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Abstract: Early detection of esophageal cancer has always been difficult, thereby reducing the overall
five-year survival rate of patients. In this study, semantic segmentation was used to predict and label
esophageal cancer in its early stages. U-Net was used as the basic artificial neural network along
with Resnet to extract feature maps that will classify and predict the location of esophageal cancer.
A total of 75 white-light images (WLI) and 90 narrow-band images (NBI) were used. These images
were classified into three categories: normal, dysplasia, and squamous cell carcinoma. After labeling,
the data were divided into a training set, verification set, and test set. The training set was approved
by the encoder–decoder model to train the prediction model. Research results show that the average
time of 111 ms is used to predict each image in the test set, and the evaluation method is calculated in
pixel units. Sensitivity is measured based on the severity of the cancer. In addition, NBI has higher
accuracy of 84.724% when compared with the 82.377% accuracy rate of WLI, thereby making it a
suitable method to detect esophageal cancer using the algorithm developed in this study.

Keywords: esophageal cancer; small data; semantic segmentation; encoder–decoder model; U-Net;
ResNet150V2; white light imaging; narrowband imaging

1. Introduction

Esophageal cancer (EC) is an extremely dangerous and minimally researched cancer [1–4].
It is the eighth leading cause of cancer-related mortality and the sixth most common cancer
type [5]. By the end of this decade, at least one in a hundred men in European countries
such as the United Kingdom and the Netherlands will have EC [6]. Two out of five patients
with EC are likely to be detected in late stages; hence, less than 20% of the patients survive
more than 3 years [7–9]. Nevertheless, if the disease is diagnosed in the early stages, then
the five-year survival rate will reach more than 90%. On the contrary, the rate will decrease
to less than 10% when the disease is detected in the later stages. Thus, early detection
of EC is important for increasing the survival rate [10,11]. At present, endoscopists are
unable to draw a conclusion from the endoscope images of the esophagus during the
early stages of EC [12]. Therefore, the disease can go unnoticed in the earlier stages. A
precise assessment of individualized treatment depends on the accuracy of the initial
diagnosis [13]. The endoscopic images acquired by using generic mechanisms will be
altered by tissue secretion or instrument specifications, which may directly or indirectly
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lead to misjudgments in diagnosis. Computer-aided diagnosis (CAD) algorithms can be
categorized based on the nature of the endoscopic image, either by narrowband image
(NBI) or by white light imaging (WLI). These techniques use the penetration attributes of
light. WLI utilizes a broad range of visible light to characterize the mucosa. Conversely, for
NBI, two filters are placed on top of the light source, in the middle wavelength range: blue
(415 nm) and green (540 nm) [14]. The infiltration of the blue filter is smaller than long-
wavelength light. Nonetheless, it corresponds to the absorption of hemoglobin, thereby
enabling veins, capillaries, and other parts with a higher hemoglobin ratio to appear darker
and generate an adequate amount of contrast to the enclosing mucosa that reflects light.
The second wavelength (540 nm) light corresponds to the secondary hemoglobin absorption
peak; thus, deeper mucosal and submucosal vessels are made evident by the 540 nm light
and are displayed in cyan [15,16].

In the past few years, considerable research has been published based on deep learning
models, CAD, and other methodologies for diagnosing EC, and most of this research
has shown potential for application [17–29]. For example, one study was conducted by
Shahidi et al. by using the WLI and NBI to precisely detect EC through artificial intelligence
(AI) [30]. Another study was conducted by Yoshitaka et al. by employing convolutional
neural networks (CNN) to ascertain the invasion depth of EC under WLI. Results showed
that using AI can be efficient to a greater extent for detecting esophageal squamous cell
carcinoma (ESCC) than endoscopists [31]. Hiromu et al. conducted a study similar to
CAD studies for the identification of ESCC and found that all CAD studies had better
sensitivity and accuracy [32]. Wang et al. established a single shot multibox detector
by using a CNN for identifying EC. Another study conducted by de Groof et al. built
a hybrid ResNet-UNet model CAD algorithm [33]. Size et al. also built a ResNet-Based
FCN backbone network to recognize cancerous areas in the esophagus [34]. Barbeiro et al.
(2019) used NBI to study gastrointestinal endoscopy and found that NBI can be used as an
important auxiliary image for WLI, which can improve the detection of gastrointestinal
lesions. Apart from CAD, many biosensors have been recently researched to detect different
cancer types [35–37]. However, most of these biosensors have a high limit of detection,
thereby leading to poor sensitivity in early-stage cancer detection. With the increase in
the domestic air-pollution rate, the risk for EC is constantly increasing [38,39]. Despite
the rapid development of AI in recent years, EC continues to have the lowest survival
rate because its symptoms are difficult to detect. Most of the recent research results are
displayed in the form of box selection, which is less accurate in predicting the disease
compared with semantic segmentation.

Therefore, this study aims to use the concept of semantic segmentation and U-Net as
the basic artificial neural network, and Resnet to extract feature maps that will classify and
predict the location of EC in its early stages.

2. Materials and Methods
2.1. Image Pre-Processing

As shown in Figure 1, the data used in this experiment are endoscopic images, and
all endoscopic images generally have black frames. These black frames are unhelpful data
in the training context. Therefore, the black frame was cropped; thus, only the esophagus
image was provided for training, and the size of the image was modified to 608 pixels
× 608 pixels. Another screening was conducted to ensure that the heavily blurry image
and the images with rainbow lens flare or bubble interference were removed. All these
images must be removed because the data set was already small, and in this case, any small
interference could significantly affect the training set. Afterward, the doctors marked the
area of the images with the symptoms. Then, these data were organized into two types:
WLI and NBI. The training/validation set accounted for 90% of the total data, and the test
set accounted for 10% of the total data. The number of images for both categories was
as follows:
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• WLI: 67 train/validation sets plus eight test sets
• NBI: 81 training/validation sets plus nine test sets

After allocating the data, the markers in the image were divided into two categories.
The 0th category was normal, and the 1st category was a combination of dysplasia and
SCC. All the data were saved as a .npy file to increase the speed of reading the data.
Data augmentation was performed to increase the amount of data using the function
ImageDataGenerator from the Keras library. The rotation range was set to 60, within which
the images were rotated randomly. The sheer range was also set to 0.5, which will randomly
apply shearing transformations.
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2.2. Network Architecture

In this research, ResNet152V2+U-Net was chosen as the network design. Typically,
the contracting path conforms to the design of a conventional convolutional network. It is
comprised of the repeated application of two 3 × 3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (ReLU) and a 2 × 2 maximum pooling operation
with stride 2 for downsampling [40,41]. However, the algorithm developed in this study
was built as U-Net while the contracting path was updated to Res-Net152V2. Four of
the five convolutional blocks of ResNet matched the number of convolutional blocks in
the original U-Net expansion path. The respective contraction and expansion paths were
then joined. The contraction path used Res-Net152V2, whilst the expansion path utilized
the original U-Net. This design emphasized the use of a more complex model to locate a
superior feature map. Multiple testing on the contracting route using the original U-Net,
VGG19, and ResNet50 resulted in a significant accuracy improvement. As the input, the
block from the first layer of ResNet152V2 was used. The block transferred to the expansion
route was made compatible by an iterative procedure. Conv1 was utilized for the second
layer, and the result of Conv1 was transferred to the extension path for connection. The
third, fourth, and fifth levels then used Conv2 x, Conv3 x, and Conv4 x, respectively, of
which one may be used to link the extension path layer. Its model architectures diagram
are shown in Supplementary Materials.

3. Results

The results of this study are divided into two parts: WLI and NBI. A total of 67 images
were included for the training/validation set in WLI, whereas 81 images were included
for the training/validation set in NBI. During training, WLI and NBI were trained simul-
taneously. The first 25 epochs used a learning rate of 0.001, and the learning rate of the
last 10 epochs was revised down to 0.0002. The batch size was set to 1, and the num-
ber of steps was the number of samples. For the loss function, categorical_crossentropy
was used, and for accuracy, categorical_accuracy was used because this study involved
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a multi-classification problem. The training accuracy was almost stable, and it gradually
increased in the first 25 epochs before training. The verification accuracy was also higher
than the training accuracy except for a few unstable ones. The training accuracy of the
next 10 epochs gradually increased, and the verification accuracy was stable. The overall
training effect was also good, and the gradual increase of the training accuracy was con-
trolled at a good number of epochs to avoid overfitting. The verification accuracy of the
25 epochs before NBI training was higher than the accuracy during training except for a
few instabilities. The accuracy rate of the 10 epochs after training was constantly changing
and gradually increasing, whereas the verification accuracy rate was constantly changing
and gradually decreasing close to the training accuracy rate. Despite a potential trend of
overfitting, the data have also been expanded; thus, several epochs must be considered to
achieve the best training. Using the trained model for the test set, WLI and NBI have eight
and nine prediction sets, respectively. Several evaluation criteria were used for the results.
Sensitivity is also known as a true positive or recall rate, which indicates the probability
of successfully detecting positive samples among all true positive samples. The second
criterion is precision, which indicates the probability of successfully detecting positive
samples among all predicted positive samples. The F1-score is a harmonic average function
of precision and recall, which is a rough indicator for checking the performance of this
model. A confusion matrix shows the prediction results of the test set, which are presented
in a tabular form. For the final result of this study, the three abovementioned evaluation
indicators can be calculated based on the results of the confusion matrix. Figure 2 shows a
schematic diagram of the results of this research. Figure 2a,b show the input WLI images
after cropping, whereas Figure 2c,d are the input NBI images after cropping the original
image. Figure 2e–h are ground-truth images marked by doctors based on the corresponding
input images, whereas Figure 2i–l show the prediction results of the corresponding graphs.
The orange-marked area corresponds to the category SCC, whereas the purple-marked area
corresponds to the category dysplasia. Semantic segmentation can intuitively locate the
marked position through the diagram. However, as shown in Figure 2i, some extra areas
have EC. However, in the endoscopic image, a small lens flare is detected (Figure 2a). The
similarity between the ground-truth and predicted results can be observed from Figure 2k.
As shown in Figure 2j, two categories were marked similarly, which outperformed the
detection of an expert doctor. However, in the NBI part, the symptoms of SCC and dys-
plasia were almost perfectly marked. Therefore, the NBI images can detect EC better than
WLI images.

The accuracy, sensitivity, and F1 score were marked based on the severity of the
diseases into three stages: normal, dysplasia, and SCC. The results of NBI are shown in
Table 1, whereas the results of WLI are shown in Table 2. The overall accuracy rate was
84.7245% in NBI. The precision of dysplasia and SCC categories was 85.67%, which was
higher than the accuracy of the normal category. However, in WLI, the accuracy was
reduced to 82.37%. Moreover, the precision rate of dysplasia and SCC categories was only
77.24%, which was much lower than the required medical standards. Nevertheless, the
accuracy of the normal category was 85.89%. Based on these results, we can infer that the
NBI is a suitable method to detect EC in its early stages using the algorithm developed in
this study.
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Table 1. Confusion matrix for narrow-band imaging.

Predicted

Normal Dysplasia and SCC Precision F1 Score IoU

Normal 525,422 100,490 83.95% 0.857922 67.89%
Dysplasia and SCC 73,537 439,809 85.67% 0.834833 71.35%
True Positive Rate 87.72% 81.40%

Table 2. Confusion matrix for white-light imaging.

Predicted

Normal Dysplasia and SCC Precision F1 Score IoU

Normal 504,168 82,798 85.89% 0.852622 71.79%
Dysplasia and SCC 91,495 310,531 77.24% 0.780861 54.48%
True Positive Rate 84.64% 78.95%
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4. Discussion

In recent years, the research on AI, biosensors, and medical treatment has constantly
developed new methods to increase the probability of recovery after illness and reduce
the possibility of morbidity or serious illness. Esophageal cancer has a low survival
rate. Endoscopy can help doctors to grasp the location of the disease for the first time,
no longer the approximate location, and it can also help patients reduce the chance of
suffering from the use of iodine dyes. Semantic segmentation can intuitively see the
marked position through the map. In the method developed in this study, particularly the
NBI, SCC, and dysplasia symptoms were marked with high accuracy. In addition, NBI
images can detect EC in its early stages better than WLI images in dysplasia and SCC,
with high accuracy. Concerning accuracy, the symptoms are similar to the pixel data of the
general esophagus. However, the amount of data in the training/validation set is relatively
small, and the amount of disease information is insufficient. Hence, some results were not
accurate. Furthermore, the accuracy of the developed model can be increased drastically
by increasing the number of NBI and WLI images used for the training set.

5. Conclusions

Semantic segmentation is a method of classifying each pixel, and the information
obtained from every pixel is important. When this technique is used in medical imaging,
various abnormal areas can be marked. However, the symptoms of EC are negligible.
Hence, the number of training and testing data as well as the resolution will be important
factors in detection and classification. If the color of a single pixel is not accurate enough,
then the model will have a color difference error when predicting the pixel and reproducing
ground truth. However, the acquisition of endoscopic data is difficult. In this study,
semantic segmentation was used to predict and label EC. ResNet152V2, and U-Net were
also used as the AI architecture. In addition, a total of 165 images have been used, 67
of which were used for training and verification, whereas eight images were used for
prediction in WLI images. A total of 81 images were used for training and verification,
whereas nine images were used for prediction in NBI images. The time taken to predict each
image in the test set is only 111 ms. The results indicate that the NBI has higher accuracy
of 84.724% when compared with the 82.377% accuracy rate of WLI, thereby making it a
suitable method to detect EC using the algorithm developed in this study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12081204/s1, Figure S1: Simple encoder-decoder model
diagram. Figure S2: U-Net original architecture diagram. Figure S3: Residual block. Figure S4: Bottle-
neck building block. Figure S5: ResNet152V2+U-Net Architecture Diagram. Table S1: Architecture
diagram of ResNet for ImageNet.
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