
A Hybrid Machine-Learning-Based Method for Analytic 
Representation of the Vocal Fold Edges during Connected 
Speech

Ahmed M. Yousef1, Dimitar D. Deliyski2, Stephanie R. C. Zacharias3, Alessandro de 
Alarcon4, Robert F. Orlikoff5, Maryam Naghibolhosseini6,*

1Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, 
MI 48824, USA

2Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, 
MI 48824, USA

3Head and Neck Regenerative Medicine Program, Mayo Clinic, Scottsdale, AZ 85259, and 
Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, AZ 85054, USA

4Division of Pediatric Otolaryngology, Cincinnati Children’s Hospital Medical Center, Cincinnati, 
OH 45229, and Department of Otolaryngology—Head and Neck Surgery, University of Cincinnati 
College of Medicine, Cincinnati, OH 45267, USA

5College of Allied Health Sciences, East Carolina University, Greenville, NC 27834, USA

6Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, 
MI 48824, USA

Abstract

Investigating the phonatory processes in connected speech from high-speed videoendoscopy 

(HSV) demands the accurate detection of the vocal fold edges during vibration. The present paper 

proposes a new spatio-temporal technique to automatically segment vocal fold edges in HSV data 

during running speech. The HSV data were recorded from a vocally normal adult during a reading 

of the “Rainbow Passage.” The introduced technique was based on an unsupervised machine-
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learning (ML) approach combined with an active contour modeling (ACM) technique (also known 

as a hybrid approach). The hybrid method was implemented to capture the edges of vocal folds on 

different HSV kymograms, extracted at various cross-sections of vocal folds during vibration. The 

k-means clustering method, an ML approach, was first applied to cluster the kymograms to 

identify the clustered glottal area and consequently provided an initialized contour for the ACM. 

The ACM algorithm was then used to precisely detect the glottal edges of the vibrating vocal 

folds. The developed algorithm was able to accurately track the vocal fold edges across frames 

with low computational cost and high robustness against image noise. This algorithm offers a fully 

automated tool for analyzing the vibratory features of vocal folds in connected speech.
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1. Introduction

The endoscopic imaging of the laryngeal anatomy and phonatory function has played a 

central role in the instrumental clinical voice assessment [1–4]. At present, the most 

common clinical technique employed in laryngeal imaging is videostroboscopy [5–7]. The 

coupling between the stroboscopic unit and the video camera in videostroboscopy offers 

slow-motion visualization of the laryngeal structures and vocal fold vibrations during 

phonation. However, videostroboscopy is only capable of evaluating vibratory behavior 

during sustained vocalizations, i.e., uttering prolonged vowels [8–11]. Additionally, due to 

the low sampling rate of the camera, videostroboscopy is incapable of capturing the cycle-

to-cycle and intra-cycle details of vocal fold vibration, which is critical when those 

vibrations are aperiodic, a common occurrence in vocal disorders [12,13]. High-speed 

videoendoscopy (HSV) is an advanced laryngeal imaging technique that overcomes the 

latter limitation by recording the intra-cycle vibratory characteristics of the vocal folds at 

high frame rates without depending on the periodicity of the acoustic voice signal [12–14]. 

Moreover, through a recent advancement, HSV can be used to objectively measure vocal 

fold vibratory characteristics with high temporal resolution not only in sustained phonation 

but also in running speech [15–20]. Hence, HSV is an effective tool that can improve our 

understanding of complex physiological and phonatory mechanisms of voice production in 

ways that are not feasible when using videostroboscopy [12,13,21,22].

Since voice disorders are often revealed in connected speech [23–28], using HSV in voice 

assessment can serve as a powerful tool in studying the cycle-to-cycle and intra-cycle 

vibratory details besides the non-stationary events (e.g., voice breaks, and voicing onsets and 

offsets) during phonation in connected speech [15,19,29–31]. However, in clinical settings, it 

is not feasible to navigate through the huge amount of data obtained using HSV without the 

aid of automated analysis techniques. The development of automated methods for extracting 

HSV-based measures of vocal fold vibration enables us to acquire clinically relevant vocal 

fold vibratory characteristics during running speech [32,33]. The mining of massive HSV 

datasets requires specialized machine-learning (ML) methods. Using ML, we can classify 

Yousef et al. Page 2

Appl Sci (Basel). Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar and dissimilar structures and/or discover hidden patterns in the data efficiently with a 

low computational cost.

To study the vibratory characteristics of the vocal folds in connected speech, it is essential to 

develop algorithms for the detection of the vibrating vocal fold edges during phonation. 

Developing fully automated spatial segmentation algorithms for such an edge-detection task 

will facilitate extraction of HSV-based measures during connected speech. Various spatial 

segmentation methods have been implemented to detect the glottal edges in HSV data in 

isolated sustained vowels [36–40], e.g., histogram thresholding [38,41,42], seeded region 

growing procedures [37,43,44], level set methods [45,46], watershed transform [47], and 

active contour models [39,40,48,49]. Four recent ML techniques based on deep learning 

have successfully segmented the glottis/vocal fold edges in HSV recordings with high 

accuracy [32–35]. The HSV datasets in these studies were recorded during the production of 

sustained phonation, and not running speech. Since these approaches utilized a supervised 

learning framework (i.e., deep neural networks), they required manual annotation of the 

vocal fold edges in HSV frames in order to be used as a training dataset.

Recently, we introduced a fully automated method to segment the glottal area using HSV 

during connected speech for the first time [20]. This method applied a spatio-temporal 

approach based on active-contour modeling (ACM), which enabled us to detect the glottal 

edges during vocal fold vibration. ACM is an iterative energy minimization technique for 

edge detection, and it requires initializing a deformable contour near the edges of interest in 

an image [50]. One of the benefits of ACM is that it is not noise sensitive [50–52], unlike 

some of the other spatial segmentation methods, which are more vulnerable to noise and 

intensity homogeneity in the image [39,43,45,53,54]. In our proposed algorithm, the 

segmentation was applied to HSV kymograms at different vocal fold cross-sections in 

individual vocalizations to capture the glottal edges in each kymogram. The detected edges 

in the kymograms were registered back to the HSV frames [20]. The method we developed 

was able to detect the glottal edges in 88% of the vocalizations. The algorithm was not 

successful when the kymograms had very dim lighting. Although ACM is less vulnerable to 

noise in the image, it is sensitive to the initialization of the contour. The initial contour 

should be close to the glottal edge in order to have the best performance of ACM, which is a 

limitation of this method. Moreover, since ACM is an iterative method, it required a 

relatively long time for convergence because the analysis is done at all cross-sections of the 

vocal folds for each vocalization. ML may overcome the limitation of ACM on its 

dependency to the contour initialization and the high computational cost.

In this work, we propose a hybrid method based on an unsupervised ML (clustering) 

technique and ACM for vocal fold edge representation in HSV data during connected 

speech. This hybrid approach can provide a more robust spatial segmentation performance 

with less computational costs than the ACM method alone. Data clustering is a way of 

grouping data with similar characteristics, which is used extensively in image analysis [55]. 

Clustering is based on partitioning the data into clusters of data points that have similar 

features within each cluster and dissimilarity with other clusters [56]. In this project, the 

clustering was used to group the pixels belonging to the glottal area into one cluster and the 

rest of the pixels into another cluster. Clustering is considered an unsupervised ML method 
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since the data points are not required to be labeled, meaning we do not need to visually label 

the pixels to indicate whether they belong to the glottal area or not, a time-consuming 

process involving manual analysis of the data. Therefore, our developed method in this work 

is fully automated and does not require the user intervention in the data analysis. The 

clustering technique can perform efficiently in detecting the glottal area in HSV data. This is 

because the glottal area is relatively dark and can be silhouetted against the brighter 

surrounding tissues of the vocal folds [32]. In the present study, the k-means clustering 

method is combined with ACM as a shape-based image segmentation method to improve 

our previously introduced method (i.e., ACM) [20]. As such, the clustering technique is 

utilized to obtain an accurate initialization contour close to the glottal area, which was given 

as an input to the ACM method. The ACM algorithm is used to capture the accurate glottal 

edges during the vocal fold vibrations. The goals of this study are: (i) to present the 

developed theoretical framework for the proposed method, (ii) to exhibit its feasibility in 

vocal fold edge representation in HSV data during connected speech, and (iii) to show its 

robustness for challenging color HSV images. Hence, the developed method was applied to 

the HSV data obtained from a vocally normal adult using a color high-speed camera.

2. Materials and Methods

2.1. Clinical Data

A custom-built color HSV system was used to record a 38-year-old female during recitation 

of the “Rainbow Passage.” The participant was vocally normal without any history of voice 

disorders. The examination was conducted at the Center for Pediatric Voice Disorders, 

Cincinnati Children’s Hospital Medical Center and approved by the Institutional Review 

Board. A FASTCAM SA-Z color high-speed camera (Photron Inc., San Diego, CA, USA) 

with a 12-bit color image sensor and 64 GB of cache memory, set at 4000 frames per second 

and 249 μs integration time, was used to obtain the data. The camera was coupled with a 3.6 

mm Olympus ENF-GP Fiber Rhinolaryngoscope (Olympus Corporation, Tokyo, Japan) and 

a 300 W xenon light source, model 7152A (PENTAX Medical Company, Montvale, NJ, 

USA). The recording length was 29.14 s (116,543 video frames) with image frame 

resolution of 256 × 256 pixels. The recorded video was saved as an uncompressed 24-bit 

RGB AVI file.

2.2. Data Analysis

Several pre-processing steps were applied to the HSV data before proceeding with the 

proposed spatial segmentation approach. Temporal segmentation [15] and motion 

compensation [18] were first applied sequentially to automatically extract the vocalized 

segments of the HSV recordings and capture the location of the moving vocal folds across 

the frames. HSV kymograms were extracted next at different intersections of the vocal folds. 

After applying the pre-processing steps, the clustering technique was implemented on each 

kymogram to initialize a contour line based on the captured glottal area. The ACM method 

was applied to the kymograms to complete the segmentation task. The segmented glottal 

edges in the kymograms were registered back to the HSV frames to detect the glottal edges 

in each individual HSV frame. The algorithms were implemented using the 64-bit MATLAB 

R2019a (MathWorks Inc., Natick, MA, USA).
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2.2.1. Data Preprocessing—The temporal segmentation, a technique previously 

developed in our lab, was used to automatically extract the timestamps of the vibratory 

onsets and offsets of the vocalized segments in the HSV recording [15]. Subsequently, a 

denoising algorithm and motion compensation were implemented across the video frames of 

each vocalization to track the location of the vocal folds inside a window—encompassing 

the vibrating vocal folds [18,57]. The HSV frames were then cropped based on the center 

and size of the motion window. The kymograms were extracted next at various cross 

sections along the anteroposterior length of the vocal folds from the cropped HSV frames for 

each vocalization. The y-axis of the kymogram image represents the left-right dimension of 

the video frame, while the x-axis refers to time (frame number).

Each kymogram was smoothed using a moving average 1D filter with a window size of 5 

pixels (along the y-axis) to mitigate the impact of noise in the images. Therefore, each pixel 

intensity in the kymogram was calculated by taking the average intensity of the four 

neighborhood pixels (two pixels above and below the pixel of interest). Since our area of 

interest, i.e., the glottal area, was located in the middle section of the kymograms, a Tukey 

window function (window size of 15 pixels) was applied next to provide higher weights to 

the pixels located in the middle and less weights to the pixels located in the top and bottom 

of the kymograms. With these preprocessing steps, the kymograms became ready for the 

feature extraction, explained below.

2.2.2. Feature Selection and Extraction—Selection of the right features is an 

essential step toward the successful implementation of the ML method. Extracting the 

features from an image mostly depends on the intensities and the texture of the pixels. The 

number of pixels in the horizontal and vertical directions in the kymogram comprises a 2-D 

matrix. Each cell in the matrix (pixel) comprises three image components with a numerical 

value ranging between 0 and 255, corresponding to the three color channels (i.e., red, green, 

and blue). The features were calculated based on the intensity values of only the red and 

green channels. The blue channel was excluded from the analysis due to the high noise level 

and the absence of essential information. In this work, three features were extracted, namely, 

two intensity features and a gradient feature. Different number and combinations of the 

aforementioned features were utilized in the development of the proposed algorithms to 

determine which features should be used to perform an accurate vocal fold edge 

representation.

Intensity Features:  The pixel intensities of the red and green channels in a kymogram were 

considered as two features. Since the regions of interest in the kymogram (glottal areas) have 

lower intensities (darker) than the neighborhood regions, selecting the pixel intensities as a 

feature was essential to facilitate distinguishing the glottal area from the laryngeal tissues in 

the kymograms. However, relying only on the intensities as features was not enough to 

segment the image because of the high level of noise in the present video data and 

appearance of dark pixels in places other than the glottis.

Gradient Feature:  The image gradient can be used to detect the glottal area edges given 

the contrast between the intensity of the glottis and the surrounding regions. Hence, the 

kymogram image gradient was used for feature extraction. The positive and negative 
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gradients were computed along the x- and y-axis in the kymogram with a step size of 8 

pixels. In the negative gradient, the pixels with positive values were assigned a value of zero 

and vice versa. An overall gradient magnitude was calculated by taking the square root of 

the sum of squared of the four negative and positive gradients in the two directions.

2.2.3. Unsupervised Clustering Method—An unsupervised ML technique was 

implemented using the well-known k-means clustering algorithm for image segmentation 

[58]. The k-means clustering technique is based on partitioning a dataset into a certain 

number of disjoint clusters (groups of data). This technique requires the initialization of the 

number of clusters (k) and the center of each cluster (centroid). In this study, the number of 

clusters was selected to be two (inside or outside the glottal area) and the initial centroids 

were chosen based on the k-means++ algorithm, which uses a heuristic in order to initialize 

centroid seeds for k-means clustering (see [59] for the full details of the algorithm). The 

clustering algorithm then computed the distance between the centroids and each pixel in the 

kymogram. The distance was calculated using the Euclidean distance as follows:

d = I x,y − ck , (1)

where d is the Euclidean distance, I(x, y) corresponds to the intensity of the kymogram, x 

and y refer to the pixel coordinates, ck is the cluster centroid, and k is the cluster number. 

Each pixel in the image was assigned to the nearest centroid based on the calculated distance 

leading to the formation of the initial clusters. Once the grouping was done, the algorithm 

recomputed the updated centroid of each cluster (ck) as follows:

ck = 1
k x ck y ck

I x y , (2)

where this new centroid was the data point to which the summation of the distances from all 

the pixels located in that cluster was minimal. This process was repeated iteratively—

reshaping the clusters in the image at each iteration—until converging, when the distance 

between the new and original centroids did not change.

Since the k-means clustering technique used the Euclidean distance measure, normalizing 

the features was necessary. Hence, the three extracted features were normalized between 0 

and 1 before applying the clustering method. Instead of applying the clustering algorithm to 

the entire kymogram for a vocalization, each kymogram was divided into smaller 

kymograms with a maximum of 50 frames to mitigate any possible impact of the image 

noise on the clustering accuracy. For example, when part of the kymogram had extremely 

bright pixels (saturated or near-saturated pixels), the clustering technique may be misguided, 

particularly with a large number of frames. This might occur due to the movements of the 

epiglottis and large reflections from its surface.

After applying the clustering algorithm to each kymogram, each pixel in the kymogram was 

assigned to either cluster one or two. All the pixels in the same cluster had similar labels. 

Accordingly, a new binary labeled image of the kymogram was constructed, where each 

pixel had the binary value of the cluster number. To identify the label associated with the 
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glottal area cluster in the labeled image, a procedure was developed based on computing the 

first moment of inertia of the original kymogram image. The first moment of inertia, denoted 

by M1 (y, ni) for each kymogram ni, was calculated as follows [20, 60]:

M1 y, ni = x 1

Kw
y 1
Kh I x y ni y

x 1

Kw
y 1
Kh I x y ni

, (3)

where Kw is the image width (number of frames), and Kh is the kymogram image height. 

The first moment of inertia was computed for the green channel, which was less noisy 

compared to the other channels due to the Bayer filter decomposition. The moment of inertia 

was applied on an inverted kymogram to approximate a horizontal line passing through the 

center of the glottis (center of darkness). After obtaining the moment line of the original 

kymogram, the label associated with the glottal area cluster was determined from the binary 

labeled image of the kymogram. As such, the mode of the two binary values (1 and 2) in the 

labeled kymogram was computed for pixels located within 12 pixels above and below the 

moment line returning either one or two. If, for example, the mode returns a label value of 

one, then the label of the glottis cluster would be two. The algorithm then searched for the 

label of the glottis cluster between 7 pixels above and below the moment line in the binary 

labeled kymogram until the algorithm found all the pixels that belonged to the glottal area. 

The spatial location of the glottal edges corresponding to the left and right vocal fold were 

determined. Subsequently, the splines were used as the initial contours for the ACM method.

2.2.4. Spatial Segmentation: The Hybrid Method—In this study, a hybrid method 

was developed by combining the unsupervised clustering technique (see Section 2.2.3) with 

an ACM method (see [20] for the complete description and details of implementing the 

ACM). The active contour in the ACM method is a spline that deforms spatially based on an 

internal rule (depending on the rigidity and elasticity of the contour) and an external rule 

(depending on the gradient of the image) until the contour can capture the glottal edges in 

the image. This deformation is performed through an energy optimization process, which 

aims to minimize the sum of the internal and external energy functions, corresponding to the 

contour shape and the image gradient, respectively [50]. The bottom and top lines detected 

from the unsupervised clustering method are provided to the developed ACM technique as 

the initial locations of the contours for the right and left vocal folds. The hybrid method was 

applied to all the kymograms at different intersections of the vocal folds for glottal edge 

detection. The detected edges in the kymograms were then registered back to the HSV 

frames for each vocalization.

3. Results

The following results demonstrate the implementation of the proposed method for the HSV 

data recorded from a vocally normal individual while reading the “Rainbow passage”. An 

example of five cropped HSV frames extracted from a vocalization after applying the 

temporal segmentation and motion compensation techniques is illustrated at the top of 

Figure 1. This vocalization was extracted between frames 32,709 and 35,061. The frame 
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numbers are shown at the top of Panel (b)-(f). As seen, the motion window captures the size 

and the spatial location of the vocal folds during different phases of the vibratory cycle. 

After applying the motion window, the HSV kymograms were extracted at various cross 

sections of the vocal folds during each vocalized segment. Four kymograms, extracted at 

four different cross sections of the vocal folds during the same vocalization, are shown in 

Figure 1g–j. The y-axis of the kymograms represents the left-right dimension of the HSV 

frame, while the x-axis refers to the time (number of frames). Each kymogram in the figure 

displays the voicing onset and offset along with the vibration of the vocal folds.

The k-means clustering technique was implemented for each kymogram. Different subsets 

of features were fed into the ML algorithm to determine the proper number and combination 

of features leading to an accurate vocal fold edge representation. Figures 2–4 illustrate a 

comparison between the results of applying two different combinations of the features for 

glottal area/edge detection: (i) red and green channel intensities as two features (Panel (a) in 

the figures) versus (ii) the image gradient along with the red and green channel intensities as 

three features (Panel (b) in the figures). The results of utilizing the other subsets of the 

aforementioned features to perform the clustering showed poorer performance of the method 

in comparison with using the selected feature combinations in Figures 2–4. Figure 2 shows 

the result of applying the clustering technique to the kymogram shown in Figure 1h between 

Frame 32,709 and 35,061 (for a total of 143,167 data points). The scatter plot in Figure 2a is 

generated by feeding the clustering algorithm the two intensity features: the green channel 

intensity and red channel intensity. The scatter plot in Figure 2b is generated using the 

gradient feature along with both red and green channel intensity features. The glottal area 

cluster in the kymogram is shown by red diamonds and the non-glottal cluster is shown by 

blue circles. As seen, after adding the gradient feature to the intensity features in Figure 2b, 

the two clusters can be distinguished in the scatter plot; in contrast, depending only on the 

intensity as a feature, it is relatively hard to divide the data points into two different clusters. 

The better performance of the ML method using the three features is more prevalent in 

Figure 3.

Figure 3 shows the two clusters after applying the k-means clustering technique to the 

kymogram in Figure 1h. The top figure illustrates the clustered regions using the two 

intensities as features and the bottom figure shows the result when using both the gradient 

and the intensities (green and red channel intensities) as three features. Figure 3 illustrates 

the clustered areas on the binary labeled kymogram so that only two distinct colors are 

shown representing the two clusters obtained. As seen, using the gradient in addition to the 

intensity features allows us to capture more information about the glottal area, which well 

aligns with the results obtained from the Figure 2.

Figure 4 shows the detected edges of the glottal area based on the results of clustering. In 

this figure, only the glottal cluster region is shown with a white line in the original 

kymogram (to have a better visual representation of the performance of the clustering 

method) using the intensity features (Panel (a)) and the gradient and intensity features (Panel 

(b)). The comparison of Panel (a) and (b) shows the improvement in clustering after adding 

the gradient feature to the intensity features. As can be seen in this figure, using only 

intensity features results in missing some spatial information about the glottal area, 
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particularly during the sustained vibration of the vocal folds. On the other hand, the glottal 

edges were detected more accurately when the gradient feature was used along with both the 

red and green channel intensities. This improvement is more noticeable during the sustained 

oscillation of the vocal folds than during the voicing onsets and offsets.

The preliminary segmented glottal edges by applying the clustering technique were used as 

inputs to the ACM method. Figure 5 shows how using k-means clustering as an initialization 

step for the ACM impacts the accuracy of the method. The results are presented in four 

kymograms extracted at four different vocalizations. The detected glottal edges using the 

ACM alone and the developed machine-learning-based hybrid method are shown for two 

decent quality kymograms (between Frames 40,505 to 41,255 in Panel (b), and 103,942 to 

104,577 in Panel (d)) and for two challenging kymograms (between Frames 18,975 to 

19,803 in Panel (a), and 98,105 to 98,651 in Panel (c)). The figure depicts the result of 

applying the ACM method alone (the top figure in each panel) and the hybrid method at 

each vocalization (the bottom figure in each panel). Although the ACM performed better for 

the top kymograms in Panel (b) and (d) in comparison with the (more challenging) 

kymograms at the top of Panel (a) and (c), this method missed the glottal edges for several 

cycles as seen in the top figures in Panel (b) and (d). The ACM was not able to capture the 

glottal edges for many glottal cycles in the dim kymograms as seen in the top figures in 

Panel (a) and (c). In contrast, the hybrid method showed a considerable enhancement in the 

performance and high accuracy as it detected the glottal edges precisely for all the 

kymograms, as seen in the bottom kymograms in Panel (b) and (d), also in Panel (a) and (c) 

with an inferior quality and challenging kymograms.

In Figure 6, five HSV frames are presented from each of the four different vocalizations in 

Figure 5 along with the detected glottal edges by the hybrid method. This figure shows the 

captured edges after registering the glottal edges from the kymograms back to the HSV 

frames. For each vocalization, the five frames are chosen to show several frames from a 

different phase of a vibrating cycle of the vocal folds. As can be seen in Figure 6, the hybrid 

method was able to track the left and right vocal fold edges accurately during the vocal fold 

vibration in different frames and vocalizations.

4. Discussion

The temporal segmentation and motion compensation algorithms were successful in 

capturing the location of the vibrating vocal folds in a cropped motion window, which 

prepared the HSV frames for kymogram extraction. The HSV kymograms were generated at 

different cross sections of the vocal folds during each vocalization. The moment of inertia 

was used to successfully determine a horizontal line spanning through the center of the vocal 

folds in each kymogram, which was an important step before applying the hybrid spatial 

segmentation method to the kymograms.

The selection and extraction of the appropriate features were done in order to implement the 

unsupervised ML technique (i.e., k-means clustering). A different number and combination 

of features were fed into the ML algorithm to determine the salient subset of features for the 

development of the method. These features included the intensities of red and green 
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channels and the image gradient. It was found that using these three features was the most 

appropriate combination of features in terms of obtaining an adequate clustering 

performance. Given the three considered features, the implemented clustering algorithm was 

able to precisely cluster the kymograms into two clusters (glottal area and non-glottal area). 

Subsequently, the edges of the clustered glottal area were spatially segmented, returning the 

top and bottom initialization contour lines corresponding to the left and right vocal folds, 

respectively.

After obtaining the initial contours from the clustering technique, they were used as inputs to 

the ACM method to enhance its performance in segmenting the vocal fold edges. The ACM 

method was successfully applied to the kymograms utilizing the initialized contours. The 

main weakness of the ACM method is the sensitivity to the contour initialization, which 

should be selected to be close to the glottal edges. In this study, using the clustering 

technique to initialize the active contours significantly improved the accuracy of the hybrid 

ACM in comparison with using the ACM alone, as shown in Figure 5. This hybrid method 

allowed for the accurate representation of the edges of the vibrating vocal folds in the 

kymograms at different intersections of the vocal folds. Figure 5 illustrated a comparison 

between the new machine-learning-based hybrid method against the ACM alone in order to 

show to what extent the new hybrid technique enhanced the performance of the vocal fold 

edge representation in comparison with using only the ACM approach. The performance of 

the hybrid method was compared with that of the ACM by applying the two methods on two 

decent quality kymograms and two kymograms with dim lighting and degraded qualities. 

The results of the comparison revealed a significant improvement in edge detection by the 

hybrid method over using the ACM alone. This enhancement was more noticeable in the 

lower quality kymograms. This indicated how the proposed hybrid method was less 

vulnerable to the noise in the image compared to the ACM, which completely failed to 

detect the edges in the presence of significant noise in the kymograms. In addition, the 

computational cost of the hybrid method was half of the ACM technique.

After applying the hybrid method, the segmented edges in the kymograms, which were 

extracted at different vocal fold cross sections, were registered back to the HSV spatial 

frames to detect the vocal fold edges in each individual HSV frame. The performance of the 

proposed hybrid method was tested through visual inspection of the detected vocal fold 

edges in the HSV kymograms of different vocalization segments of the “Rainbow Passage.” 

Out of 76 vocalizations, the visual inspection of the detected vocal fold edges in the 

extracted kymograms demonstrated that the developed hybrid technique successfully 

captured the glottal edges for 74 vocalizations with an error less than ±1 pixel. This yields a 

high accuracy of 97.4% in vocal fold edge representation using the hybrid method for HSV 

data during connected speech. The only other study performing the same task that we can 

compare our work with was our previously developed ACM method [20], which detected the 

glottal edges accurately in 88% of the vocalizations in the same HSV sample. There are no 

other known studies of automated vocal fold segmentation of HSV recordings during 

connected speech. The current study presented several of the vocalizations, where the ACM 

method failed. The higher accuracy and performance of the hybrid method, as were shown 

in this study, reveals its superiority over the ACM method. The extracted kymograms of the 

two vocalizations in which the hybrid method did not perform accurately had extremely dim 
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lighting across most of the frames, which also made the visual detection of the glottal 

boundaries impossible, making it challenging to create an accurate reference manually.

The hybrid method in this study is the first ML-based approach developed for vocal fold 

segmentation during connected speech. The recently developed deep learning approaches for 

vocal fold segmentation were all employed for HSV analysis during sustained vocalization 

with higher image quality [32–35]. The developed hybrid method is fully automated, while 

the deep learning techniques required manual labelling of a part of the dataset in order to 

train the deep neural networks. Moreover, the deep learning methods are all spatial 

segmentation techniques; however, the hybrid method in this study is a spatiotemporal 

method that would potentially lead to a higher robustness in case of irregular vocal fold 

closure. The hybrid method in this study relies on the accurate performance of the developed 

motion compensation method; however, this is not an issue with the HSV analysis during 

sustained vocalization due to the little change in the vocal fold location across frames. Since 

there is no known gold-standard accurate method to fully capture the vocal fold edges from 

HSV data during connected speech, visual inspection was performed to serve as reference 

for validating the performance of the developed technique. It should be noted that this study 

showed the feasibility of the hybrid method for vocal fold edge representation (in HSV data) 

during connected speech in one participant with no history of voice disorder. This method 

needs to be tested on more vocally normal participants, also on participants with voice 

disorders in order to be generalized.

Although the promising performance of the hybrid method was shown during vocal fold 

oscillation, the algorithm did not perform accurately before and after the onset and offset of 

vocal fold vibration. This was due to the deviation of the motion window from the vocal fold 

location before and after the oscillation. However, this did not contradict the purpose of the 

present study, which was to track the edges of the vocal folds during vocalization. In future, 

the development of an algorithm to automatically detect the edges of the vocal folds when 

adducted and not vibrating would be valuable in studying laryngeal maneuvers during 

connected speech. In addition, the proposed approach showed a promising performance for 

HSV data with the most challenging images, obtained by a color HSV system. This 

facilitates the future implementation of the proposed method on less challenging 

monochromatic images since a monochrome camera provides a higher sensitivity and 

dynamic range with better pixel representation. This will potentially lead to a higher 

accuracy and faster performance of the hybrid method for monochromatic HSV data. This 

study aimed to show the feasibility of this approach for color HSV images, which is 

preferred over monochromatic images by many voice specialists since color images allow 

them to better evaluate the health of the tissues.

5. Conclusions

Developing an automated technique for an accurate segmentation of the vocal fold edges 

from HSV is a crucial prerequisite for the objective analysis of vocal function during 

connected speech. In the present paper, a new automated technique was introduced to 

analytically represent the vocal fold edges from HSV data during running speech. The 

temporal segmentation and the motion compensation approaches used in this work 
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successfully extracted the timestamps of the vocalized segments and localized the vibrating 

vocal folds of the HSV recording of the “Rainbow Passage”. Combining an unsupervised 

ML technique (i.e., k-means clustering) with an ACM approach resulted in a powerful 

hybrid method for spatial segmentation, which revealed a promising performance in 

precisely capturing the edges of the vocal folds across frames. This hybrid method helped 

overcome the limitations of the ACM approach in terms of addressing the dependency of 

ACM performance to contour initialization, enhancing the edge representation accuracy, 

mitigating the sensitivity towards image noise, and providing a lower computational cost. 

The proposed method demonstrated an encouraging performance for challenging HSV data 

obtained using a color camera—paving the path toward implementing the hybrid method on 

less challenging images (monochromatic images) with a higher accuracy and performance. 

Since the hybrid algorithm was automated, fast, and accurate, it can serve as a promising 

tool to facilitate the automated analysis and measurement of vocal fold dynamics, especially 

valuable with the challenges present in the endoscopic analysis of connected speech.
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Figure 1. 
Panels (b–f): five HSV cropped frames for Frame 32,974, 32,979, 32,984, 32,992, and 

32,997 after applying the motion window to five different HSV frames (one HSV frame is 

shown in Panel (a)). Panels (g–j): four extracted kymograms at different cross-sections of 

the vocal folds. The R and L on the y-axis indicate the right and left vocal folds in the HSV 

frames, respectively.
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Figure 2. 
Scatter plots of the two clusters when applying the clustering method to the kymogram in 

Figure 1h between Frame 32,659 and 35,111: (a) using the green and red channel intensities 

as the features; and (b) using both green and red channel intensities along with the gradient 

as features.
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Figure 3. 
Clustered kymogram (from Figure 1h) by employing the k-means clustering algorithm using 

(a) the red and green channel intensities as features and (b) the gradient along with the red 

and green channel intensities as three features.
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Figure 4. 
Detected glottal edges based on the results of the k-means clustering algorithm using (a) the 

green and red channel intensities as features and (b) using the gradient along with both red 

and green channel intensities as three features.
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Figure 5. 
Detected glottal edges using the active contour modeling (ACM) method (top kymograms in 

Panel (a–d)) versus the hybrid method (bottom kymograms in Panel (a–d)) for the 

kymograms extracted at four different vocalizations.
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Figure 6. 
Five HSV frames from four different vocalizations (Panel (a–d): between Frame 18,975–

19803, 40,505–41,255, 98,105–98,651, and 103,942–104,577) after applying the hybrid 

method and spatially registering the edges of the vibrating vocal folds.
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