

severity subscore. The ADOS Gotham diagnostic score measures the

symptoms of ASD that adjusted the effect of age and verbal levels

(Gotham et al., 2007).

3 | RESULTS

3.1 | MVPA results

MVPA revealed a difference in the FC optimal frequency between

ASD and HCs (accuracy = 72.95%, permutation p < .001). By compar-

ison, we applied the same model to the FC optimal frequency

strength, and the result showed a significant ability to classify ASD

and HCs (accuracy = 62.8%, permutation p = .003). However, the

accuracy was much lower than the one based on the FC optimal fre-

quency, which revealed that the FC optimal frequency difference
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between ASD and HCs was more pronounced than the FC optimal

frequency strength. The distribution and the MVPA results based on

the FC optimal frequency strength are shown in Figure S3-S4.

Weight analyses showed that the FCs between CON and FPN

have the highest classification weight. Compared with HCs, most of

the high-weight FCs showed higher optimal frequency. The FC opti-

mal frequency of ASD was concentrated between 0.08 and 0.11 Hz,

whereas that of HCs was between 0.07 and 0.09 Hz (the distribution

of FC optimal frequency is shown in Figure S2). The ROIs with high

classification weight were more located at the CON, including fusi-

form, ant insula, temporoparietal junction (TPJ), and ventromedial

frontal cortex (vFC). For visualization, only the top 10 regions with the

highest classification weight are shown in Figure 2b.

3.2 | Gene PLSR analysis and enrichment

A total of 35 PLSR gene components were obtained according to

PLSR analysis. The explanatory power of the PLSR1 gene component

reached 22.84%. The correlation coefficient between the FC optimal

frequency difference of ASD/HCs and the score of PLSR1 gene com-

ponent was 0.478 (p < 10e-7, FDR corrected, Figure 3a). In the PLSR1

gene component, 61 genes showed significantly higher weights than

others (p < .05, FDR corrected). Then, enrichment analysis identified

genes that were enriched for “social communication problems”
(p = .025, FDR corrected), including XIRP1 and IRX5. Genes with high

PLSR weights included OR13C4, RGR, and C19orf21. Sixty-one genes

after FDR correction are listed in Figure S5.

F IGURE 2 Multivariate pattern analysis (MVPA) results. (a) Sixty-eight high-weight functional connectivities (FCs). The bold connections are
the top 10. (b) Top 10 among 83 high-weight ROIs. (c) High-weight FCs between brain networks (including fronto-parietal network [FPN], default
mode network [DMN], cingulo-opercular network [CON], sensorimotor network [SMN], and occipital network [ON]). The number of each
network connection represents the sum of the weights of high-weight FCs, and the percentage represents the proportion of the weight in all
high-weight FCs. The number in the total line represents the network weight, which is the sum of the weights of high-weight FCs in the network,
and the percentage represents the proportion of the weight in all network weights (yellow indicates autism spectrum disorder [ASD] with higher
FC optimal frequency than healthy controls [HCs], and blue indicates ASD with lower FC optimal frequency than HCs).
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3.3 | Correlation between FC optimal frequency
and clinical symptoms of ASD

A total of 68 connections with high classification weight in MVPA

were found in this study. As shown in Figure 3, the FC optimal fre-

quency of high-weight connections showed significant correlation

with ADOS Gotham social affect score (r = .613, p < 10e-8), ADOS

Gotham RRB score (r = .659, p < 10e-9), and ADOS Gotham diagnos-

tic score (r = .604, p < 10e-7). All p values were FDR corrected.

3.4 | FC optimal frequency distribution in HCs

We explored the optimal frequency of all FCs in the HCs group. The

results showed that the mean FC optimal frequency was 0.0894 Hz,

ranging from 0.074 to 0.1067 Hz. At the subnetwork level, the FC

optimal frequency did not show much difference between each sub-

network (shown in Figure S6). At the connection level, connections

with high FC optimal frequency mainly concentrated in ON-SMN,

ON-FPN, and SMN-DMN, and connections with low FC optimal fre-

quency mainly concentrated in ON-DMN (shown in Figure S7).

4 | DISCUSSION

4.1 | Analytic overview

This study revealed the significant differences in the FC optimal fre-

quency between ASD and HCs. In addition, the FC optimal frequency

strength showed poor ability to distinguish ASD and HCs. The results

implied that for some connections in ASD, the functional information

transmission between brain regions may not be simply damaged but

F IGURE 3 Partial least squares regression (PLSR) results. (a) Relationship between the functional connectivity (FC) optimal frequency

difference of autism spectrum disorder/healthy controls (ASD/HCs) and cortical gene expression. (b) Relationship between social affect and FC
optimal frequency. (c) Relationship between restricted and repetitive behaviors and FC optimal frequency. (d) Relationship between severity and
FC optimal frequency
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shift from the original optimal frequency to other frequencies. The

enrichment analysis showed that the FC optimal frequency difference

between the two groups was related to social communication prob-

lems. The FC optimal frequency in ASD was associated with behav-

ioral symptoms, which include social affect, RRB, and severity. These

results may help us understand the atypical neuro information trans-

mission pattern and provide a novel neuro-marker to evaluate the

social-communication severity level of ASD.

4.2 | FC optimal frequency difference between
ASD and HCs

Previous FC studies have reported damaged functional information

transmission between specific brain regions in ASD based on the

whole low-frequency band rs-fMRI data (Chen, Uddin, et al., 2016;

Hong et al., 2019). However, evidence suggested different frequency

properties with different connections, and atypical FC patterns in

ASD were frequency-specific (Chen, Duan, et al., 2016; Salvador

et al., 2008; Wu et al., 2008).

The classification accuracy based on the FC optimal frequency

achieved a relatively high accuracy (72.95%), but it is still lower than

that in a previous study based on FC (accuracy = 79.17%) (Chen,

Duan, et al., 2016). The reasons may be due to the differences in data-

sets and preprocessing and cross-validation methods. In the present

study, we also constructed a classification model based on the FC

optimal frequency strength (accuracy = 62.80%), which revealed that

FC optimal frequency has greater discriminative potential than FC

optimal frequency strength, and the FC optimal frequency of high-

weight FCs in ASD showed higher frequency than HCs. Based on

these results, we speculated that the lower FC frequently reported in

ASD in the low-frequency range was due to the frequency specificity

of FC rather than connection strength damage. Figure 2c illustrates

that the optimal frequency of most high-weight FCs in ASD was

higher than that in HCs, especially the connections between CON and

FPN, which might imply that the co-activation between neurons of

specific brain regions occurs at a higher frequency band in ASD. This

finding suggests that the FC in ASD needs to be studied at a higher

frequency range. The higher FC optimal frequency could be possibly

related to the imbalanced excitation/inhibition of neural activity in

ASD. Previous studies have reported excess of excitation and loss of

inhibition in ASD brain (Nelson & Valakh, 2015). The excess of excita-

tion may cause more frequent brain activity and induce the higher

connection frequency in ASD.

4.3 | Relationships with social communication
of ASD

The PLSR analysis between the FC optimal frequency of significant

connections and the ADOS Gotham social affect score showed that

the FC optimal frequency in ASD was associated with social and

communication ability. As shown in Figure 2c, CON showed the high-

est ASD/HCs difference in the FC optimal frequency, and the connec-

tions between CON and FPN exhibited the most classification weight.

CON becomes active whenever cognitive engagement is required,

and it maintains tonic alertness (Sadaghiani & D'Esposito, 2015). A

previous study suggested that the heightened salience of social and

emotional information provides a flexible social response in adoles-

cence (Rosen et al., 2018). The FPN and fronto-temporal network are

considered to comprise the social brain, and FPN is involved in the

process of social coordination and cognition (Burns, 2006; Dumas

et al., 2020). Moreover, CON and FPN are part of the triple network

system, and abnormalities in these regions have been reported in FC

studies in ASD (Kleinhans et al., 2008; Perez Velazquez et al., 2009).

The results of the present study suggested that the altered FC optimal

frequency in these two networks may lead to atypical social informa-

tion salience and processing and result in social deficits in ASD. The

connections between CON and FPN, CON and SMN, and DMN and

ON bore the highest classification weights. The abnormal FC optimal

frequency between these networks supported that atypical FC pat-

terns was concentrated in the salience, executive, visual, and default-

mode networks in ASD (Raatikainen et al., 2020).

The FC optimal frequency difference between ASD and HCs was

associate with IRP1 and IRX5, genes identified by PLSR1 as enriched

in social communication problems. These two genes are associated

with the phenotype of social communication, suggesting that social

communication abilities are heritable, and the genetic difference of

that phenotype in ASD has been reported (St Pourcain et al., 2014).

Our results revealed the relationship between social-communication-

related genes and FC optimal frequency difference of ASD/HCs.

Among the social-communication-related genes, XIRP1 (or Xinα) codes

Xin actin-binding repeat-containing protein that could protect actin

filaments during depolymerization. A previous study showed impaired

dynamics of actin polymerization in an ASD patient subgroup (Griesi-

Oliveira et al., 2018). IRX5 is involved in “cell development,” “neuron
differentiation,” “response to stimulus,” and “visual perception” pro-

cesses of Gene Ontology terms (Gaudet et al., 2011). Although the

two genes are related to social skills, they are only weak candidates

for ASD susceptibility loci because they are poorly studied and should

be further researched in the molecular genetics of ASD in the future.

The OR13C4 and RGR genes have high weight in gene PLSR analysis.

The OR13C4 gene enables olfactory receptor activity, a G protein-

coupled receptor that conducts olfactory signals. Olfactory perception

has been reported to play an important role in the regulation of

human social behaviors (Sarafoleanu et al., 2009). A previous study

also revealed that olfactory receptors in ASD were most associated

with copy number variation (Schuch et al., 2019). The RGR gene

encodes retinal G protein-coupled receptor, which is involved in visual

perception. ASD showed abnormal visual behavior after 12 months

(Ozonoff et al., 2008), and changed visual perception may make ASD

unable to process complex social information, resulting in abnormal

social behavior. These two genes may reveal that ASD has sensory

system changes in the perception and transmission of social
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information, and the pathogenic mechanism of social deficits in ASD

may be explored by studying the genes/proteins related to sensation.

The present study showed the association between FC optimal

frequency in ASD and the social communication problem via gene

expression and behavioral symptom aspects. The results suggested

that the ASD/HCs difference of FC optimal frequency may be due to

physiological mechanisms regulated by relevant genes. It may lead to

atypical FC of social function-related regions and ultimately influence

the social development in ASD.

4.4 | Genetic explanations for the FC optimal
frequency difference in ASD

The C19orf21 and ARHGAP6 genes were found in the PLSR analysis

between the FC optimal frequency difference of ASD/HCs and gene

expression. The C19orf21 gene enables actin filament binding, and the

ARHGAP6 gene promotes actin remodeling. Both are involved in actin

formation. Actin provides important support for neuronal develop-

ment and synaptic plasticity and is involved in the important signaling

pathway that is highly associated with mental diseases and neurode-

velopmental disorders (Dent et al., 2011; Flynn, 2013; Yan

et al., 2016). Synaptic plasticity adjusts the number and/or strength of

synapses and alters the organization and activity of neural circuits,

resulting in different functional network characteristics (Stampanoni

Bassi et al., 2019; Vitureira et al., 2012). These results may reveal that

the synaptic cytoskeleton changes in ASD lead to abnormal synaptic

plasticity, which may be the underlying cause of the unbalanced exci-

tation mechanism in the FC network in ASD.

4.5 | Broader correlation with symptoms of ASD

Previous studies have found that the frequency-specific FC was asso-

ciated with social deficits and total symptoms in ASD (Duan

et al., 2017). In the present study, our results not only showed consis-

tent correlation, but indicated that the restricted interests/repetitive

behaviors and severity of ASD were significantly correlated with FC

optimal frequency. This provided further evidence that the FC optimal

frequency was associated with ASD behaviors.

4.6 | FC optimal frequency in HCs

The traditional FC studies mainly concentrated on the low-frequency

band (<0.1 Hz). However, we found that the FC optimal frequency of

whole brain connections in HCs ranges from 0.074 to 0.1067 Hz

(as shown in Figure S7), and the optimal frequency of some FCs is

greater than 0.1 Hz. Therefore, we consider that the FC patterns in

the high-frequency band are also important in resting-state FC stud-

ies, especially for visual/sensorimotor studies. Future studies based

on larger samples are needed to assess the frequency bands for

resting-state FC studies.

4.7 | Limitation

In PLSR analysis, a strong correlation between the FC optimal fre-

quency difference of ASD/HCs and the cortical gene expression

was found. However, the gene expression data were collected

from six postmortem brains of adults, whereas the research sub-

jects in the present study were children. Because gene expression

changes with age, the gene expression results need to be consid-

ered with caution. Future studies may require a dataset with age-

matched rs-fMRI and gene expression data (or both from the same

subjects). In addition, our study only included male samples, which

could not represent the whole community of children with ASD.

Whether there is a general change or gender-specific effect in the

FC optimal frequency in children with ASD needs further study.

Given that brain dysfunction in ASD occurs during early brain

development, we included children aged 7–12 years. The FC opti-

mal frequency deference between ASD and HCs has been found

in children, but the results cannot be generalized to all ages due to

symptoms varying with age. Whether the FC optimal frequency

has changed in older patients and its trajectory with age need fur-

ther study.

5 | CONCLUSIONS

The study revealed that the optimal frequency of some resting-state

FCs in ASD was higher than that in HCs. The gene expression and

clinical symptom evidence showed that the FC optimal frequency dif-

ference of ASD/HCs is related to social communication deficits in

ASD. The results imply an altered dominant frequency property of the

neural transmission mechanism in ASD, which may provide a bio-

marker for behavioral symptoms of ASD, particularly of social commu-

nication deficits.
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