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Abstract: Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal
improvements in patient outcomes and persistently abysmal patient survival rates underscore the
great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies
that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines
capable of identifying differentially active protein tyrosine kinases in different patient-derived
pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate
the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer
therapy. Consistent with previously described reports, the resultant peptide-based kinome array
profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following
kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular
endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2
(EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase
(SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased
activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic
cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK),
Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific
kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase
(ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together,
these results support the utility of peptide array kinomic analyses in the generation of potential
candidate kinases for future pancreatic cancer therapeutic development.
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1. Introduction

In vivo, kinases are heavily trafficked and compartmentalized to microdomains and cellular
substructures where they act in concert with other kinases, receptors, and effector proteins to realize
intricate signaling mechanisms that give rise to complex cellular behaviors. Despite this complexity,
kinases are traditionally studied in isolation: A kinase of interest is typically purified from a sample
and the enzymatic activity of the isolated kinase is subsequently interrogated. Kinase isolation is
often dependent upon antibody binding and subject to the challenges and expenses of antibody-based
purification techniques. Traditional assays remove each kinase of interest from its interacting partners
and the physiologic conditions in which it normally operates. By breaking these networks into
discrete components and examining individual kinases in isolation, researchers discover initiators of
kinase phosphorylation activity and catalogue the peptide targets that are activated or deactivated by
direct phosphorylation by a specific kinase. Unfortunately, these purification techniques incentivize
researchers to minimize the integrity of a kinase’s normal physiologic environment in favor of a clean,
easily assayable sample. However, the cleaner a purified kinase sample becomes, the less it can represent
that kinase’s activity under physiological endogenous conditions. While this reductionism continues
to allow researchers to meaningfully investigate discrete components of kinomic signaling networks,
the knowledge gained remains incomplete. In this study, we combined PamGene multiplexed kinome
activity array data with four bioinformatic pipelines to identify protein kinases responsible for the
differential phosphorylation activity observed in patient-derived and commercial pancreatic ductal
adenocarcinoma (PDAC) cell lines compared to patient-derived wild-type pancreatic tissue specimens
(Figure 1).

Figure 1. Experimental design. (A) Patient-derived pancreatic cancer cells (light red) and wild-type
pancreatic tissue specimens (yellow) are processed and diluted to a uniform protein concentration.
(B) Samples are added to the PamChip array containing 196 consensus phosphopeptide sequences
immobilized on porous ceramic membranes; two (purple and orange) such sequences are illustrated
here. (C) Quantification of peptide phosphorylation levels. (D) Peptide phosphorylation data are
analyzed with each of four independent bioinformatic pipelines (KRSA, UKA, PTM-SEA, KEA3) and
then combined to generate a list of tyrosine protein kinases’ targets.

Protein kinases are enzymes capable of phosphorylating other proteins to regulate biochemical
signaling pathways and modulate cellular behavior [1]. In cancer, many protein kinases are associated
with cancer cell initiation, progression, and metastasis, as well as relapse and survival. Small-molecule
protein kinase inhibitors represent an increasingly successful therapeutic strategy for a range of
cancer types with over 50 FDA-approved protein kinase inhibitors in clinical use [2–4] and hundreds
more undergoing clinical or preclinical trials. Protein kinase inhibitors improve patient outcomes
significantly and protein kinases are, therefore, a popular target for difficult-to-treat malignancies such
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as pancreatic cancer. Pancreatic cancer patients demonstrate the lowest five-year relative survival rates
of any cancer type, with decades of medical research unable to increase these rates beyond 9% [5].
Protein kinase inhibitors erlotinib (OSI-774; Tarceva), everolimus (RAD001; Afinitor), and sumitinib
(SU11248; Sutent) are approved for the treatment of pancreatic cancers [4], though the majority of these
approvals are for a rare (1% to 2%) subtype of pancreatic cancer known as pancreatic neuroendocrine
tumors [6] rather than the far more common PDAC.

Previous, excellent genomic and proteomic studies have characterized PDAC subtypes [7–11].
Different and new PDAC subtypes continue to be defined, with myriad genetic or molecular factors
increasing the resolution of the disease spectrum. While the present study could not comprehensively
address the complexity and heterogeneity of PDAC tumor subtyping, our results inform growing
understanding of the unique protein tyrosine kinase networks that play a role in one or more of the
commercial and patient-derived cell lines investigated (Figures 2–4).

To define kinases that are differentially active in one or more PDAC cell lines and identify
potentially actionable drug targets, we sought to break away from linear, one-by-one investigations of
individual PDAC kinases and consider instead the totality of PDAC kinase networks within each group.
To accomplish this, we combined emerging laboratory technologies and contemporary bioinformatic
pipelines to identify lead candidate kinases based on peptide phosphorylation signatures. These
technologies include the PamStation and the Protein Tyrosine Kinase PamChip. The bioinformatic
pipelines include the Kinome Random Sampling Analyzer (KRSA) pipeline, developed by our
own laboratory [12–19], and the Upstream Kinase Analysis (UKA) pipeline, which is part of the
BioNavigator software tool developed by collaborators at PamGene [20,21]. To passively validate
and further contextualize the results of this approach, two additional bioinformatic pipelines were
utilized. These additional bioinformatic pipelines include the Post-Translational Modification Signature
Enrichment Analysis (PTM-SEA) pipeline developed at the Broad Institute of MIT and Harvard [22],
as well as the Kinase Enrichment Analysis Version 3 (KEA3) developed by the Ma’ayan laboratory [23].
Using laboratory equipment designed by PamGene, we measured the relative phosphorylation levels
of 198 representative peptide substrates for PDAC cells and wild-type pancreatic tissue before running
the resultant data through each of these four self-contained analytical platforms. The analytical results
from each pipeline were interpreted individually as well as in combination to maximize the strengths
of each pipeline’s respective algorithm and reference database set. The results were synthesized to
identify kinases likely responsible for the unique phosphorylation signatures of PDAC (Figures 2–4).
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Figure 2. Outputs from upstream kinase identification pipelines for the commercially available PANC1
PDAC cell line compared to patient-derived wild-type pancreatic tissue. (A) Kinome Random Sampling
Analyzer (KRSA); (B) Post-Translational Modification Signature Enrichment Analysis (PTM-SEA);
(C) Kinase Enrichment Analysis Version 3 (KEA3); (D) Upstream Kinase Analysis (UKA); (E) Quartile
summary. A more detailed figure legend can be found in Appendix B.



Int. J. Mol. Sci. 2020, 21, 8679 5 of 39

Figure 3. Outputs from upstream kinase identification pipelines for the patient-derived PDCL15 PDAC
cell line compared to patient-derived wild-type pancreatic tissue. (A) Kinome Random Sampling
Analyzer (KRSA); (B) Post-Translational Modification Signature Enrichment Analysis (PTM-SEA);
(C) Kinase Enrichment Analysis Version 3 (KEA3); (D) Upstream Kinase Analysis (UKA). (E) Quartile
summary. A more detailed figure legend can be found in Appendix B.
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Figure 4. Outputs from upstream kinase identification pipelines for the patient-derived PDCL5 PDAC
cell line compared to patient-derived wild-type pancreatic tissue. (A) Kinome Random Sampling
Analyzer (KRSA); (B) Post-Translational Modification Signature Enrichment Analysis (PTM-SEA);
(C) Kinase Enrichment Analysis Version 3 (KEA3); (D) Upstream Kinase Analysis (UKA). (E) Quartile
summary. A more detailed figure legend can be found in Appendix B.

2. Results

2.1. PamGene Kinome Activity Profiling Using Protein Tyrosine Kinase PamChip®

The PamChip is a kind of array. Groups of identical peptide fragments populate a single spot
on the chip (Figure 1). The peptide spots contain amino acid sequences of sufficient length and
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complexity to represent the phosphorylation sites of specific proteins. When these peptide spots are
exposed to experimental samples, they become phosphorylated by the activated kinases within that
sample. Phosphorylation events correspond precisely with the enzymatic activity of the sample’s
kinase networks. Fluorescently tagged phosphoantibodies produce a signal proportional to the
phosphorylation activity of the kinases contained within the sample. Using specific collections of
peptide fragments, the intensities reported by a PamChip provide a signature that can be used to
identify the kinases responsible for the observed phosphorylation activity. UKA or KRSA pipelines
process differentially phosphorylated peptide fragment identities and signal intensities. For PTM-SEA
and KEA3 pipelines to evaluate PamChip signatures, the peptide fragments must first be converted
to protein identities. Because some peptide spots on the PamChip represent multiple proteins and
because multiple peptide spots may represent different sites on a single protein, this conversion results
in a loss of information. The signal intensities on the PamChip—which quantify the degree to which a
peptide fragment has been phosphorylated—are also lost when PamChip signatures are converted
to the binary “differentially expressed” input categories required for PTM-SEA or KEA3 pipelines.
In other words, instead of interpreting “peptide-fragment-1 with signal intensity 10.3,” PTM-SEA or
KEA3 only process “protein-a.” For this reason, we preferentially used the UKA and KRSA pipelines for
candidate kinase identification, using the less well-suited (but excellent in their own right) PTM-SEA
and KEA3 pipelines for passive validation.

Unabridged comparison of the upstream kinases that each pipeline identified as being
responsible for the observed phosphorylation patterns of each pancreatic cancer cell line compared
to control wild-type patient-derived pancreatic cells are presented in Figures 2–4 as well as
Supplementary Table S1. The databases associated with each pipeline offer different levels of kinase
coverage. This is advantageous for identification of true positives, although the absence of a kinase from
a pipeline’s identification output cannot be considered a negative indication of that kinase serving as a
causative factor in the phosphorylation patterns observed. This approach, therefore, minimizes type I
error (i.e., erroneous rejection of a true null hypothesis) and accommodates type II error (i.e., erroneous
acceptance of a false null hypothesis). UKA and KRSA bioinformatic pipelines are specifically designed
to analyze PamChip kinome activity data. As such, each respective algorithm can integrate multiple
PamChip data metrics into its final analytical output. The PTM-SEA and KEA3 pipelines, although
capable of excellent analytic activity, are designed for slightly different applications. In their native
state, significant programmatic alterations are required to generate results that meaningfully interpret
PamChip experimental data. The most significant differences between UKA or KRSA bioinformatic
pipelines and PTM-SEA or KEA3 bioinformatic pipelines relate to how these two groups handle
multiple dimensions of data and how these two groups natively interpret phosphorylated peptides.

2.2. UKA and KRSA Combinatory Analysis

In Table 1, we average the percentile rankings without any concern for false negatives. The goal was
to increase positive identification of kinases whose activity is truly a causative factor in the differential
phosphorylation patterns observed between tumor and wild-type cells. In Table 2, we attempt to
decrease the presentation of false positives by dividing these averages by the number of pipelines
employed—in this case, two. In Tables 1 and 2, we also combine the results from the two patient-derived
pancreatic cancer cell lines (PDCL15, PDCL5; Patient-Derived) and we combine the results of all
pancreatic cancer cell lines (PDCL15, PDCL5, PANC1; All), in order to generate average percentile
rankings that inform the general kinase activity of pancreatic cancer. These tables contain only the
highest scoring kinases according to UKA and KRSA bioinformatic pipelines. If two or more kinases
received identical average percentile ranks or identical weighted average percentile ranks, then rank
order was determined arbitrarily. While our complete output data may be found in Table S1, the present
tables include only the top 10 highest ranked kinases. Kinases with identical scores were arbitrarily
assigned sequential ranks.



Int. J. Mol. Sci. 2020, 21, 8679 8 of 39

Table 1. UKA and KRSA average percentile rankings.

Cell Line Rank Kinase Family Average KRSA UKA

PANC1 #1 LCK SRC 96% 91% 100%
PANC1 #2 DDR2 DDR 96% 96%
PANC1 #3 LYN SRC 95% 91% 99%
PANC1 #4 SRC SRC 92% 91% 92%
PANC1 #5 ABL1 ABL 91% 87% 95%
PANC1 #6 TEC TEC 90% 100% 80%
PANC1 #7 FYN SRC 90% 91% 88%
PANC1 #8 BLK SRC 89% 91% 87%
PANC1 #9 TXK TEC 89% 100% 77%
PANC1 #10 SRMS SRC 88% 91% 85%

PDCL15 #1 DDR2 DDR 100% 100% -
PDCL15 #2 LCK SRC 98% 96% 100%
PDCL15 #3 LYN SRC 97% 96% 99%
PDCL15 #4 TEC TEC 94% 91% 97%
PDCL15 #5 SRC SRC 94% 96% 92%
PDCL15 #6 FYN SRC 93% 96% 91%
PDCL15 #7 PDGFRA PDGFR 90% 87% 93%
PDCL15 #8 FRK FRK 89% 83% 96%
PDCL15 #9 BLK SRC 88% 96% 81%
PDCL15 #10 PTK7 PTK7 88% - 88%

PDCL5 #1 PTK7 PTK7 99% - 99%
PDCL5 #2 ROS1 SEV 97% 100% 95%
PDCL5 #3 TNK2 ACK 96% 96% -
PDCL5 #4 DDR2 DDR 87% 87% -
PDCL5 #5 ALK ALK 86% 74% 97%
PDCL5 #6 TXK TEC 83% 65% 100%
PDCL5 #7 LTK ALK 80% 74% 86%
PDCL5 #8 ITK TEC 79% 65% 93%
PDCL5 #9 FLT1 VEGFR 78% 91% 65%
PDCL5 #10 EPHB1 EPH 76% 61% 92%

Patient-Derived #1 PTK7 PTK7 100% - 100%
Patient-Derived #2 DDR2 DDR 100% 100% -
Patient-Derived #3 LYN SRC 96% 96% 96%
Patient-Derived #4 TXK TEC 95% 91% 99%
Patient-Derived #5 TEC TEC 94% 91% 97%
Patient-Derived #6 LCK SRC 92% 96% 88%
Patient-Derived #7 BLK SRC 91% 96% 87%
Patient-Derived #8 SRMS SRC 87% 96% 79%
Patient-Derived #9 ITK TEC 86% 91% 80%
Patient-Derived #10 FRK FRK 84% 78% 91%

All #1 DDR2 DDR 100% 100% -
All #2 TXK TEC 96% 96% 97%
All #3 PTK7 PTK7 96% - 96%
All #4 LYN SRC 96% 91% 100%
All #5 LCK SRC 95% 91% 99%
All #6 TEC TEC 93% 96% 91%
All #7 BLK SRC 90% 91% 88%
All #8 SRMS SRC 88% 91% 84%
All #9 FRK FRK 87% 83% 92%
All #10 PDGFRA PDGFR 84% 87% 81%
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Table 2. UKA and KRSA weighted average percentile rankings.

Cell Line Rank Kinase Family Weighted Average KRSA UKA

PANC1 #1 LCK SRC 96% 91% 100%
PANC1 #2 LYN SRC 95% 91% 99%
PANC1 #3 SRC SRC 92% 91% 92%
PANC1 #4 ABL1 ABL 91% 87% 95%
PANC1 #5 TEC TEC 90% 100% 80%
PANC1 #6 FYN SRC 90% 91% 88%
PANC1 #7 BLK SRC 89% 91% 87%
PANC1 #8 TXK TEC 89% 100% 77%
PANC1 #9 SRMS SRC 88% 91% 85%
PANC1 #10 ABL2 ABL 88% 87% 89%

PDCL15 #1 LCK SRC 98% 96% 100%
PDCL15 #2 LYN SRC 97% 96% 99%
PDCL15 #3 TEC TEC 94% 91% 97%
PDCL15 #4 SRC SRC 94% 96% 92%
PDCL15 #5 FYN SRC 93% 96% 91%
PDCL15 #6 PDGFRA PDGFR 90% 87% 93%
PDCL15 #7 FRK FRK 89% 83% 96%
PDCL15 #8 BLK SRC 88% 96% 81%
PDCL15 #9 HCK SRC 86% 96% 77%
PDCL15 #10 TXK TEC 86% 91% 80%

PDCL5 #1 ROS1 SEV 97% 100% 95%
PDCL5 #2 ALK ALK 86% 74% 97%
PDCL5 #3 TXK TEC 83% 65% 100%
PDCL5 #4 LTK ALK 80% 74% 86%
PDCL5 #5 ITK TEC 79% 65% 93%
PDCL5 #6 FLT1 VEGFR 78% 91% 65%
PDCL5 #7 EPHB1 EPH 76% 61% 92%
PDCL5 #8 EPHB3 EPH 74% 61% 88%
PDCL5 #9 BTK TEC 72% 65% 78%
PDCL5 #10 EGFR EGFR 70% 83% 58%

Patient-Derived #1 LYN SRC 96% 96% 96%
Patient-Derived #2 TXK TEC 95% 91% 99%
Patient-Derived #3 TEC TEC 94% 91% 97%
Patient-Derived #4 LCK SRC 92% 96% 88%
Patient-Derived #5 BLK SRC 91% 96% 87%
Patient-Derived #6 SRMS SRC 87% 96% 79%
Patient-Derived #7 ITK TEC 86% 91% 80%
Patient-Derived #8 FRK FRK 84% 78% 91%
Patient-Derived #9 ROS1 SEV 80% 74% 85%
Patient-Derived #10 HCK SRC 78% 96% 60%

All #1 TXK TEC 96% 96% 97%
All #2 LYN SRC 96% 91% 100%
All #3 LCK SRC 95% 91% 99%
All #4 TEC TEC 93% 96% 91%
All #5 BLK SRC 90% 91% 88%
All #6 SRMS SRC 88% 91% 84%
All #7 FRK FRK 87% 83% 92%
All #8 PDGFRA PDGFR 84% 87% 81%
All #9 SRC SRC 84% 91% 76%
All #10 ABL1 ABL 84% 74% 93%

2.3. Expanded PTM-SEA and KEA3 Combinatory Analysis

Tables 3 and 4 expand our analyses to include results obtained through PTM-SEA and KEA3
bioinformatic pipelines. Table 3 provides unweighted average percentile rankings. Table 4 attempts to
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decrease false positives by weighting these averages according to the number of pipelines which identify
a given kinase as being responsible for the observed phosphorylation differences between a pancreatic
cancer cell line and patient-derived wild-type pancreas. As above, Tables 3 and 4 also combine results
from our two patient-derived pancreatic cancer cell lines (PDCL15, PDCL5; Patient-Derived) as well as
from all pancreatic cancer cell lines (PDCL15, PDCL5, PANC1; All).

Table 3. All pipelines’ (KRSA, UKA, PTM-SEA, and KEA3) average percentile rankings.

Cell Line Rank Kinase Family Average KRSA UKA PTM-SEA KEA3

PANC1 #1 DDR2 DDR 97% 96% - - 98%
PANC1 #2 TXK TEC 89% 100% 77% - 90%
PANC1 #3 SRMS SRC 86% 91% 85% - 81%
PANC1 #4 SRC SRC 82% 91% 92% 55% 91%
PANC1 #5 FYN SRC 81% 91% 88% 68% 78%
PANC1 #6 MST1R MET 76% 35% 97% - 95%
PANC1 #7 INSR INSR 75% 70% 64% 95% 72%
PANC1 #8 ABL1 ABL 75% 87% 95% 36% 82%
PANC1 #9 FGR SRC 73% 91% 83% - 45%
PANC1 #10 KIT PDGFR 72% 83% 35% - 97%

PDCL15 #1 DDR2 DDR 99% 100% - 98%
PDCL15 #2 SRC SRC 90% 96% 92% 82% 90%
PDCL15 #3 PTK7 PTK7 88% - 88% -
PDCL15 #4 TXK TEC 88% 91% 80% - 92%
PDCL15 #5 PDGFRA PDGFR 86% 87% 93% 68% 97%
PDCL15 #6 MST1R MET 86% 78% 87% - 93%
PDCL15 #7 SRMS SRC 84% 96% 73% - 82%
PDCL15 #8 KIT PDGFR 78% 87% 49% - 97%
PDCL15 #9 INSR INSR 73% 70% 57% 100% 65%
PDCL15 #10 TEC TEC 72% 91% 97% - 28%

PDCL5 #1 PTK7 PTK7 99% - 99% - -
PDCL5 #2 ROS1 SEV 97% 100% 95% - -
PDCL5 #3 DDR2 DDR 92% 87% - - 97%
PDCL5 #4 TXK TEC 87% 65% 100% - 95%
PDCL5 #5 EPHB3 EPH 82% 61% 88% - 98%
PDCL5 #6 LTK ALK 80% 74% 86% - -
PDCL5 #7 EPHB1 EPH 76% 61% 92% - 76%
PDCL5 #8 FLT4 VEGFR 76% 91% 43% - 93%
PDCL5 #9 ITK TEC 72% 65% 93% - 57%
PDCL5 #10 FLT1 VEGFR 72% 91% 65% - 59%

Patient-Derived #1 PTK7 PTK7 100% - 100% - -
Patient-Derived #2 DDR2 DDR 99% 100% - - 97%
Patient-Derived #3 TXK TEC 92% 91% 99% - 85%
Patient-Derived #4 SRMS SRC 84% 96% 79% - 76%
Patient-Derived #5 LCK SRC 80% 96% 88% 60% 78%
Patient-Derived #6 ROS1 SEV 80% 74% 85% - -
Patient-Derived #7 SRC SRC 79% 96% 45% 96% 81%
Patient-Derived #8 EPHB3 EPH 77% 65% 75% - 93%
Patient-Derived #9 FLT3 PDGFR 74% 87% 36% - 99%
Patient-Derived #10 ITK TEC 74% 91% 80% - 50%

All #1 DDR2 DDR 99% 100% - - 97%
All #2 PTK7 PTK7 96% - 96% - -
All #3 TXK TEC 93% 96% 97% - 85%
All #4 SRC SRC 85% 91% 76% 91% 82%
All #5 SRMS SRC 84% 91% 84% - 76%
All #6 LCK SRC 81% 91% 99% 55% 78%
All #7 PDGFRA PDGFR 75% 87% 81% 36% 96%
All #8 ROS1 SEV 74% 70% 79% - -
All #9 FLT3 PDGFR 73% 87% 33% - 99%
All #10 ITK TEC 72% 96% 65% - 56%
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Table 4. All pipelines’ (KRSA, UKA, PTM-SEA, and KEA3) weighted average percentile rankings.

Cell Line Rank Kinase Family Weighted Average KRSA UKA PTM-SEA KEA3

PANC1 #1 SRC SRC 82% 91% 92% 55% 91%
PANC1 #2 FYN SRC 81% 91% 88% 68% 78%
PANC1 #3 INSR INSR 75% 70% 64% 95% 72%
PANC1 #4 ABL1 ABL 75% 87% 95% 36% 82%
PANC1 #5 LCK SRC 71% 91% 100% 9% 85%
PANC1 #6 PDGFRA PDGFR 70% 83% 91% 9% 97%
PANC1 #7 TXK TEC 67% 100% 77% - 90%
PANC1 #8 RET RET 67% 26% 77% 77% 87%
PANC1 #9 EPHA2 EPH 65% 30% 59% 91% 81%
PANC1 #10 SRMS SRC 64% 91% 85% - 81%

PDCL15 #1 SRC SRC 90% 96% 92% 82% 90%
PDCL15 #2 PDGFRA PDGFR 86% 87% 93% 68% 97%
PDCL15 #3 INSR INSR 73% 70% 57% 100% 65%
PDCL15 #4 LYN SRC 72% 96% 99% 59% 34%
PDCL15 #5 PDGFRB PDGFR 71% 87% 65% 91% 41%
PDCL15 #6 LCK SRC 70% 96% 100% 0% 85%
PDCL15 #7 EPHA2 EPH 69% 74% 28% 91% 82%
PDCL15 #8 TXK TEC 66% 91% 80% - 92%
PDCL15 #9 FYN SRC 66% 96% 91% 0% 76%
PDCL15 #10 MST1R MET 64% 78% 87% - 93%

PDCL5 #1 ALK ALK 70% 74% 97% 63% 45%
PDCL5 #2 ZAP70 SYK 65% 52% 69% 70% 70%
PDCL5 #3 TXK TEC 65% 65% 100% - 95%
PDCL5 #4 JAK2 JAK 65% 43% 91% 53% 73%
PDCL5 #5 EGFR EGFR 62% 83% 58% 67% 42%
PDCL5 #6 KDR VEGFR 62% 91% 39% 30% 89%
PDCL5 #7 EPHB3 EPH 62% 61% 88% - 98%
PDCL5 #8 AXL AXL 59% 57% 28% 97% 54%
PDCL5 #9 CSK CSK 59% 13% 72% 87% 63%
PDCL5 #10 INSR INSR 58% 78% 23% 70% 61%

Patient-Derived #1 LCK SRC 80% 96% 88% 60% 78%
Patient-Derived #2 SRC SRC 79% 96% 45% 96% 81%
Patient-Derived #3 LYN SRC 72% 96% 96% 64% 32%
Patient-Derived #4 PDGFRA PDGFR 72% 87% 53% 52% 96%
Patient-Derived #5 TXK TEC 69% 91% 99% - 85%
Patient-Derived #6 INSR INSR 66% 83% 21% 100% 60%
Patient-Derived #7 EGFR EGFR 64% 61% 41% 92% 63%
Patient-Derived #8 EPHA2 EPH 64% 65% 39% 80% 72%
Patient-Derived #9 SRMS SRC 63% 96% 79% - 76%
Patient-Derived #10 EPHB3 EPH 58% 65% 75% - 93%

All #1 SRC SRC 85% 91% 76% 91% 82%
All #2 LCK SRC 81% 91% 99% 55% 78%
All #3 PDGFRA PDGFR 75% 87% 81% 36% 96%
All #4 LYN SRC 72% 91% 100% 59% 38%
All #5 TXK TEC 70% 96% 97% - 85%
All #6 INSR INSR 68% 78% 32% 100% 62%
All #7 EPHA2 EPH 64% 57% 43% 86% 72%
All #8 JAK2 JAK 64% 61% 68% 64% 63%
All #9 SRMS SRC 63% 91% 84% - 76%
All #10 FYN SRC 62% 91% 59% 23% 74%

3. Discussion

3.1. Identification of Lead Candidate Kinases

Our results confirm the activity of known protein tyrosine kinase-related pathways previously
reported as perturbed in pancreatic cancer [24–28]. These results also identify protein tyrosine kinases
as yet understudied or unreported in pancreatic cancer. Because our experimental model allows us to
maintain the integrity of kinase networks, our data suggest involvement of signaling pathways and
regulatory cascades in pancreatic cancer pathophysiology. This study presents evidence in support of
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the continued development of previously established inhibitory therapeutics that target select protein
kinases, such as epidermal growth factor receptor (EGFR) [25], ephrin receptor A2 (EPHA2) [29],
and SRC proto-oncogene kinase (SRC) [27], and our experimental results identify new PDAC targets,
such as B lymphoid kinase (BLK), lymphocyte cell-specific kinase (LCK), and ABL proto-oncogene 2
kinase (ABL2), which may play a critical role in cancer cell biochemistry or desmoplastic inflammatory
cell behavior.

While data gained from reductionist kinase investigations have previously been used to
support other complex biochemical studies such as mass spectrometry-based proteomic studies [30],
peptide-based kinome array profiling offers unique advantages. Traditionally, peptides identified as
kinase targets are probed in vitro and in vivo to examine the behavior of a given kinase. Following
that, genetic techniques that knockdown or constitutively express a given kinase further probe the
activity of that kinase within normal or experimental biological milieus. But many of these strategies
are unable to measure multiple kinases simultaneously while also maintaining kinomic network
integrity in complex biological samples. Peptide-based kinome array profiling can accomplish this by
overcoming kinase isolation requirements in order to evaluate hundreds of kinases simultaneously.
This study was designed as a series of hypotheses generating experiments. Although our experimental
designs did not allow us to draw definitive conclusions, our experimental results fall into one of two
major categories, which we have termed “reference kinases” and “neoteric kinases.” The first category,
“reference kinases,” represents kinases with well-established roles in human cancer pathophysiology.
The second category, “neoteric kinases,” represents candidate kinases potentially contributing to PDAC
pathology in new or previously understudied ways.

3.2. Reference Kinases

Reference kinases include protein tyrosine kinases identified by our study and subsequent
bioinformatic analyses that recapitulate previously reported findings in the field of human cancer
biology. Kinases in this category provide reference data that passively validate our experimental
observations and contextualize our results within the scope of verified kinase discoveries.

One notable reference kinase identified as differentially active in our study of PDAC cells is
the EGFR tyrosine kinase. Previously, EGFR has been linked to pancreatic tumor size, advanced
clinical staging, and poor survival [28]. The expression frequency of EGFR in human pancreatic
carcinomas is reported as 43% [28] and 68.4% in primary invasive ductal carcinoma of the pancreas [31]
with elevated expression of EGFR activating ligands also reported. Consistent with these reports,
our results show differential EGFR activity in weighted analyses of PDCL5 (Figure 4, Tables 2 and 4)
and aggregated patient-derived cell lines (Table 4). Directionality (increased kinase phosphorylation
activity or decreased kinase phosphorylation activity) within each cell line can be gleaned from KRSA’s
report of the log2-fold change of phosphorylated peptide substrates attributed to each kinase family
(Figure A1, Figure A2, or Figure A3) or by UKA’s report of an individual kinase’s mean kinase statistic
(Table A1). In our study, EGFR demonstrated increased phosphorylation activity in pancreatic cancer
compared to control. Inhibition of the EGFR tyrosine kinase improves survival in PDAC animal
models [25]. As such, targeted inhibition of tyrosine kinases, including EGFR, is a popular goal of many
emerging therapeutic strategies [2]. Erlotinib (OSI-774) is an FDA-approved small-molecule EGFR
tyrosine kinase inhibitor for use in pancreatic cancer [3]. Many additional small-molecule tyrosine
kinase inhibitors are currently under study or in various stages of clinical trial for their putative role in
pancreatic cancer pathophysiology.

The vascular endothelial growth factor receptor (VEGFR) tyrosine kinase family is also heavily
implicated in the development of pancreatic cancer [32]. VEGFR-3, also known as fms related receptor
tyrosine kinase 4 (FLT4), has been explored as a target for pancreatic cancer therapy [24,33] with
significantly upregulated FLT4 expression documented in pancreatic cancer specimens [34,35]. Beyond
PDAC, single nucleotide polymorphisms (SNPs) of FLT4 correlate with decreased progression-free
survival of patients with gastroenteropancreatic neuroendocrine neoplasms [36]. Our results
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demonstrate increased FLT4 kinase activity in PDAC cells. In the present study, we identified
FLT4 as one of the most differentially active kinases in PDCL5 patient-derived PDAC samples
according to average percentile rankings across all pipelines (Table 3). KRSA and UKA directionality
metrics (Figure A3, Table A1) demonstrate increased FLT4 activity in pancreatic cancer compared to
wild-type controls.

Several kinases consistently identified as differentially active across multiple pipelines, cell lines,
or final combinatorial analyses recapitulate kinases previously identified as playing well-established
roles in a variety of human cancer pathologies. These kinases include insulin receptor (INSR)
kinase [37,38] (Figures 2 and 3, Tables 3 and 4), EPHA2 kinase [29,39–46] (Figures 2 and 3, Table 4),
platelet-derived growth factor receptor alpha (PDGFRA) kinase [47–51] (Figures 2 and 3, Tables 1–4),
SRC kinase [26,27,52–57] (Figures 2 and 3, Tables 1–4), and tyrosine kinase nonreceptor 2 (TNK2)
kinase [58–64] (Figure 4, Table 1). Of these, EPHA2 is particularly well characterized in PDAC with other
groups recently presenting evidence of EPHA2-mediated drug resistance in pancreatic cancer cells [29]
and proposing EPHA2 as a potential biomarker or therapeutic target in pancreatic cancer [29,40].
SRC, too, has a well-established evidence base supporting its role in PDAC [27]. Furthermore, many
of these kinases are known to constitute important signaling axes in pancreatic cancer. PDGFR/SRC
signaling is a therapeutic target in pancreatic cancer [26] with reports of SRC also potentiating PDGFRA
activity in other cancer models. TNK2 (also known as ACK1) associates with EGFR in cancer cells to
maintain EGFR on the cell surface and enhance human breast cancer cell migration and invasion [65].
Again, this relationship seems to have some degree of bidirectionality, with EGFR influencing TNK2
activation [66,67]. Identification of multiple kinase pairs constituting previously reported signaling
axes is encouraging and supports the validity of our experimental design in maintaining the integrity
of kinomic signaling networks.

These results lend strength not only to our experimental and bioinformatic identification of
differentially active kinases in pancreatic cancer, but also suggest that kinases identified as among
the most strongly differential (e.g., in the top 10) in unweighted average percentile rankings (Table 1
or Table 3) and in the corresponding weighted average percentile rankings (Table 2 or Table 4) may
represent kinases highly likely to contribute to the pathophysiologic processes of PDAC.

3.3. Neoteric Kinases

Neoteric kinases represent a second, smaller category of experimental findings that include
kinases whose identification in our study and bioinformatic analyses suggest new, hitherto unidentified,
or otherwise understudied kinase functionalities in PDAC. Because these kinases are not strictly “novel,”
we instead call this group “neoteric” in reference to the emerging roles these kinases may play in
pancreatic tumor desmoplasia, immune response, and oncometabolism. Beyond the passive validation
that our “reference kinase” group provides, this group of “neoteric kinases” provides potentially novel
insights. It became evident, after identifying lead candidate kinases, that our data highlight several
potential players in unique aspects of PDAC tumor development. Kinases that appear both in our
final unweighted average percentile rankings and in our final weighted average percentile rankings
are defined as lead candidate kinases and include BLK (Figures 2 and 3, Tables 1 and 2), Fyn-related
kinase (FRK) (Figure 3, Tables 1 and 2), Lck/Yes-related novel kinase (LYN) (Figures 2 and 3, Table 1,
Table 2, and Table 4), FYN proto-oncogene kinase (FYN) (Figures 2 and 3, Tables 1–4), LCK (Figures 2
and 3, Tables 1–4), and tec protein kinase (TEC) (Figures 2 and 3, Tables 1–3). Additional kinases
identified by one or more bioinformatic pipelines define candidate kinases and include hemopoietic
cell kinase (HCK) (Figure 3, Table 2), ABL2 (Figure 2, Table 2), discoidin domain receptor 1 kinase
(DDR1) (Table S1), and ephrin receptor A8 kinase (EPHA8) (Table S1). While some of these kinases have
been previously identified in kinome or phosphorylome studies of pancreatic cancer (e.g., DDR1 [9],
FYN [68]), we classified them as neoteric for the purposes of this discussion because sufficient questions
remain as to how these kinases relate to PDAC pathology, treatment, or molecular signaling.
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Pronounced deposition of extracellular matrix constituents and the aberrant propagation of
fibroblasts characteristic of desmoplasia are common in PDAC tumor microenvironments. Desmoplasia
acts as a biophysical barrier contributing to pancreatic cancer therapeutic resistance. Desmoplastic
stroma and pancreatic tumor cells interact with one another to elicit complex cellular behaviors with
seemingly contradictory roles in PDAC progression [69]. At times pro-tumorigenic [70] and at times
anti-tumoral [69], the role of desmoplasia in PDAC remains an active area of study. Our identification
of increased HCK, ABL2, DDR1, FYN, and LYN suggests a role for these kinases in the desmoplastic
reactions that contribute to the poor survival rates of PDAC patients. HCK overexpression activates
fibrotic pathways [71]. ABL2 signaling regulates fibroblast proliferation [72]. DDR1 inhibitors reduce
fibrosis in other fibrotic diseases [73–76]. FYN regulates downstream serine-threonine kinase activities
involved in the modulation of fibroblast–epithelial cell interactions and the promotion of organ
fibrosis [77,78]. Serotonin promotes fibroblast activation and collagen deposition [79]. LYN mediates
pro-tumor serotonin signaling [80].

Desmoplasia serves as the primary source of the cytokines and chemokines that facilitate tumor
progression in PDAC [81]. While immunotherapeutic strategies have significantly impacted clinical
success in many other human malignancies, pancreatic cancer remains resistant. LCK is an important
regulator of immune cell functionality [82]. TEC is a key player in the inflammatory response of
pancreatitis [83]. The LCK and TEC kinases identified in the present study may also play a role in the
anti-cancer immune response elicited and frequently evaded by PDAC.

The final effector proteins and terminal nodes for many kinase cascades are transcription factors.
Our identification of BLK as a differentially active tyrosine kinase in PDAC cells compared to wild-type
pancreatic cells presents new insight into the role that the pancreatic and duodenal homeobox 1 (PDX1)
transcription factor plays in tumor progression. Overexpression of BLK induces an increase in the
PDX1 transcription factor in the cytoplasm and nucleus [84]. The biological functionalities of the PDX1
transcription factor are multitudinous and context dependent. Our group has published extensively
on the pro-tumorigenic role of the PDX1 transcription factor in pancreatic cancer progression [85–91],
while other groups have demonstrated antimetastatic [92] and tumor-suppressive effects [93]. Recent
evidence shows PDX1 functionality and its multiple—often antagonistic—effects on pancreatic cancer
are stage-specific [93,94]. Our data suggest potential mechanistic relationships by which BLK kinase
signaling cascades may contribute to PDX1′s multifaceted role in PDAC.

PDX1, originally known as insulin promoter factor 1 (IPF1), also serves as a transcriptional
activator for metabolic genes such as insulin and glucose transporter type 2. Intersection between
the PDX1 transcription factor, the BLK, and INSR kinases, as well as the role these kinases play
in oncometabolic processes, will be examined in future studies. PDAC cells experience extreme
deprivation of nutrient and oxygen delivery. Our data also implicate LYN, EPHA8, and FYN kinases
as potential actors in oncometabolic PDAC signaling pathways and suggest mechanisms by which
these kinases may facilitate oncogenic behavior.

Identification of these kinases in the present study contributes to growing understanding of
abnormal fibrotic processes prominent in PDAC, dysregulated transcription factor activity, anti-cancer
immune response, and the complex kinomic signaling networks responsible for pathometabolic tumor
regulation and nutrient delivery. As novel PDAC subtypes continue to be defined [7,8,10,11,95–97],
it is clear that therapeutic strategies for PDAC must take different genetic backgrounds into account.
The mutational profiles for the patient-derived cell lines used in this study (Table A2) provide useful
insights into which protein tyrosine kinases may serve as effective targets of personalized/precision
therapeutic intervention (Figure A4).
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4. Materials and Methods

4.1. Experimental Design

The experimental design is illustrated in Figure 1. In brief, PDAC epithelial cells and normal
pancreatic ductal epithelial cells derived from patients were subjected to kinome array analysis using
the PamStation 12 platform. All samples were prepared and assayed sequentially using Tyrosine
Kinase PamChips consisting of 196 peptides with known phosphorylation sequences representing
over 100 different proteins associated with the activity of upstream kinases. Each sample was assayed
in triplicate with the results averaged across three identical kinome array runs.

4.2. Cell Lines and Patient-Derived Tissue

We used three different pancreatic cancer cell lines: one commercial cell line and two
patient-derived cell lines (PDCL). We used commercial (ATCC CRL-1469) PANC1 cells originating
from human pancreatic ductal cells carrying a TP53_R273H mutation and a KRAS_G12D mutation [98].
Two patient-derived cell lines (PDCL5, original name TKCC-05; PDCL-15, original name TKCC-15-Lo)
were kindly provided by Andrew Biankin from Wolfson Wohl Cancer Research Centre, UK,
with authentication by STR [90]. PDCL5 carries a TP53_G245S mutation and a KRAS_G12V mutation,
while PDCL15 carries only a KRAS_G12D mutation (Table A2). These mutational profiles were kindly
provided by Andrew Biankin and confirmed by F. Charles Brunicardi and Shi-He Liu. Normal
patient-derived pancreatic ductal tissue was harvested from a healthy donor and kindly provided by
Camillo Ricordi at the Diabetes Research Institute, University of Miami Miller School of Medicine,
under the material transfer agreement. Because traditional two-dimensional cell culture models fail
to accurately represent cancer microenvironments, we endeavored to obtain control tissue that more
accurately represents physiological conditions. The pancreatic tissue contains ductal cells, acinar cells,
and other elements included in the pancreatic microenvironment. While our decision to compare
cell lines with wild-type pancreatic tissue may introduce a degree of bias into the study (cell lines
and tissue samples contain different cellular contexts and environments), we used identical control
wild-type tissue for each cell line comparison. All experiments and procedures were performed in
strict compliance with all relevant laws and institutional guidelines.

Cell lines were cultured and lysed 72 h after plating, and tissue samples were processed as
previously described [90]. All procedures were performed on ice. Tissue homogenization was
performed using a D2400 Homogenizer and 1.5-mm Triple-Pure Zirconium Beads, with five rounds
of homogenization and liquid nitrogen cooling to maintain low temperatures and minimize protein
degradation. Each round of homogenization consisted of three cycles, with each cycle consisting of 30 s
of active homogenization at 7 m/s and 30-second intervals between cycles. Tissue and cell lysate protein
extractions were performed using M-PER (mammalian protein extraction reagent) (ThermoFisher,
Waltham, MA, USA) and Halt Protease and Phosphatase Inhibitor Cocktails (ThermoFisher). Samples
were centrifuged (14,000 RPM, 10 min, 4 ◦C) before supernatant collection. Total protein concentrations
were assayed (Pierce BCA Protein Assay Kit, ThermoFisher) and samples were diluted to 1 µg/µL.
All samples were prepared and measured simultaneously. Because freeze–thaw cycles decrease kinase
activity [99], multiple aliquots were stored at −80 ◦C to minimize freeze–thaw cycles, with frozen
aliquots used only once for kinome array assays.

4.3. Tyrosine Kinase Array

Tyrosine kinase activity was measured with the PamStation 12 instrument (PamGene International,
’s-Hertogenbosch, The Netherlands) and PTK (4-well) array PamChips using fluorescently labeled
antibodies to detect differential phosphorylation of 196 reporter peptides (including three internal
controls) per well. These 196 consensus phosphopeptide sequences were immobilized on porous
ceramic membranes. The PamChip wells were blocked with 2% bovine serum albumin (BSA) prior to
addition of 1 µg of protein suspended in manufacturer’s kinase buffer (PamGene). Next, we added
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157 µM adenosine triphosphate (ATP) and FITC-labeled anti-phospho tyrosine antibodies (PamGene)
to each well. Homogenized lysates containing active kinases and assay solution were pumped back and
forth through PamChip wells in order to facilitate interactions between the active kinases and the 196
immobilized consensus phosphopeptide sequences. Evolve (PamGene) software captured FITC-labeled
anti-phospho-antibodies bound to the phosphorylated consensus sequences. Image capture occurred
every six seconds for 60 min. After washing, peptide signal intensity was recorded across several
exposure times (10, 20, 50, 100, 200 milliseconds). The linear regression slope was calculated in order to
provide the peptide phosphorylation intensity signal used in downstream comparative analyses. Signal
ratios between pairs of samples were used to calculate fold change (FC) for each peptide. Differential
peptide signals greater than or equal to 30% (FC ≥ 1.30 or FC ≤ 0.70) were considered demonstrative of
minimum threshold changes in the degree of phosphorylation. This threshold value derived from
conservative interpretation of previous literature suggesting even smaller orders of magnitude are
sufficiently correlated with biologically relevant signaling changes [16,100,101]. Nonlinear (R2 values
less than 0.90) or undetectable peptides in the post-wash phase were not selected for further analysis.
Kinome assays were performed in triplicate with the calculated FC per peptide averaged across
three replicates.

4.4. Upstream Kinase Identification

Kinase activity corresponded to the degree of consensus peptide phosphorylation as measured
using real-time Evolve kinetic image capture software. The raw data generated by the PamStation
platform were minimally processed (using threshold changes described above) to generate a list of
differentially phosphorylated peptide sequences, which served as input for subsequent bioinformatic
analyses. To expand coverage of peptide sequences and maximize identification of candidate upstream
kinases, we used four distinct bioinformatic pipelines, each with a semi-overlapping set of databases by
which their respective algorithms queried our list of differentially phosphorylated peptide sequences.
Because each pipeline also relied upon a unique pipeline-specific algorithm, evaluating the results
of one pipeline within the context of the results obtained through the other three pipelines allowed
for enhanced perspective. Shared identification of upstream kinases responsible for the observed
peptide phosphorylation patterns between pipelines could, therefore, be weighted and integrated
into the final analysis. These pipelines include (1) Upstream Kinase Analysis (UKA) from PamGene,
(2) Post-Translational Modification Signature Enrichment Analysis (PTM-SEA) from the Broad Institute
of MIT and Harvard, (3) Kinase Enrichment Analysis Version 3 (KEA3) from the Ma’ayan laboratory,
and (4) Kinome Random Sampling Analyzer (KRSA) developed by our own laboratory [12–17].
Meaningful differences between pipelines were compared in the Discussion section, while the methods
by which we deployed each pipeline are presented below.

4.4.1. Upstream Kinase Analysis (UKA) Pipeline

Using PamGene’s BioNavigator software, we ran our data sets through the Protein Tyrosine Kinase
(PTK) Upstream Kinase Analysis (UKA) Knowledge Integration PamApp. These data sets included
(1) mean phosphorylated peptide sequences of PDCL15 vs. wild-type, (2) mean phosphorylated peptide
sequences of PDCL5 vs. wild-type, and (3) mean phosphorylated peptide sequences of PANC1 vs.
wild-type. Sample names served as the factor uniquely defining each observation. The “treatment off

chip” factor served as the factor defining the experimental groupings. The default scan rank (4 to 12) and
permutation (500) parameters were applied to the analysis, in addition to the default in vitro/in vivo (1),
in silico (PhosphoNET) (1), minimal sequence homology (0.9), minimal PhosphoNET prediction score
(300), and minimal peptide set (3) parameters. Inclusive percentile ranks were calculated according to
the absolute value of UKA’s Median Final Score output.
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4.4.2. Post-Translational Modification Signature Enrichment Analysis (PTM-SEA) Pipeline

We used the Broad Institute’s Single sample Gene Set Enrichment Analysis (ssGSEA) and
Post-Translational Modification Signature Enrichment Analysis (PTM-SEA) publicly available
repository (https://github.com/broadinstitute/ssGSEA2.0), RStudio Desktop 1.2.5042 (https://rstudio.
com), and underlaying R 3.3.1 software environment (https://cran.rstudio.com). We ran our data sets
through the PTM-SEA pipeline after modifying the peptide database to include only the peptide
sequences present on the PamChip plus all peptide sequences with minimal sequence homologies of
0.9. These data sets include (1) mean phosphorylated peptide sequences of PDCL15 vs. wild-type,
(2) mean phosphorylated peptide sequences of PDCL5 vs. wild-type, and (3) mean phosphorylated
peptide sequences of PANC1 vs. wild-type. Results were filtered to include only protein tyrosine
kinases. PTM-SEA inclusive percentile ranks were determined according to each kinase’s respective
1/fdr.pvalue.totalGeoMeanLFC output value.

4.4.3. Kinase Enrichment Analysis Version 3 (KEA3) Pipeline

We used the Ma’ayan laboratory’s Kinase Enrichment Analysis Version 3 (KEA3) (https://amp.
pharm.mssm.edu/kea3/#) to process our data sets. These data sets include (1) mean phosphorylated
peptide sequences of PDCL15 vs. wild-type, (2) mean phosphorylated peptide sequences of PDCL5 vs.
wild-type, and (3) mean phosphorylated peptide sequences of PANC1 vs. wild-type. To accommodate
the input parameters of KEA3, these peptide sequences were converted to HGNC-approved gene
symbols before the data sets were entered into the KEA3 pipeline. Results were filtered to include only
protein tyrosine kinases. Average FDR p-values from 0.2, 0.3, and 0.4 LFC cutoff input lists were averaged
according to ChengKSIN, PTMsigDB, or PhosDAll database outputs. The resultant ChengKSIN,
PTMsigDB, and PhosDAll average values were themselves averaged and −log10 transformations of
these averages were used for inclusive percentile ranking calculations.

4.4.4. Kinome Random Sampling Analyzer (KRSA) Pipeline

Our laboratory developed Kinome Random Sampling Analyzer (KRSA) (version 2.0, Toledo,
OH, USA) to associate differentially phosphorylated peptide sequences with specific kinases [12–17].
To accomplish this, we mapped phosphorylation sites within the reporter peptides to individual
protein kinases that phosphorylate these sites. To this end, multiple databases were queried including
GPS 5.0 (http://gps.biocuckoo.cn), Kinexus Phosphonet (http://www.kinexus.ca), PhosphoELM (http:
//phospho.elm.eu.org), and PhosphoSite Plus (https://www.phosphosite.org). In this way, peptide
sequences and kinases were matched such that ranked predictions were generated to identify tyrosine
kinases most likely to have produced the observed phosphorylation results. Kinases with scores
greater than twice the prediction threshold for each phosphorylation site in the GPS 5.0 database were
carried forward for downstream analysis. The top five kinase predictions in the Kinexus database
were also carried forward for downstream analysis. Additional kinases reported to act on specific
phosphorylation sites were identified using PhosphoELM and Phosphosite Plus public databases and
carried forward for downstream analysis. Downstream analysis consists of 3000 random sampling
iterations in which an equal number of differentially phosphorylated peptide sequences are randomly
selected from the total list of 196 phosphopeptide sites on the tyrosine kinase PamChip. Predicted
kinases were then mapped to each iteration in order to generate comparative controls to which the
experimentally generated kinase lists could be compared. This allowed meaningful approximations of
the direction of activity (increased or decreased) and significance for each experimentally identified
kinase. Inclusive percentile ranks were calculated according to mean LFC output. KRSA is publicly
available at https://github.com/kalganem/KRSA. Because KRSA identifies kinase families rather than
individual kinases, all kinases within a family were given identical scores.

https://github.com/broadinstitute/ssGSEA2.0
https://rstudio.com
https://rstudio.com
https://cran.rstudio.com
https://amp.pharm.mssm.edu/kea3/
https://amp.pharm.mssm.edu/kea3/
http://gps.biocuckoo.cn
http://www.kinexus.ca
http://phospho.elm.eu.org
http://phospho.elm.eu.org
https://www.phosphosite.org
https://github.com/kalganem/KRSA
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4.5. Combinatory Analyses

To resolve different output metrics, the results of each respective pipeline were converted to
inclusive percentile rankings. These inclusive percentile rankings were aggregated according to cell
line and protein tyrosine kinase and averaged per cell line (PANC1, PDCL15, PDCL5) or per cell line
group (Patient-derived cell line group: PDCL15 and PDCL5; All group: PANC1, PDCL15, PDCL5).
Weighted averages were calculated by dividing average percentile rankings by the number of pipelines
under consideration.

4.6. Peptide Identities, Gene Synonyms, Family Designations, and Other Mapped Data

To resolve different output terms and provide additional contextual information, several sources
were consulted for peptide identities, gene synonyms, kinase family designations, and other categorical
or descriptive terms. These sources include UniProt’s Human and mouse protein kinases: classification
and index (https://www.uniprot.org) [102–104], as well as kinase.com (http://kinase.com/) [103], GPS 5.0
(http://gps.biocuckoo.cn) [105,106], The GeneCards’ human gene database (https://www.genecards.org/),
and HUGO Gene Nomenclature Committee (HGNC) (https://www.genenames.org/). Full listing of
approved human gene nomenclature can be found in Appendix B, Table A3. Nomenclature mapping
can be found in Appendix B, Table A4.

4.7. Figure Generation

Figures created with BioRender.com (Toronto, Ontario, Canada), Adobe Creative Suite (San Jose,
CA, USA), and R (version 3.6.3). Additional figure panels created with KRSA, UKA/BioNavigator,
PTM-SEA, or KEA3.

5. Conclusions

This study provides evidence in support of previously reported kinases in human cancer with
an emphasis on PDAC. This passive validation supports the strength of ongoing drug development
strategies that target protein tyrosine kinases and propounds the utility and accuracy of peptide-based
kinomic analytical platforms. Furthermore, our identification and contextualization of candidate or
lead candidate kinases responsible for the differential phosphorylation signatures observed between
PDAC commercial or patient-derived cell lines compared to wild-type pancreatic patient samples
provides evidence of unique kinomic relationships between pancreatic tumor cells and the desmoplastic
stromal environments that support tumor progression and cause significant obstacles in pancreatic
cancer therapy. Identification of the BLK, HCK, FRK, ABL2, DDR1, LYN, EPHA8, FYN, LCK, and TEC
kinases as potentially significant mediators of pancreatic cancer progression and fibrotic/desmoplastic
development fits well into established knowledge while also advancing new avenues of drug
development and discovery. Additionally, our data provide increased understanding of the relationship
between BLK protein tyrosine kinase, PDX1 transcription factor, and pancreatic disease. This study
also outlines additional mechanisms by which HCK, ABL2, and DDR1 may play a role in pancreatic
cancer and fibrosis. These results also support the role of LYN in oncometabolic processes and posit
pathways by which LYN, EPHA8, and FYN may facilitate oncogenic cellular behavior. Lastly, we
provide a rationale for continued investigation of the complex interplay between anti-cancer immune
response and the activity of LCK and TEC kinases. These findings are summarized in Figure 5, and our
companion review piece provides additional information on the role of BLK, HCK, FRK, ABL2, DDR1,
LYN, EPHA8, FYN, LCK, and TEC kinases in PDAC and pancreatic cancer desmoplasia [107].

https://www.uniprot.org
http://kinase.com/
http://gps.biocuckoo.cn
https://www.genecards.org/
https://www.genenames.org/
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Figure 5. Summary figure illustrating kinases showing increased enzymatic phosphorylation activity
in PDAC and their potential roles in the disease process. Solid black arrows indicate relationships
between kinases or other proteins. (A) The neoteric kinase group includes candidate kinases potentially
contributing to PDAC pathology in new or previously understudied ways; the reference kinase group
includes kinases with well-established roles in human cancer pathophysiology. (B) Kinases are clustered
by linkage to the processes that might underlie their involvement in PDAC.
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Abbreviations

PDAC Pancreatic ductal adenocarcinoma
KRSA Kinome Random Sampling Analyzer
UKA Upstream Kinase Analysis
PTM-SEA Post-Translational Modification Signature Enrichment Analysis
KEA3 Kinase Enrichment Analysis Version 3
Z Standard score
FC Fold change
LFC Log fold change
R2 R-squared statistical measure
HGNC HUGO Gene Nomenclature Committee
ssGSEA Single sample Gene Set Enrichment Analysis
PDCL5 Patient-derived pancreatic ductal adenocarcinoma cell line 5
PDCL15 Patient-derived pancreatic ductal adenocarcinoma cell line 15
SNP Single nucleotide polymorphism
PDX1, IPF1 Pancreatic and duodenal homeobox 1 transcription factor
BSA Bovine serum albumin
LCK LCK proto-oncogene, Src family tyrosine kinase
DDR2 Discoidin domain receptor tyrosine kinase 2
LYN LYN proto-oncogene, Src family tyrosine kinase
SRC SRC proto-oncogene, non-receptor tyrosine kinase
ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase
TEC Tec protein tyrosine kinase
FYN FYN proto-oncogene, Src family tyrosine kinase
BLK BLK proto-oncogene, Src family tyrosine kinase
TXK TXK tyrosine kinase
SRMS Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites
PDGFRA Platelet-derived growth factor receptor alpha
FRK Fyn-related Src family tyrosine kinase
PTK7 Protein tyrosine kinase 7 (inactive)
ROS1 ROS proto-oncogene 1, receptor tyrosine kinase
TNK2 Tyrosine kinase non receptor 2
ALK ALK receptor tyrosine kinase
LTK Leukocyte receptor tyrosine kinase
ITK IL2 inducible T cell kinase
FLT1 Fms-related receptor tyrosine kinase 1
EPHB1 EPH receptor B1
ABL2 ABL proto-oncogene 2, non-receptor tyrosine kinase
HCK HCK proto-oncogene, Src family tyrosine kinase
EPHB3 EPH receptor B3
BTK Bruton tyrosine kinase
EGFR Epidermal growth factor receptor
MST1R Macrophage stimulating 1 receptor
INSR Insulin receptor
FGR FGR proto-oncogene, Src family tyrosine kinase
KIT KIT proto-oncogene, receptor tyrosine kinase
FLT4 Fms-related receptor tyrosine kinase 4
FLT3 Fms-related receptor tyrosine kinase 3
RET Ret proto-oncogene
EPHA2 EPH receptor A2
PDGFRB Platelet-derived growth factor receptor beta
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ZAP70 Zeta chain of T cell receptor-associated protein kinase 70
JAK2 Janus kinase 2
KDR Kinase insert domain receptor
AXL AXL receptor tyrosine kinase
CSK C-terminal Src kinase
MET MET proto-oncogene, receptor tyrosine kinase
SEV Sevenless
SYK Spleen-associated tyrosine kinase
VEGFR Vascular endothelial growth factor receptor
TYRO3 TYRO3 protein tyrosine kinase
EPHB4 EPH receptor B4
PTK6 Protein tyrosine kinase 6
YES1 YES proto-oncogene 1, Src family tyrosine kinase
CSF1R Colony stimulating factor 1 receptor
FES FES proto-oncogene, tyrosine kinase
INSRR Insulin receptor-related receptor
FGFR4 Fibroblast growth factor receptor 4
JAK3 Janus kinase 3
MATK Megakaryocyte-associated tyrosine kinase
FGFR3 Fibroblast growth factor receptor 3
ERBB3 Erb-b2 receptor tyrosine kinase 3
BMX BMX nonreceptor tyrosine kinase
IGF1R Insulin-like growth factor 1 receptor
NTRK1 Neurotrophic receptor tyrosine kinase 1
EPHA4 EPH receptor A4
EPHB2 EPH receptor B2
NTRK3 Neurotrophic receptor tyrosine kinase 3
FER FER tyrosine kinase
FGFR2 Fibroblast growth factor receptor 2
EPHA1 EPH receptor A1
ERBB4 Erb-b2 receptor tyrosine kinase 4
FGFR1 Fibroblast growth factor receptor 1
DDR1 Discoidin domain receptor tyrosine kinase 1
EPHA5 EPH receptor A5
JAK1 Janus kinase 1
EPHA7 EPH receptor A7
ERBB2 Erb-b2 receptor tyrosine kinase 2
NTRK2 Neurotrophic receptor tyrosine kinase 2
TYK2 Tyrosine kinase 2
PTK2 Protein tyrosine kinase 2
SLTM SAFB-like transcription modulator
EPHA8 EPH receptor A8
EPHA3 EPH receptor A3
MERTK MER proto-oncogene, tyrosine kinase
RYK Receptor-like tyrosine kinase
PTK2B Protein tyrosine kinase 2 beta
STYK1 Serine/threonine/tyrosine kinase 1
TEK TEK receptor tyrosine kinase
AATK Apoptosis-associated tyrosine kinase
MTTP Microsomal triglyceride transfer protein
TPM3 Tropomyosin 3
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Appendix A

Figure A1. Differential phosphorylation levels of peptide sequences attributed to kinase family activity
in PANC1 vs. wild-type control. Each red dot in a column represents one peptide sequence whose
phosphorylation is performed by that column’s kinase family. The y axis reports log2-fold change
and the x axis identifies the kinase family. Black dots represent peptides that did not demonstrate
differential phosphorylation in PANC1 samples compared to wild-type samples, with the dashed
horizontal line representing a positive or negative 0.2 log2-fold change cutoff. Red dots above these
lines represent peptides that are more phosphorylated in PANC1 compared to control. Red dots that
are below these lines represent peptides that are less phosphorylated in PANC1 compared to control.
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Figure A2. Differential phosphorylation levels of peptide sequences attributed to kinase family activity
in PDCL15 vs. wild-type control. Each red dot in a column represents one peptide sequence whose
phosphorylation is performed by that column’s kinase family. The y axis reports log2-fold change
and the x axis identifies the kinase family. Black dots represent peptides that did not demonstrate
differential phosphorylation in PDCL15 samples compared to wild-type samples, with the dashed
horizontal line representing a positive or negative 0.2 log2-fold change cutoff. Red dots above these
lines represent peptides that are more phosphorylated in PDCL15 compared to control. Red dots that
are below these lines represent peptides that are less phosphorylated in PDCL15 compared to control.
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Figure A3. Differential phosphorylation levels of peptide sequences attributed to kinase family activity
in PDCL5 vs. wild-type control. Each red dot in a column represents one peptide sequence whose
phosphorylation is performed by that column’s kinase family. The y axis reports log2-fold change and
the x axis identifies the kinase family. Black dots represent peptides that did not demonstrate differential
phosphorylation in PDCL5 samples compared to wild-type samples, with the dashed horizontal line
representing a positive or negative 0.2 log2-fold change cutoff. Red dots above these lines represent
peptides that are more phosphorylated in PDCL5 compared to control. Red dots that are below these
lines represent peptides that are less phosphorylated in PDCL5 compared to control.
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Figure A4. Comparison of protein tyrosine kinases identified in patient-derived cell lines. For each
comparison yellow circles represent differentially active protein tyrosine kinases in PDCL15, blue
circles represent differentially active protein tyrosine kinases in PDCL5, and green overlapping area
represents differentially active protein tyrosine kinases in PDCL15 and PDCL5. (A) Comparison of
top 10 differentially active protein tyrosine kinases according to UKA and KRSA average percentile
rankings. (B) Comparison of top 10 differentially active protein tyrosine kinases according to UKA and
KRSA weighted average percentile rankings. (C) Comparison of top 10 differentially active protein
tyrosine kinases according to all pipelines (KRSA, UKA, PTM-SEA, and KEA3) average percentile
rankings. (D) Comparison of top 10 differentially active protein tyrosine kinases according to all
pipelines (KRSA, UKA, PTM-SEA, and KEA3) weighted average percentile rankings.
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Table A1. UKA mean kinase statistic describes direction of differential kinase activity.

Cell Line Kinase Mean Kinase Statistic Direction

PDCL15 BLK 10.30884201 Increased
PANC1 BLK 3.809077325 Increased
PDCL5 BLK 0.963873271 Increased

PDCL15 EGFR 6.92042103 Increased
PANC1 EGFR 2.196020549 Increased
PDCL5 EGFR 0.723998698 Increased

PDCL15 EphA2 6.538112723 Increased
PANC1 EphA2 2.767994333 Increased
PDCL5 EphA2 0.663688934 Increased

PDCL15 FLT4 5.969120078 Increased
PANC1 FLT4 1.888408842 Increased
PDCL5 FLT4 0.754741786 Increased

PDCL15 FRK 10.54460498 Increased
PANC1 FRK 3.517514717 Increased
PDCL5 FRK 0.581814545 Increased

PDCL15 Fyn 11.52215741 Increased
PANC1 Fyn 4.046633984 Increased
PDCL5 Fyn 0.080983021 Increased

PDCL15 InSR 8.923873567 Increased
PANC1 InSR 3.024794143 Increased
PDCL5 InSR 0.508668865 Increased

PDCL15 Lck 12.35321414 Increased
PANC1 Lck 4.06073018 Increased
PDCL5 Lck 0.177602219 Increased

PDCL15 Lyn 11.88473844 Increased
PANC1 Lyn 4.172287974 Increased
PDCL5 Lyn 0.620188468 Increased

PDCL15 PDGFR[alpha] 14.1657858 Increased
PANC1 PDGFR[alpha] 4.47805184 Increased
PDCL5 PDGFR[alpha] −0.21206998 Decreased

PDCL15 Src 10.51520452 Increased
PANC1 Src 3.487086518 Increased
PDCL5 Src 0.34051653 Increased

PDCL15 TEC 10.09732985 Increased
PANC1 TEC 3.229557798 Increased
PDCL5 TEC 0.732187188 Increased

PDCL15 HCK 10.2005583 Increased
PANC1 HCK 3.13041308 Increased
PDCL5 HCK 0.537561913 Increased

PDCL15 Arg 9.644954083 Increased
PANC1 Arg 3.436290625 Increased
PDCL5 Arg 0.713079917 Increased

PDCL15 DDR1 7.462484096 Increased
PANC1 DDR1 2.528789422 Increased
PDCL5 DDR1 −0.255600871 Decreased

PDCL15 EphA8 9.12751897 Increased
PANC1 EphA8 1.855262187 Increased
PDCL5 EphA8 −0.456838117 Decreased



Int. J. Mol. Sci. 2020, 21, 8679 27 of 39

Table A2. Cell line profiles.

Cell Line Category Clinicopathological Data
of the Patient of Origin Standard of Care Mutational Profile Ref.

PANC1 Commercial

Age: 56;
Gender: Male;

Ethnicity: Caucasian;
Disease: Epithelioid
Carcinoma of Ductal

Cell Origin

Surgical resection
with or without

post-surgical
adjuvant therapy

KRAS_G12D;
TP53_R273H [98]

PDCL15 Patient Derived

Age: 66;
Gender: Male;

Ethnicity: Caucasian;
Disease: Pancreatic Ductal

Adenocarcinoma

Surgical resection
with or without

post-surgical
adjuvant therapy

KRAS_G12D;
TP53_WT;

[7,9,11,108]
Data
Repo

PDCL5 Patient Derived

Age: 56;
Gender: Male;

Ethnicity: Caucasian;
Disease: Pancreatic Ductal

Adenocarcinoma

Surgical resection
with or without

post-surgical
adjuvant therapy

KRAS_G12V;
TP53_G245S

[7,9,11,108]
Data
Repo

Appendix B

Table A3. Approved human gene nomenclature.

Cell Line Kinase Mean Kinase Statistic Direction

AATK apoptosis associated tyrosine kinase HGNC:21 17q25.3
ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase HGNC:76 9q34.12
ABL2 ABL proto-oncogene 2, non-receptor tyrosine kinase HGNC:77 1q25.2
ALK ALK receptor tyrosine kinase HGNC:427 2p23.2-p23.1
AXL AXL receptor tyrosine kinase HGNC:905 19q13.2
BLK BLK proto-oncogene, Src family tyrosine kinase HGNC:1057 8p23.1
BMX BMX non-receptor tyrosine kinase HGNC:1079 Xp22.2
BTK Bruton tyrosine kinase HGNC:1133 Xq22.1

CSF1R colony stimulating factor 1 receptor HGNC:2433 5q32
CSK C-terminal Src kinase HGNC:2444 15q24.1

DDR1 discoidin domain receptor tyrosine kinase 1 HGNC:2730 6p21.33
DDR2 discoidin domain receptor tyrosine kinase 2 HGNC:2731 1q23.3
EGFR epidermal growth factor receptor HGNC:3236 7p11.2

EPHA1 EPH receptor A1 HGNC:3385 7q34-q35
EPHA2 EPH receptor A2 HGNC:3386 1p36.13
EPHA3 EPH receptor A3 HGNC:3387 3p11.1
EPHA4 EPH receptor A4 HGNC:3388 2q36.1
EPHA5 EPH receptor A5 HGNC:3389 4q13.1-q13.2
EPHA7 EPH receptor A7 HGNC:3390 6q16.1
EPHA8 EPH receptor A8 HGNC:3391 1p36.12
EPHB1 EPH receptor B1 HGNC:3392 3q22.2
EPHB2 EPH receptor B2 HGNC:3393 1p36.12
EPHB3 EPH receptor B3 HGNC:3394 3q27.1
EPHB4 EPH receptor B4 HGNC:3395 7q22.1
ERBB2 erb-b2 receptor tyrosine kinase 2 HGNC:3430 17q12
ERBB3 erb-b2 receptor tyrosine kinase 3 HGNC:3431 12q13.2
ERBB4 erb-b2 receptor tyrosine kinase 4 HGNC:3432 2q34

FER FER tyrosine kinase HGNC:3655 5q21.3
FES FES proto-oncogene, tyrosine kinase HGNC:3657 15q26.1

FGFR1 fibroblast growth factor receptor 1 HGNC:3688 8p11.23
FGFR2 fibroblast growth factor receptor 2 HGNC:3689 10q26.13
FGFR3 fibroblast growth factor receptor 3 HGNC:3690 4p16.3
FGFR4 fibroblast growth factor receptor 4 HGNC:3691 5q35.2

FGR FGR proto-oncogene, Src family tyrosine kinase HGNC:3697 1p35.3
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Table A3. Cont.

Cell Line Kinase Mean Kinase Statistic Direction

FLT1 fms related receptor tyrosine kinase 1 HGNC:3763 13q12.3
FLT3 fms related receptor tyrosine kinase 3 HGNC:3765 13q12.2
FLT4 fms related receptor tyrosine kinase 4 HGNC:3767 5q35.3
FRK fyn related Src family tyrosine kinase HGNC:3955 6q22.1
FYN FYN proto-oncogene, Src family tyrosine kinase HGNC:4037 6q21
HCK HCK proto-oncogene, Src family tyrosine kinase HGNC:4840 20q11.21

IGF1R insulin like growth factor 1 receptor HGNC:5465 15q26.3
INSR insulin receptor HGNC:6091 19p13.2

INSRR insulin receptor related receptor HGNC:6093 1q23.1
ITK IL2 inducible T cell kinase HGNC:6171 5q33.3

JAK1 Janus kinase 1 HGNC:6190 1p31.3
JAK2 Janus kinase 2 HGNC:6192 9p24.1
JAK3 Janus kinase 3 HGNC:6193 19p13.11
KDR kinase insert domain receptor HGNC:6307 4q12
KIT KIT proto-oncogene, receptor tyrosine kinase HGNC:6342 4q12
LCK LCK proto-oncogene, Src family tyrosine kinase HGNC:6524 1p35.2
LTK leukocyte receptor tyrosine kinase HGNC:6721 15q15.1
LYN LYN proto-oncogene, Src family tyrosine kinase HGNC:6735 8q12.1

MATK megakaryocyte-associated tyrosine kinase HGNC:6906 19p13.3
MERTK MER proto-oncogene, tyrosine kinase HGNC:7027 2q13

MET MET proto-oncogene, receptor tyrosine kinase HGNC:7029 7q31
MST1R macrophage stimulating 1 receptor HGNC:7381 3p21.31
NTRK1 neurotrophic receptor tyrosine kinase 1 HGNC:8031 1q23.1
NTRK2 neurotrophic receptor tyrosine kinase 2 HGNC:8032 9q21.33
NTRK3 neurotrophic receptor tyrosine kinase 3 HGNC:8033 15q25.3

PDGFRA platelet derived growth factor receptor alpha HGNC:8803 4q12
PDGFRB platelet derived growth factor receptor beta HGNC:8804 5q32

PTK2 protein tyrosine kinase 2 HGNC:9611 8q24.3
PTK2B protein tyrosine kinase 2 beta HGNC:9612 8p21.2
PTK6 protein tyrosine kinase 6 HGNC:9617 20q13.33
PTK7 protein tyrosine kinase 7 (inactive) HGNC:9618 6p21.1
RET ret proto-oncogene HGNC:9967 10q11.21

ROS1 ROS proto-oncogene 1, receptor tyrosine kinase HGNC:10261 6q22.1
RYK receptor like tyrosine kinase HGNC:10481 3q22.2

SLTM SAFB like transcription modulator HGNC:20709 15q22.1
SRC SRC proto-oncogene, non-receptor tyrosine kinase HGNC:11283 20q11.23

SRMS src-related kinase lacking C-terminal regulatory tyrosine
and N-terminal myristylation sites HGNC:11298 20q13.33

STYK1 serine/threonine/tyrosine kinase 1 HGNC:18889 12p13.2
SYK spleen associated tyrosine kinase HGNC:11491 9q22.2
TEC tec protein tyrosine kinase HGNC:11719 4p12-p11
TEK TEK receptor tyrosine kinase HGNC:11724 9p21.2

TNK2 tyrosine kinase non receptor 2 HGNC:19297 3q29
TXK TXK tyrosine kinase HGNC:12434 4p12

TYK2 tyrosine kinase 2 HGNC:12440 19p13.2
TYRO3 TYRO3 protein tyrosine kinase HGNC:12446 15q15.1
YES1 YES proto-oncogene 1, Src family tyrosine kinase HGNC:12841 18p11.32

ZAP70 zeta chain of T cell receptor associated protein kinase 70 HGNC:12858 2q11.2
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Table A4. Nomenclature mapping.

Pipeline Default Standardized

KRSA TEC TEC
KRSA DDR DDR
KRSA SRC SRC
KRSA ABL ABL
KRSA PDGFR PDGFR
KRSA FRK FRK
KRSA JAK JAK
KRSA INSR INSR
KRSA FGFR FGFR
KRSA TRK TRK
KRSA ACK ACK
KRSA SEV SEV
KRSA VEGFR VEGFR
KRSA AXL AXL
KRSA FAK FAK
KRSA MET MET
KRSA EPH EPH
KRSA RET RET
KRSA SYK SYK
KRSA RYK RYK
KRSA FER FER
KRSA ALK ALK
KRSA EGFR EGFR
KRSA CSK CSK
UKA Lck Lck
UKA Lyn Lyn
UKA TEC TEC
UKA FRK FRK
UKA Tyro3/Sky TYRO3
UKA PDGFR[alpha] PDGFRa
UKA Src Src
UKA Fyn Fyn
UKA Abl ABL1
UKA CCK4/PTK7 PTK7
UKA Ron MST1R
UKA CTK MATK
UKA Axl Axl
UKA Fes Fes
UKA BLK BLK
UKA TXK TXK
UKA Arg ABL2
UKA HCK HCK
UKA HER3 ERBB3
UKA Syk Syk
UKA Srm SRMS
UKA EphA8 EphA8
UKA ZAP70 ZAP70
UKA CSK CSK
UKA EphB4 EphB4
UKA Mer MERTK
UKA PDGFR[beta] PDGFRb
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Table A4. Cont.

Pipeline Default Standardized

UKA Met Met
UKA FAK1 PTK2
UKA RYK RYK
UKA Fgr Fgr
UKA Yes YES1
UKA InSR InSR
UKA Ret Ret
UKA DDR1 DDR1
UKA LTK LTK
UKA FGFR2 FGFR2
UKA Fer Fer
UKA Kit Kit
UKA EphA5 EphA5
UKA EphB1 EphB1
UKA IGF1R IGF1R
UKA Ros ROS1
UKA FmS/CSFR CSF1R
UKA TRKB NTRK2
UKA EphA4 EphA4
UKA JAK2 JAK2
UKA ALK ALK
UKA FGFR3 FGFR3
UKA Etk/BMX BMX
UKA BTK BTK
UKA FGFR1 FGFR1
UKA TRKC NTRK3
UKA EphB3 EphB3
UKA EphA2 EphA2
UKA ITK ITK
UKA Lmr1 AATK
UKA EphA1 EphA1
UKA KDR KDR
UKA FGFR4 FGFR4
UKA FLT3 FLT3
UKA FAK2 PTK2B
UKA JAK3 JAK3
UKA HER2 ERBB2
UKA IRR INSRR
UKA TRKA NTRK1
UKA JAK1~b JAK1
UKA HER4 ERBB4
UKA Tyk2 Tyk2
UKA EphA3 EphA3
UKA FLT4 FLT4
UKA Brk PTK6
UKA EphA7 EphA7
UKA EphB2 EphB2
UKA EGFR EGFR
UKA FLT1 FLT1
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Table A4. Cont.

Pipeline Default Standardized

PTM-SEA ZAP70 ZAP70
PTM-SEA VEGFR2/KDR KDR
PTM-SEA TrkA/NTRK1 NTRK1
PTM-SEA Syk/SYK SYK
PTM-SEA Src/SRC SRC
PTM-SEA Ret/RET RET
PTM-SEA PDGFRB PDGFRB
PTM-SEA PDGFRA PDGFRA
PTM-SEA MKK4/MAP2K4 MAP2K4
PTM-SEA Met/MET MET
PTM-SEA Mer/MERTK MERTK
PTM-SEA MEK1/MAP2K1 MAP2K1
PTM-SEA LYN LYN
PTM-SEA Lck/LCK LCK
PTM-SEA JAK3 JAK3
PTM-SEA JAK2 JAK2
PTM-SEA INSR INSR
PTM-SEA IGF1R IGF1R
PTM-SEA HER2/ERBB2 ERBB2
PTM-SEA Fyn/FYN FYN
PTM-SEA Fer/FER FER
PTM-SEA Etk/BMX BMX
PTM-SEA EphA2/EPHA2 EPHA2
PTM-SEA EGFR EGFR
PTM-SEA CSK CSK
PTM-SEA Chk1/CHEK1 CHEK1
PTM-SEA AXL AXL
PTM-SEA ALK ALK
PTM-SEA Abl/ABL1 ABL1

KEA3 NTRK1 NTRK1
KEA3 FLT3 FLT3
KEA3 DDR2 DDR2
KEA3 KIT KIT
KEA3 PDGFRA PDGFRA
KEA3 MATK MATK
KEA3 EPHB3 EPHB3
KEA3 MST1R MST1R
KEA3 FES FES
KEA3 FLT4 FLT4
KEA3 SRC SRC
KEA3 TXK TXK
KEA3 NTRK3 NTRK3
KEA3 KDR KDR
KEA3 RET RET
KEA3 LCK LCK
KEA3 ABL1 ABL1
KEA3 EPHA2 EPHA2
KEA3 SRMS SRMS
KEA3 EPHB2 EPHB2
KEA3 FYN FYN
KEA3 EGFR EGFR
KEA3 FLT1 FLT1
KEA3 FER FER
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Table A4. Cont.

Pipeline Default Standardized

KEA3 INSR INSR
KEA3 FGFR4 FGFR4
KEA3 ITK ITK
KEA3 EPHB1 EPHB1
KEA3 CSF1R CSF1R
KEA3 PTK6 PTK6
KEA3 CSK CSK
KEA3 ERBB2 ERBB2
KEA3 NTRK2 NTRK2
KEA3 TYRO3 TYRO3
KEA3 BTK BTK
KEA3 JAK2 JAK2
KEA3 SYK SYK
KEA3 LYN LYN
KEA3 FGFR3 FGFR3
KEA3 PTK2 PTK2
KEA3 FGR FGR
KEA3 ERBB4 ERBB4
KEA3 YES1 YES1
KEA3 ZAP70 ZAP70
KEA3 JAK3 JAK3
KEA3 MET MET
KEA3 IGF1R IGF1R
KEA3 TEC TEC
KEA3 AXL AXL
KEA3 ALK ALK
KEA3 PTK2B PTK2B
KEA3 PDGFRB PDGFRB
KEA3 STYK1 STYK1
KEA3 MERTK MERTK
KEA3 BMX BMX
KEA3 EPHA3 EPHA3
KEA3 ABL2 ABL2
KEA3 FGFR1 FGFR1
KEA3 EPHA4 EPHA4
KEA3 TYK2 TYK2
KEA3 FRK FRK
KEA3 FGFR2 FGFR2
KEA3 TNK2 TNK2
KEA3 JAK1 JAK1
KEA3 DDR1 DDR1
KEA3 BLK BLK
KEA3 HCK HCK
KEA3 EPHA8 EPHA8
KEA3 TEK TEK

Figures 2–4, expanded figure legend. Default outputs from upstream kinase identification pipelines for
PDAC cell lines compared to patient-derived wild-type pancreatic tissue. (A) The Kinome Random Sampling
Analyzer (KRSA) pipeline identifies differentially active upstream kinases according to mean standard score (Z)
values on the x axis, with kinase family on the y axis, and color gradation representing absolute mean standard
score. Full red represents an absolute mean standard score above 3 and full white represents an absolute mean
standard score below 1. Absolute mean standard scores for each kinase family are calculated by averaging
the absolute standard score values of nine standard scores, each derived from input lists consisting of peptide
sequences with log-fold change (LFC) in phosphorylation above 0.2, 0.3, or 0.4 in one of our three biological
replicates. Each plotted box represents values within and including the first and third percentiles (the 25th and
75th percentiles). Upper or lower whiskers extend from the box to the largest or smallest kinase family standard
score that is less than or equal to 150% of the distance between the first and third percentiles, respectively. Outliers
defined as greater than 150% of the distance between the first and third percentiles are plotted individually. Dashed
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lines delineate positive values above 1.5, 1.7, and 2.0 or negative values below −1.5, −1.7, and −2.0. Kinase families
appear in descending order of standard score with the most significant differential kinase family activity appearing
at the top and bottom of the list. Any zero-value standard score represents a kinase family having identical
mean log-fold change values between the phosphorylation levels of representative peptide sequences measured
in the PDAC cell line group and the phosphorylation levels of those same representative peptide sequences
when measured in the control wild-type patient sample group. (B) The Post-Translational Modification Signature
Enrichment Analysis (PTM-SEA) pipeline identifies differentially active upstream kinases according to negative
decadic logarithms of the adjusted probability values. These values allow the most significant differentially
active kinases to be listed from top to bottom in order of descending significance. Adjusted probability values
less than 0.05 are, therefore, represented by x axis values above 1.30. Adjusted probability values correcting
for multiple comparisons use the Bonferroni correction method on comparisons between the phosphorylated
peptide sequences of the experimental PDAC cell line group and the phosphorylated peptide sequences of the
control wild-type patient group in order to determine the extent to which these differences may be attributed
to each individual kinase listed on the left. (C) The Kinase Enrichment Analysis Version 3 (KEA3) pipeline
also identifies differentially activated upstream kinases according to negative decadic logarithms of the average
adjusted probability values and allows the most significant differentially active kinases to be listed from top to
bottom in order of descending significance. Adjusted probability values less than 0.05 are, therefore, represented
by x axis values above 1.30. Adjusted probability values less than 0.01 are represented by x axis values above 2.
Adjusted probability values correcting for multiple comparisons use the false discovery rate (FDR) correction
method to compare the genes containing phosphorylated peptide sequences of the experimental PDAC cell line
group with the genes containing phosphorylated peptide sequences of the control wild-type patient group in
order to determine the extent to which these differences may be attributed to each individual kinase listed on
the left. (D) The Upstream Kinase Analysis (UKA) pipeline identifies differentially activated upstream kinases
according to the normalized kinase statistic for change in phosphorylation between the peptide sequences of the
experimental PDAC cell line group and the control wild-type patient group. This normalized kinase statistic is
calculated by subtracting the mean phosphorylation levels of the peptide sequences associated with a given kinase
in the control group from the mean phosphorylation levels of the peptide sequences associated with that same
kinase in the experimental group and dividing the resulting value by the standard deviation. A quotient above
0 indicates increased activity of a kinase from the experimental group. A quotient below 0 indicates decreased
activity of a kinase from the experimental group. Each graphed point represents the normalized kinase statistic
when the UKA algorithm uses only one of the pipeline’s available databases. The diameter of a circle increases
with the size of the peptide sequences associated with the corresponding kinases in the corresponding database.
Color gradation represents specificity scores with full red representing values of two and full black representing
specificity scores of zero. Specificity scores are informed by the quotient produced with a dividend corresponding
to the number of times that a permuted normalized kinase statistic greatly exceeded the nonpermuted normalized
kinase statistic and a divisor corresponding to the number of random permutations, or the quotient produced by
the number 1 as a dividend and the number of random permutations as the divisor. Specificity scores represent
the negative decadic logarithm of whichever quotient is larger. Individual kinases are listed along the y axis from
top to bottom in descending order of median “final score.” UKA calculates the “final score” as the summation of
the significance score and specificity score of each individual kinase. (E) Comparison of upstream kinase activity
as determined by KRSA, PTM-SEA, KEA3, and UKA, each listed on the y axis. Kinase family names appear along
the top of the x axis. Individual kinase family members appear along the bottom of the x axis. The comparison
includes only kinases identified as one of the top 10 most differentially active upstream kinases by any one of
the pipelines. Kinases with identical scores were arbitrarily assigned sequential ranks. However, if two or more
kinases tied for the last (10th) position in this list, then the list was extended so as not to arbitrarily exclude
an equivalently ranked kinase. The diameter of each black circle corresponds with the percentile in which the
labeled kinase appears in the labeled pipeline. The kinase family scores of the KRSA pipeline are repeated for
each individual kinase. A white circle demonstrates not only absence from a given pipeline’s top 10 list, but also
demonstrates absence from a given pipeline’s unfiltered exhaustive output.
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