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(TNF-α and IL-1β), besides enhancing SOD activity and 
lowering MDA content. Moreover, EMPA downregulated 
mTOR and stimulated ULK1 as well as beclin-1. Likewise, 
EMPA reduced miR-21 that enhanced RECK, reducing 
MMP-2 and -9 contents. EMPA’s beneficial effects were 
almost abolished by dorsomorphin administration. In con-
clusion, EMPA displayed a protective effect against DPN 
independently from its anti-hyperglycemic effect, probably 
via modulating the AMPK pathway to modulate oxidative 
and inflammatory burden, extracellular matrix remodeling, 
and autophagy.

Keywords  Empagliflozin · Dorsomorphin · Diabetic 
peripheral neuropathy · AMPK · p38 MAPK · mTOR

Introduction

Diabetes Mellitus (DM) is an endocrine, metabolic disease 
characterized by either insulin resistance or partial/complete 
deficiency in pancreatic insulin secretion, resulting in per-
sistently elevated blood glucose levels (American Diabetes 
Association 2009). DM incidence and prevalence are widely 
growing to become a pandemic by 2030, as expected by 
the International Diabetes Federation (Saeedi et al. 2019). 
Diabetic neuropathy is among the utmost serious diabetic 
microvascular complications, which affects about half of the 
patients with DM type 1 and 2 (Lederman 2012), targeting 
the peripheral nervous system’s sensory, motor, and auto-
nomic neurons (Duby et al. 2004).

Diabetic peripheral neuropathy (DPN), the utmost fre-
quent type of diabetic neuropathy, can lead to foot ulceration 
with an increased risk of lower limb amputation (Khdour 
2020). Patients suffer from numbness and hot sensations 
(Backonja and Stacey 2004), besides sensory pain affecting 
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distal limbs (Dworkin et al. 2007). The associated neuro-
pathic pain varies in its severity, resulting in a negative 
impact on patients’ life as well as burdening them with high 
health care costs (Sadosky et al. 2015). Furthermore, nerve 
motor dysfunction may trigger muscle weakness and uncon-
trolled balance (Khdour 2020).

Multiple established mechanisms have been implicated 
in DPN pathophysiology viz. protein kinase C, the polyol 
pathways, the formation of the advanced glycation end prod-
ucts, and oxidative stress (Duby et al. 2004). Focusing on 
oxidative stress caused by hyperglycemia (Obrosova 2002; 
Vincent et al. 2004), nerve damage could be mediated via 
inducing nerve microangiopathy and vascular abnormalities 
(Cameron et al. 2001). These abnormalities are strongly con-
nected to reactive oxygen species (ROS) production, lipid 
peroxidation, along with a drop in body antioxidant defense 
mechanisms such as scavenger molecules (Obrosova 2002). 
Subsequentially, nerve energy production is reduced (Obro-
sova 2002; Vincent et al. 2004), accompanied by a distur-
bance in proteins axonal transport (Fernyhough and Schmidt 
2002). In crosstalk between hyperglycemia, mitochondrial 
dysfunction, and oxidative stress, elevated intracellular glu-
cose concentration stimulated mitochondrial NADH, thus 
electron availability to the respiratory chain, resulting in 
ROS production (Nishikawa et al. 2000a, b).

Adenosine monophosphate activated protein kinase 
(AMPK) is a possible target molecule for treating DPN by 
maintaining cellular energy balance by increasing adeno-
sine triphosphate (ATP)-generating catabolic processes 
and reducing ATP consuming-anabolic processes (Shri-
kanth and Nandini 2020). Moreover, Roy Chowdhury et al. 
(2012) revealed that diminished AMPK cascade interfered 
with mitochondrial dysfunction and neuronal damage. On 
the contrary, AMPK pathway activation prevented strepto-
zotocin (STZ)-induced neuroinflammation in experimen-
tal animals via stimulating mitochondrial biogenesis and 
autophagy (Yerra and Kumar 2017). Likewise, it enhanced 
the expression of antioxidant enzymes in an in vitro experi-
ment (Lin et al. 2017).

Though adequate glycemic control, particularly in type 
2 diabetic patients, can still develop DPN among several 
microvascular complications. Hence, in recent years, much 
attention has been directed toward new anti-diabetic drugs 
that can mitigate DPN based on glucose-independent 
mechanisms (Lee et al. 2018; Eid et al. 2020). Empagliflo-
zin (EMPA) is a selective sodium-glucose cotransporter-2 
(SGLT-2) inhibitor, hence, impedes glucose reabsorption 
from the kidney’s proximal tubules (Scott 2014), resulting 
in reduced blood glucose level and eventually controlling 
DM type 2 (Grempler et al. 2012). Regardless of EMPA 
anti-hyperglycemic effect, it showed a promising efficacy 
against cardiovascular complications in DM type 2 patients 
(Zelniker et al. 2019) in addition to heart failure, among 

other cardiovascular diseases (Zhou and Wu 2017; Packer 
et al. 2017). Such effect could be attributed to the interac-
tion between renal SGLT-2 and sodium-hydrogen exchange 
which displays high activity in heart failure, contributing 
to insensitivity to either diuretic treatments or endogenous 
natriuretic peptides (Scott 2014). Likewise, EMPA inhibited 
cardiac sodium-hydrogen exchange, thus reducing cardiac 
damage, hypertrophy, and remodeling (Scott 2014). Addi-
tionally, EMPA’s beneficial effects could be mediated by 
lowering fluid retention, body weight, blood pressure, renal 
inflammation, and oxidative stress (Scott 2014; Lee et al. 
2018). Accordingly, EMPA represented an excellent candi-
date to evaluate its possible glucose-dependent and -inde-
pendent protective effects against diabetic nephropathy, 
as shown in several investigations (Gembardt et al. 2014; 
Elrouby and Toural 2017; Eid et al. 2020).

Few recent studies have emphasized the possible role 
of EMPA in competing against peripheral neuropathy. Lee 
et al. (2018) revealed that EMPA ameliorated DPN in the 
DM type 1 rat model in their preliminary research. Likewise, 
Eid et al. (2020) reported a similar effect in the DM type 
1 db/+ mouse model; however, EMPA unexpectedly didn’t 
improve DPN in the DM type 2 db/db mouse model. Since 
SGLT-2 inhibitors are currently not approved for DM type 1, 
further investigations using different DM type 2 animal mod-
els are warranted to verify EMPA efficiency against DPN 
(Lee et al. 2018; Eid et al. 2020). Furthermore, the possible 
signaling pathways underlying the glucose-independent pro-
tective effect of EMPA have yet to be determined. Hence, 
the goal of this study was to elucidate the therapeutic impact 
of EMPA to ameliorate DPN in STZ-induced DM type 2 in 
rats. Besides, to explore EMPA’s possible mechanistic path-
way targeting AMPK and corresponding downstream media-
tors that may intersect with each other using the AMPK 
inhibitor dorsomorphin (DORS).

Materials and methods

Animals

Adult male Wistar rats (170–220 g) have been acquired 
from the National Research Center (Giza, Egypt). In the 
animal house of the Faculty of Pharmacy, Cairo Univer-
sity (Cairo, Egypt), animals were kept for a week to adapt 
prior to experiments conduction. They were housed under 
controlled, standardized conditions with a temperature of 
22 ± 2 °C, relative humidity of 60 ± 10%, and a 12 h light/
dark cycle. All rats had unlimited access to tap water and 
standard laboratory chow. The Ethics Committee of Cairo 
University, Faculty of Pharmacy approved this study (Num-
ber: PT 1393) which followed the US National Institutes of 
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Health’s Guide for the Care and Use of Laboratory Animals 
(NIH Publication No. 85-23, revised 2011).

Drugs and chemicals

Empagliflozin was acquired from Boehringer Ingelheim 
Pharmaceuticals (Ingelheim, Germany), while DORS and 
STZ were supplied by Sigma-Aldrich Co. (St. Louis, MO, 
USA). Nicotinamide (NA) was provided by Bayer (Lyon, 
France). Every other chemical utilized during experiments 
was of analytical grade and maximum purity. Freshly sus-
pended EMPA in 1% tween 80 solution was orally admin-
istered at a dosage of 3 mg/kg/day (Lee et al. 2018), while 
DORS was freshly dissolved in 1% dimethyl sulfoxide 
(DMSO) and intraperitoneally injected at a dosage of 
0.2 mg/kg/day (Hasanvand et al. 2018). In addition, NA 
(50 mg/kg) and STZ (52.5 mg/kg) were freshly solubi-
lized before use in normal physiological saline and citrate 
buffer (0.1 M, pH 4.5), respectively (Moustafa et al. 2018a; 
Abdelkader et al. 2022).

Induction of diabetes

Nicotinamide was intraperitoneally given to overnight-fasted 
rats 15 min prior to STZ intraperitoneal injection (Moustafa 
et al. 2018a; Abdelkader et al. 2022). Administration of NA 
preceded STZ to preserve insulin-secreting β-cells from 
the damaging effect of STZ partly (Supplementary Fig. 1). 
Following STZ administration, all rats were given a glu-
cose solution (5%) rather than tap water for 24 h to avoid 
death from hypoglycemic shock. After that, blood samples 
were collected from the rat’s tail vein to assess blood glu-
cose levels (BGL) using an ACCU-Check portable glu-
cometer (Roche, Indianapolis, IN, USA) 2 days after STZ 

administration. Only rats with BGL levels ≥ 200 mg/dl were 
chosen as diabetic rats (Moustafa et al. 2018b; Mohamed 
et al. 2020).

Experimental design

As shown in Fig. 1, the current study consisted of 3 inde-
pendent experiments (112 rats). In the first experiment, 40 
rats were randomly allocated into 4 groups (10 rats/group). 
In group I, rats received 1% tween 80 solution orally and 1% 
DMSO intraperitoneally for 15 days and acted as a control. 
Group II included STZ-induced diabetic rats and served as a 
diabetic group (STZ group). Diabetic rats in group III were 
given EMPA (3 mg/kg, p.o.) every day for 15 days. The dose 
of EMPA was selected from the previous study of Lee et al. 
(2018). Diabetic rats in group IV were given EMPA (3 mg/ 
kg, p.o.) and DORS (0.2 mg/ kg, i.p.) daily for 15 days.

All rats were exposed to behavioral analysis 1 day after 
receiving the last drugs, ordered from the least to the most 
stressful test: rotarod, Randell-Selitto, hind paw cold allo-
dynia, and finally hot plate. These tests were performed in a 
sound-isolated room during the light phase, with a 1-h break 
between the experiments (Abdelkader et al. 2017). After that, 
rats were weighed, and blood samples were collected from the 
rat’s tail vein to assess BGL using the portable glucometer. 
Subsequently, rats were split randomly into 2 sets and were 
euthanized by decapitation. In the first set (n = 5), both sciatic 
nerves have been quickly separated, rinsed by ice-cold saline, 
and then homogenized in a lysis buffer containing a complete 
protease inhibitor complex. The homogenates were separated 
by centrifugation at 15,000×g for 15 min at 4 °C. The super-
natants were divided into aliquots then stored at − 80 °C for 
later western blot determination of phosphorylated AMPK, 
mammalian target of rapamycin (mTOR), mitogen-activated 

Fig. 1   Experimental design
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protein kinase (p38 MAPK), reversion-inducing cysteine-rich 
protein with Kazal motifs (RECK), phosphorylated nuclear 
factor kappa-B (NF-κB) p65, and phosphorylated Unc-51 
like autophagy activating kinase 1 (ULK1). In the second set 
(n = 5), sciatic nerves from one rat/group were fixed overnight 
in glutaraldehyde (2.5%) in cacodylate buffer (0.1 M, pH 7.4) 
for electron microscopic examination. Regarding the remain-
ing 4 rats/group, each rat’s right sciatic nerve was promptly 
extracted, washed, and frozen in liquid nitrogen before storing 
at − 80 °C till their use to determine microRNA-21 (miR-21) 
by quantitative real-time PCR. Also, the left sciatic nerves 
were fixed overnight in neutral-buffered formalin (10%) for 
histopathological examination and immunohistochemical 
determination of matrix metalloproteinase (MMP)-2 and 
MMP-9.

In the second experiment, 48 rats were randomized between 
4 groups (12 rats/group) using the same design implemented 
in the first experiment. One day after receiving the last drugs, 
electrophysiology analysis for the right sciatic nerves of 6 rats 
from each group was conducted. After that, all the rats were 
decapitated. The sciatic nerve tissues on both sides were cau-
tiously excised (excluding the right sciatic nerves used in the 
electrophysiology experiment), cleaned with ice-cold saline, 
dried, and weighted. The sciatic nerves from every 2 rats were 
pooled and homogenized in phosphate buffer to estimate the 
biochemical parameters (n = 6); malondialdehyde (MDA), 
superoxide dismutase (SOD), ATP, adenosine monophosphate 
(AMP), tumor necrosis factor (TNF)-α, interleukin 1β (IL-1β), 
mammalian orthologue of yeast Atg6 (beclin-1).

In the third experiment, 24 rats were randomized between 
4 groups (6 rats/group) using the same design implemented 
in the previous experiments. One day after receiving the last 
drugs, rats were split randomly into 2 sets and were decapi-
tated, then the sciatic nerves were carefully excised and 
washed with ice-cold saline. The sciatic nerves from the first 
set (n = 3) were fixed overnight in neutral-buffered formalin 
(10%) to quantify myelinated nerve fibers. In the second set 
(n = 3), sciatic nerves were processed as previously described 
for western blot estimation of phosphorylated p38 MAPK and 
total NF-κB p65 as well as total and phosphorylated extracel-
lular-signal-regulated kinase (ERK). To avoid experimental 
bias, blinding of all the samples was applied during analysis.

Body weight change

Each animal’s body weight was measured on the first and last 
days of the experiment, and the percent change in body weight 
was calculated using the equation below:

%Change in body weight =
body weight in last day − body weight in first day

body weight in first day
× 100

Behavioral analysis

Rotarod test

The motor coordination and balance of rats were evaluated 
using the Ugo Basile accelerated rotarod apparatus (Model 
47750, Italy), where rats were placed in the opposite direc-
tion of the rotating rod at a starting speed of 4, which was 
linearly increased to 40 rpm. Before the experiment, all rats 
were trained for three consecutive days (one session per day, 
5 min each). Each rat’s performance was assessed by record-
ing its time to fall off the rod during a 5-min trial (Lundblad 
et al. 2003).

Randell‑Selitto test

Mechanical hypersensitivity was evaluated by the Ugo Basile 
analgesimeter apparatus (Model 7200, Italy). The dorsal sur-
face of the rat’s left hind paw was pressed by constantly rising 
pressure till vocalization or paw withdrawal reflex occurred. 
Rats were gently confined with a soft cloth to immobilize them 
while measuring the mechanical withdrawal threshold. A cut-
off pressure force of 250 g was adopted to prevent tissue injury 
(Leighton et al. 1988).

Hind paw cold allodynia test

The cold pain sensitivity of rats was assessed by gently 
submerging each rat’s hind paws in an ice-cold water tank, 
maintained at a constant temperature of 4 ± 1 °C. The hind 
paw withdrawal latency was measured for each rat. The test 
was performed twice for every hind paw at a 5-min interval 
to every rat, and the withdrawal latency was calculated as 
the mean of both hind paw’s results. Only one hind paw was 
measured during each immersion, with a cut-off time of 20 s, 
to avoid tissue damage. A shorter contact time with ice-cold 
water can be perceived as very severe allodynia (Ameyaw et al. 
2014).

Hot Plate test

Rats’ heat pain sensitivity was evaluated using the Ugo Basile 
hot plate apparatus (Model 7280, Italy). Individual rats have 
been placed on the heated plate fixed at a temperature of 
55 ± 1 °C, and latency to withdraw or lick the hind paws or 
jump to avoid heat pain was recorded as hot plate reaction 
latency; with a cut-off time of 20 s (Kamel et al. 2022).
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Electrophysiology of sciatic nerve

The nerve conduction velocities, sensory (SNCV) and motor 
(MNCV), have been recorded as described earlier (Ling 
et al. 2019; Fontanesi et al. 2019). Rats were anesthetized 
using a solution of xylazine and ketamine (20 and 50 mg/
kg, i.p., respectively). The right sciatic nerve was stimulated 
using the Ugo Basil ECT Unit (Model 57800, Italy) with 
the following settings: duration of 0.1 ms, intensity of 20 
μA, and frequency of 50 Hz. Then the action potential was 
recorded by PowerLab 8SP (AD Instruments, Australia) at 
10 Hz. The distance between distal and proximal cathodes 
was divided by the latency difference between proximal and 
distal cathodes to determine SNCV and MNCV.

Biochemical analysis

Western blot analysis

Protein contents were quantified in sciatic supernatants by 
a protein assay kit (Bio-Rad, Hercules, CA, USA). Then, 
protein samples were isolated onto a nitrocellulose mem-
brane using sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (Amersham Bioscience, Piscataway, NJ, 
USA). Membranes were blocked with a 5% non-fat dry 
milk solution in Tris-buffered saline with Tween (TBST) 
for 1 h at room temperature. After that, membranes were 
incubated overnight at 4 °C with 1:1000 dilutions of the 
primary antibodies: rabbit polyclonal anti-mTOR (Catalog 
No: ab2732), mouse polyclonal anti-RECK (Catalog No: 
ab88249), rabbit polyclonal anti-p(Ser536)-NF-κB p65 
(Catalog No: ab28856) from Abcam (Waltham, MA, USA), 
besides rabbit polyclonal anti-p(Ser317)-ULK1 (Catalog No: 
37762), rabbit polyclonal anti-p(Thr172)-AMPK (Catalog 
No: 2535), rabbit monoclonal anti-p(Thr180/Tyr182)-p38 
MAPK (Catalog No: 4511), and rabbit monoclonal anti-
NF-κB p65 (Catalog No:8242) from Cell Signaling Tech-
nology (Danvers, MA, USA), in addition to rabbit polyclonal 
anti-p38 MAPK (Catalog No: AHO1202), rabbit polyclonal 
anti-ERK1/2 (Catalog No: 61-7400), rabbit polyclonal anti-
p(Thr202/Tyr204)-ERK1/2 (Catalog No: 36-8800) from 
Thermo Fisher Scientific (Hanover, IL, USA). Following 
washing with TBST, horseradish peroxidase-conjugated 
goat anti-mouse immunoglobulin was used to probe the 
membranes (Life Science Inc., Chicago, IL, USA). Finally, 
following the manufacturer’s procedures, protein bands 
were visualized using an enhanced chemiluminescence kit 
(Amersham Bioscience, Piscataway, NJ, USA). Densitomet-
ric analysis of the protein bands was performed using a scan-
ning laser densitometer (Biomed Instrument Inc., Brooklyn, 
NY, USA), and results were normalized to β-actin protein 
expression.

Quantitative real‑time RT‑PCR analysis

Total RNAs were isolated from all samples by miRNeasy 
Serum/Plasma Kit (Qiagen, Hilden, Germany) as per its 
manual instructions. TaqMan MicroRNA Reverse Transcrip-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA) was 
used to prepare single-stranded cDNA in a reverse transcrip-
tion reaction using 5 µg of RNA per the manufacturer’s pro-
tocol. The cycling condition for cDNA synthesis comprised 
incubating the reaction mixture at 25 °C for 10 min, 42 °C 
for 60 min, and 70 °C for 10 min. For each sample, analysis 
was performed using cDNA, MgCl2 (10 mM), Taq-poly-
merase (5 U/µl), PCR buffer, dNTP (10 mM), and a pair of 
specific primer (10 µM) in a 20-µl final reaction volume. The 
following were conditions of analysis: initial denaturation 
for 5 min at 95 °C followed by 40 cycles, annealing for 15 s 
at 95 °C, and extension for 20 s at 60 °C and final extension 
for 40 s at 72 °C. The following primers were used: miR-21, 
F: 5′-TAG​CTT​ATC​AGA​CTG​ATG​TTGA-3′ and R: 5′-GAG​
GTA​TTC​GCA​CTG​GAT​ACG-3′ and U6, F: 5′-CTC​GCT​
TCG​GCA​GCACA-3′, and R: 5′-AAC​GCT​TCA​CGA​ATT​
TGC​GT-3′. The 2−∆∆Ct comparative methodology was used 
to calculate the relative expression of the studied gene using 
U6 as the housekeeping gene (Livak and Schmittgen 2001).

Colorimetric assay

Determination of MDA and SOD content in sciatic nerve 
homogenates was performed using specific colorimetric kits 
obtained from Bio-diagnostic (Catalog No: MD2529 and 
SD2521, respectively, Cairo, Egypt) as per the kits’ instruc-
tion manual.

Enzyme‑linked immunosorbent assay

Following manufacturers’ instructions, rat-specific enzyme-
linked immunosorbent assay (ELISA) kits supplied by 
Mybiosource Inc. (Catalog No: MBS723034, MBS7230212, 
MBS2507393 and MBS825017, San Diego, CA, USA) were 
used to evaluate ATP, AMP, TNF-α, and IL-1β, respectively. 
At the same time, the rat ELISA kit obtained from Cusabio 
Technology LLC (Catalog No: CSB-EL002658RA, Wuhan, 
China) was used to measure beclin-1.

Histopathologic examination

Light microscopy

The formalin-fixed sciatic nerve specimens were processed 
for paraffin embedding before being cut into 4-μm sections 
and then stained with hematoxylin–eosin (HE) staining 
and toluidine blue for light microscopic examination (Cull-
ing 2013). The extent of sciatic nerve fiber degeneration, 
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Schwann cell loss, and inflammatory cells infiltration was 
used for grading the severity of the pathologic changes in 
the HE-stained sections. A 4-point scoring scale was used 
with 0, 1, 2, and 3 indicating no (0%), mild (1–25%), mod-
erate (26–50%), and severe (> 50%) pathological changes, 
respectively (Ibrahim et al. 2020). Furthermore, the number 
of myelinated nerve fibers for each group was quantified 
by Leica QWin image analysis software (version 3; Leica 
Microsystems Ltd, Heerbrugg, Switzerland) using 5 random 
non-overlapping microscopic fields for each toluidine blue-
stained section.

Immunohistochemistry

Paraffin-embedded sciatic nerves sections (4-μm thick) were 
used to evaluate MMP-2 and MMP-9 expression. Retrieved 
specimens were treated for 30 min at room temperature with 
3% hydrogen peroxide/methanol, then washed with phos-
phate-buffered saline. Sections were treated with 10% goat 
blocking serum for 1 h at room temperature. Later, speci-
mens were incubated with MMP-2 or MMP-9 rabbit mono-
clonal antibodies (1:100 dilution; Catalog No: MA5-13590 
and MA5-14228, respectively, Thermo Fisher Scientific, 
Hanover, IL, USA) overnight at room temperature. After 
washing, sections were incubated with biotinylated sec-
ondary antibody (Dako, Glostrup, Denmark) and then with 
horseradish peroxidase-conjugated streptavidin for 60 min 
each at room temperature. Three additional washes were 
performed, then the reaction was visualized by 3,3′-diam-
inobenzidine tetrahydrochloride (DAB Substrate Kit, Vec-
tor Laboratories Inc., Burlingame, CA, USA). Slides were 
counterstained with hematoxylin, dehydrated, mounted, 
and examined by a light microscope. The area percentage 
of immunopositive cells to the total area of the microscopic 
field was analyzed by Leica QWin image analysis software 
(version 3; Leica Microsystems Ltd, Heerbrugg, Switzer-
land) at ×400 magnification. The analyses were conducted 
using 5 non-overlapping microscopic fields that have been 
randomly chosen from each section.

Electron microscopy

Briefly, sciatic nerves specimens were postfixed in osmium 
tetroxide (1%), dehydrated, embedded, cut into 1-μm sec-
tions. Following uranyl acetate and lead citrate staining, 
sciatic nerves’ ultrastructure was investigated and photo-
graphed using a transmission electron microscope (Hitachi 
H-300, Hitachi LTD., Tokyo, Japan). Then, they were ana-
lyzed by the Digimizer Image Analysis Software (version 
5.4.4, © 2005–2020 MedCalc Software LTD) to measure the 
ratio of sciatic nerves’ axon to myelin sheath areas (Wang 
et al. 2018).

Statistical analysis

GraphPad Prism software (version 8, San Diego, CA, USA) 
was used to analyze the results statistically. All datasets were 
subjected to the Shapiro test to check normality. The data 
was displayed as mean ± S.D and analyzed using one-way 
analysis of variance (ANOVA) and Tukey’s multiple com-
parison test. On the other hand, the pathological scoring 
was displayed as the median and range and analyzed by the 
nonparametric Mann–Whitney U test. The degree of signifi-
cance for all statistical tests was set to p < 0.05.

Fig. 2   Effect of EMPA on body weight and blood glucose level in STZ-
induced DPN in rats. Panels represent (a) % change in body weight and 
(b) fasting blood glucose level. Every bar with a vertical line displays 
the mean ± S.D (n = 10). (*) vs CONT, (@) vs STZ, (#) vs EMPA; P 
< 0.05. CONT: control; DPN: diabetic peripheral neuropathy; DORS: 
dorsomorphin; EMPA: empagliflozin; STZ: streptozotocin
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Results

Effect of EMPA on body weight and blood glucose level 
in STZ‑induced DPN in rats

Rats received STZ displayed a decline in body weight 
(Fig. 2a) along with an elevation in fasting blood glucose 
level (Fig. 2b) to 72% and 524%, respectively, compara-
ble to the control group. Moreover, the administration of 
EMPA failed to improve the previous alterations. Similarly, 
DORS + EMPA-treated animals showed effects as observed 
in both STZ and EMPA groups.

Effect of EMPA on motor and sensory performance 
in STZ‑induced DPN in rats

The diabetic group displayed impairment in their motor and 
sensory performance during the behavioral assessments 
as manifested by decreased rotarod fall off latency (21%; 
Fig. 3a), Randell-Selitto mechanical withdrawal threshold 
(46%; Fig. 3b), cold allodynia hind paw withdrawal latency 
(27%; Fig. 3c) as well as hot plate reaction latency (33%; 
Fig. 3d), comparable to the control animals. The adminis-
tration of EMPA almost normalized these changes, whereas 
DORS + EMPA-treated rats nearly abolished EMPA benefi-
cial effects.

Fig. 3   Effect of EMPA on motor and sensory performance in STZ-induced DPN in rats. Panels represent: (a) rotarod fall-off latency, (b) Ran-
dell-Selitto mechanical withdrawal threshold, (c) cold allodynia hind paw withdrawal latency, and (d) hot plate reaction latency. Every bar with 
a vertical line displays the mean ± SD (n = 8-10). (*) vs CONT, (@) vs STZ, (#) vs EMPA; P < 0.05. CONT: control; DPN: diabetic peripheral 
neuropathy; DORS: dorsomorphin; EMPA: empagliflozin; STZ: streptozotocin
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Effect of EMPA on the histopathological alterations 
of the sciatic nerves in STZ‑induced DPN in rats

Microscopic examination of sciatic nerve sections (Fig. 4a) 
revealed that CONT animals showed apparently intact 
well-organized myelinated nerve fibers containing numer-
ous Schwann cells and thin endoneurial connective tissue 
as well as perineural, epineural connective tissue sheath 
without abnormal cellular infiltrates. However, STZ rats 
showed multiple focal areas of axonopathies such as swell-
ing of nerve fibers, endoneurial edema, occasional myelin 
sheath loss, reduced numbers of Schwann cells in some bun-
dles, and severe epineural connective tissue mononuclear 

inflammatory cells infiltrates. Moreover, EMPA-treated 
samples showed almost amelioration of the previously 
mentioned changes. At the same time, DORS + EMPA sec-
tions showed similar but less severe damage than the STZ 
group. These effects were also represented by mitigation of 
the pathological score in EMPA-treated animals (Fig. 4b), 
compared to the STZ group. In addition, the STZ group 
exhibited a reduction in nerve fiber count (60.5%) compared 
to the CONT group (Fig. 4c, d). In comparison, the EMPA 
group showed an increased count by 58% compared to the 
STZ group. Moreover, the DORS + EMPA group partially 
improved the count of nerve fibers, comparable to the STZ 
group.

Fig. 4   Effect of EMPA on the histopathological alterations of the sciatic nerves in STZ-induced DPN in rats. (a) Sections of sciatic nerves 
stained with hematoxylin and eosin. CONT section showing myelinated nerve fibers (arrow) and scattered Schwann cells (arrowhead). STZ sec-
tion showing myelin sheath loss (dashed arrows), Schwann cells loss (arrowhead), and inflammatory cells (red arrow). EMPA section showing 
myelinated nerve fibers (arrow) and scattered Schwann cells (arrowhead). DORS+EMPA section showing edema (dashed arrows) and mild loss 
of Schwann cells (arrowhead) (Scale bar is 50 μm). (b) Pathological scoring. Every bar with a vertical line displays the median ± range (n= 4). 
(c) Sections of sciatic nerves stained with toluidine blue (Scale bar is 50 μm). (d) Nerve fibers’ count. Every bar with a vertical line displays the 
mean ± SD (n=3). (*) vs CONT, (@) vs STZ, (#) vs EMPA; P < 0.05. CONT: control; DPN: diabetic peripheral neuropathy; DORS: dorsomor-
phin; EMPA: empagliflozin; STZ: streptozotocin
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Effect of EMPA on the micromorphological alterations 
of sciatic nerves in STZ‑induced DPN in rats

Electron micrographs of rat sciatic nerves (Fig. 5a) displayed 
that myelinated nerve fibers of the CONT group exhibited com-
plete and regular structures. STZ group revealed delamination 
of myelin lamellae, axonal atrophy, and deformed nerve fibers. 
However, the EMPA group displayed almost well-organized 

myelinated nerve fibers, while the DORS + EMPA group 
showed similarly deranged myelin sheaths and damaged 
nerve fibers as in the STZ group. Moreover, the axon to myelin 
sheath areas ratio in the sciatic nerve represents the extent of 
axonal atrophy and swelling of the myelin sheath (Fig. 5b). 
This ratio was improved in the EMPA-treated rats, comparable 
to either STZ or DORS + EMPA groups.

Fig. 5   Effect of EMPA on the 
micromorphological alterations 
of the sciatic nerves in STZ-
induced DPN in rats. (a) Sec-
tions of sciatic nerves stained 
with uranyl acetate and lead 
citrate. CONT section show-
ing intact well-formed myelin 
sheath (arrow). STZ section 
showing deformed nerve fibers, 
axonal atrophy, and delamina-
tion of myelin lamellae (arrow). 
EMPA section showing almost 
well-formed axon with an intact 
myelin sheath. DORS+EMPA 
section showed axonal dam-
age with areas of myelin loss 
(arrow) (Scale bar is 2 μm). (b) 
The ratio of the axon to myelin 
sheath areas. CONT: control; 
DORS: dorsomorphin; EMPA: 
empagliflozin; STZ: streptozo-
tocin
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Effect of EMPA on nerve conduction velocity 
in the sciatic nerves in STZ‑induced DPN in rats

In Table 1, SNCV and MNCV were decreased by 18% and 
11%, respectively, in STZ rats compared to normal rats. 
Though, both conduction velocities were normalized follow-
ing treatment with EMPA. Nonetheless, administration of 
DORS + EMPA reduced SNCV insignificantly and MNCV 
significantly compared to the EMPA group.

Effect of EMPA on ATP/AMP ratio and AMPK 
expression in the sciatic nerves in STZ‑induced DPN 
in rats

The ATP/AMP ratio (Fig. 6a) was declined in the STZ group 
to 66%, related to the control animals, while EMPA-treated 
rats elevated this ratio by 14%, compared to the diabetic 
group. Contrariwise, DORS + EMPA-treated rats prevented 
EMPA-enhanced ATP/AMP ratio.

Additionally, EMPA stimulated the expression of 
p-AMPK (Fig. 6b, c) to reach 279%, compared to the STZ 
group that showed a decline in p-AMPK expression to 33%, 
compared to the normal animals. Moreover, DORS + EMPA 
administration partially reversed the EMPA action on 
p-AMPK expression.

Effect of EMPA on NF‑κB p65, p38 MAPK, ERK1/2, 
RECK, and miR‑21 expressions in the sciatic nerves 
in STZ‑induced DPN in rats

Administration of STZ elevated p-NF-κB p65/total NF-κB 
p65 (Fig. 7a, e), p-p38 MAPK/total p38 MAPK (Fig. 7b, e), 
p-ERK1/2/total ERK1/2 (Fig. 7c, e), and miR-21 expressions 
(Fig. 7f) to 8-, 5-, 5- and fourfold, respectively, related to the 
control animals. However, treatment with EMPA reduced 
the expression of the previous biomarkers by 56%, 60%, 
57%, and 60%, respectively, compared to the diabetic rats. 
Coadministration of DORS and EMPA completely prevented 

the suppressive action of EMPA on p-p38 MAPK/total p38 
MAPK and p-ERK1/2/total ERK1/2 as well as miR-21 
expressions, and partially inhibited p-NF-κB p65 expression. 
Moreover, RECK expression (Fig. 7d, e) was downregulated 
in STZ-treated rats to 22%, comparable to the control group; 
however, administration of EMPA upregulated this expres-
sion by 213%, compared to the STZ group. Nevertheless, 
DORS + EMPA administration partially reduced RECK 
expression compared to EMPA-treated animals.

Table 1   Effect of EMPA on sensory and motor nerve conduction 
velocities in the sciatic nerves in STZ-induced DPN in rats

Results are displayed as mean ± SD (n = 6)
CONT control, DPN diabetic peripheral neuropathy, DORS dor-
somorphin, EMPA empagliflozin, MNCV motor nerve conduction 
velocity, SNCV sensory nerve conduction velocity, STZ streptozotocin
*CONT, @STZ, #EMPA; P < 0.05

SNCV(m/s) MNCV (m/s)

CONT 52.54 ± 2.10 48.34 ± 0.90
STZ 42.88 ± 3.58* 43.16 ± 1.03*
EMPA 49.71 ± 1.90@ 50.49 ± 2.49@

DORS + EMPA 46.94 ± 3.63* 45.78 ± 2.72#

Fig. 6   Effect of EMPA on ATP/AMP ratio and AMPK expression 
in the sciatic nerves in STZ-induced DPN in rats. Panels represent: 
(a) ATP/AMP ratio, (b) protein expression of p-AMPK (Thr172), and 
(c) corresponding p-AMPK western blotting bands. Results are dis-
played as mean ± SD (n= 3-6). (*) vs CONT, (@) vs STZ, (#) vs 
EMPA; P < 0.05. AMP: adenosine monophosphate; AMPK: adeno-
sine monophosphate kinase; ATP: adenosine triphosphate; CONT: 
control; DPN: diabetic peripheral neuropathy; DORS: dorsomorphin; 
EMPA: empagliflozin; STZ: streptozotocin



485Empagliflozin mitigates type 2 diabetes‑associated peripheral neuropathy: a…

1 3

Effect of EMPA on MMP‑2 and MMP‑9 expressions 
in the sciatic nerves in STZ‑induced DPN in rats

The immunohistochemical expression of MMP-2 (Fig. 8a, c) 
and MMP-9 (Fig. 8b, d) were enhanced in the STZ-treated 
animals as indicated by high area % (10- and 39-fold, respec-
tively) as well as the presence of brown staining, compa-
rable to the normal rats. Furthermore, EMPA significantly 
downregulated the expression of these metalloprotein-
ases compared to the diabetic animals. Nevertheless, the 

DORS + EMPA administration nearly blocked the effect of 
the EMPA group.

Effect of EMPA on mTOR and ULK1 expressions 
and beclin‑1 content in the sciatic nerves 
in STZ‑induced DPN in rats

STZ group showed enhanced expression of mTOR (Fig. 9a, 
c) to 7.5-fold, comparable to the control rats, while adminis-
tration of EMPA reduced this expression by 47%, related to 
the STZ group. Instead, DORS + EMPA-treated rats showed 

Fig. 7   Effect of EMPA on NF-κB p65, p38 MAPK, ERK1/2, RECK, and miR-21 expressions in the sciatic nerves in STZ-induced DPN in rats. 
Panels represent protein expression of (a) p-NF-κB p65/total NF-κB p65, (b) p-p38 MAPK/total p38 MAPK, (c) p-ERK1/2/total ERK1/2, (d) 
RECK, and (e) corresponding western blotting bands along with relative expression of (f) miR-21. Results are displayed as mean ± SD (n = 
3-4). (*) vs CONT, (@) vs STZ, (#) vs EMPA; P < 0.05. CONT: control; DPN: diabetic peripheral neuropathy; DORS: dorsomorphin; EMPA: 
empagliflozin; ERK: extracellular signal-regulated kinases; MAPK: mitogen-activated protein kinase; miR: micro-RNA; NF-κB: nuclear factor 
kappa-B; RECK: reversion-inducing cysteine-rich protein with Kazal motifs; STZ: streptozotocin
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insignificant changes from STZ rats. Furthermore, the rela-
tive expression of ULK1 (Fig. 9b, c) and the content of bec-
lin-1 (Fig. 9d) were reduced in the STZ group to 43% and 
37%, respectively, compared to the control animals, while 
administration of EMPA elevated ULK1 expression as well 
as beclin-1 content in the sciatic nerve by 95% and 110%, 
respectively when compared to the diabetic rats. Moreover, 
DORS + EMPA administration eradicated EMPA effects.

Effect of EMPA on TNF‑α, IL‑1β and MDA contents 
and SOD activity in the sciatic nerves in STZ‑induced 
DPN in rats

Levels of the cytokines, TNF-α and IL-1β, as well as the oxi-
dative stress biomarker, MDA, have been elevated in the STZ 
group by 107%, 109%, and 170%, respectively, comparable 
to the control rats as shown in Table 2. At the same time, 
administration of EMPA ameliorated these effects by 7%, 
5%, and 32%, comparable to the diabetic group. Conversely, 
DORS + EMPA-treated rats reversed EMPA effects to varying 

extents. On the other hand, administration of EMPA enhanced 
SOD activity by 50%, compared to the STZ group that showed 
depressed SOD activity to 52%, compared to the control ani-
mals (Table 2). In contrast, DORS and EMPA coadministra-
tion abolished the antioxidant potential of EMPA.

Discussion

Diabetic peripheral neuropathy is a prevalent diabetic com-
plication manifested by spontaneous allodynia and hyper-
algesia in about half of the patients (Jensen and Finnerup 
2014). In the current work, apart from its anti-hyperglyce-
mic effect, EMPA alleviated STZ-induced DPN in rats via 
amelioration of nociceptive threshold as indicated by an 
improved response to thermal stimuli in accordance with 
the work of Lee et al. (2018). The hot plate test showed 
hyper-responsiveness in diabetic animals, as displayed in 
earlier investigations (Mabley et al. 2003; Zan et al. 2017). 
Moreover, EMPA administration modulated hyperalge-
sia and cold allodynia, implicated with neuropathic pain 

Fig. 8   Effect of EMPA on MMP-2 and MMP-9 expression in the sciatic nerves in STZ-induced DPN in rats.Representative photomicrographs 
depicting (a) MMP-2 and (b) MMP-9 immunohistochemical staining in sciatic nerves (Scale bar is 50 μm). Panels represent the corresponding 
area % of (c) MMP-2 and (d) MMP-9 immunoexpression. Results are displayed as mean ± SD (n = 4). (*) vs CONT, (@) vs STZ, (#) vs EMPA; 
P < 0.05. CONT: control; DPN: diabetic peripheral neuropathy; DORS: dorsomorphin; EMPA: empagliflozin; MMP: metalloproteinase; STZ: 
streptozotocin
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elicited by peripheral nerves injury (Allchorne et al. 2005). 
Likewise, Lee et al. (2018) displayed that EMPA averted 
the hypersensitivity of diabetic rats in the analgesimeter 
test. Additionally, EMPA amended behavioral tests related 
to nociceptive and pain threshold and enhanced the motor 
coordination performance on the rotarod test, which has 

been impaired in STZ-induced DPN in experimental ani-
mals (Sharma et al. 2012; Abdelkader et al. 2022). EMPA-
ameliorated DPN was confirmed by improved sciatic nerve 
histopathological structure, according to Lee et al. (2018). 
In addition to myelin preservation detected by the electron 
microscope, such alterations were observed in neuropathy 

Fig. 9   Effect of EMPA on mTOR and ULK1 expressions and beclin-1 content in the sciatic nerve in STZ-induced DPN in rats. Panels represent 
protein expression of (a) mTOR and (b) ULK1 (Ser317), (c) corresponding mTOR and ULK1 western blotting bands, and (d) beclin-1 content. 
Results are displayed as mean ± SD (n = 3-6). (*) vs CONT, (@) vs STZ, (#) vs EMPA; P < 0.05. Beclin-1: mammalian orthologue of yeast 
Atg6; CONT: control; DPN: diabetic peripheral neuropathy; DORS: dorsomorphin; EMPA: empagliflozin; mTOR: mammalian target of rapa-
mycin; STZ: streptozotocin; ULK1: Unc-51 like autophagy activating kinase 1

Table 2   Effect of EMPA 
on TNF-α, IL-1β and MDA 
contents and SOD activity in the 
sciatic nerves in STZ-induced 
DPN in rats

Results are displayed as mean ± SD (n = 6)
CONT control, DPN diabetic peripheral neuropathy, DORS dorsomorphin, EMPA empagliflozin, IL-1β 
interleukin-1β, MDA malondialdehyde, STZ streptozotocin, SOD superoxide dismutase, TNF-α tumor 
necrosis factor-α
*CONT, @STZ, #EMPA; P < 0.05

TNF-α (pg/g tissue) IL-1β (pg/g tissue) MDA (μmol/g tissue) SOD (U/g tissue)

CONT 405 ± 4.5 240 ± 3.5 5.6 ± 0.29 6.5 ± 0.92
STZ 435 ± 7.1* 261 ± 5.3* 9.5 ± 0.22* 3.4 ± 0.15*
EMPA 406 ± 4.3@ 248 ± 3.1*@ 6.5 ± 0.056*@ 5.1 ± 0.16*@

DORS + EMPA 425 ± 4.5*@# 260 ± 6.2*# 7.1 ± 0.24*@# 3.4 ± 0.36*#
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caused by STZ in rats (Zangiabadi et al. 2011, 2014; Lee 
et al. 2018; Abdelkader et al. 2022).

In the current work, although EMPA neither maintained 
blood glucose level nor body weight, it halted the oxida-
tive stress through stimulating SOD activity and reducing 
lipid peroxidation. Likewise, EMPA increased p-AMPK, 
improved ATP/AMP ratio, and inhibited p-p38 MAPK/p-
ERK1/2/p-NF-κB p65/IL-1β and TNF-α signaling. Note-
worthy, EMPA hindered miR-21 and enhanced RECK 
expression, reducing matrix metalloproteinase expression.

In the present work, EMPA administration at a dose of 
3 mg/kg/day failed to achieve either glycemic control or 
maintained body weight. This effect agreed with the work of 
Lee et al. (2018), which displayed that the EMPA-mediated 
anti-hyperglycemic effect was dose-dependent. Meanwhile, 
the continuous loss of body weight seen herein might be 
attributed to the mild osmotic diuresis and calories loss in 
the urine induced by EMPA (Kovacs et al. 2014). Therefore, 
the potential effect of EMPA to combat DPN seen herein 
may be attributed to glucose-independent mechanisms, 
which was in accordance with a preliminary study that docu-
mented the neuro- and nephroprotective effects of EMPA in 
diabetic animals of type 1 (Lee et al. 2018).

This work elaborates the possible molecular mechanisms 
underlying the protective effect of EMPA against DPN. Per-
sistent hyperglycemia can lead to neuronal apoptosis via 
deteriorated electron transport chain leading to disrupted 
ATP production (Vincent et al. 2002), as shown in experi-
mental animals with STZ-induced neuropathy (Najafi et al. 
2017). This event is accompanied by reduced AMPK phos-
phorylation, in accordance with earlier in vitro and in vivo 
experiments using human renal proximal tubular cells 
(hRPTCs) incubated in the hyperglycemic environment and 
STZ-induced diabetic mice, respectively (Lee et al. 2019). 
Consequentially, impaired bioenergetics occurred in neu-
rons, reducing axonal health via interfering with axonal 
plasticity (Bernstein and Bamburg 2003). Herein, EMPA 
counteracted energy deprivation and upregulated AMPK 
phosphorylation. In accordance, it was reported that EMPA 
increased ATP level both in vivo in the hearts of diabetic 
mice (Verma et al. 2018) and lipopolysaccharide-treated 
mice as well as in vitro in lipopolysaccharide-treated mac-
rophages and cardiomyocytes (Koyani et al. 2020). More-
over, Koyani et al. (2020) revealed that energy level was 
restored after EMPA-mediated AMPK activation. EMPA 
mostly increases ATP production via acetyl coenzyme A 
carboxylase (ACC) phosphorylation, a downstream target 
molecule of AMPK. AMPK/ACC pathway is responsible 
for improving energy metabolism via increasing fatty acid 
oxidation and ATP generation (Lu et al. 2020). AMPK phos-
phorylation is implicated in the amelioration of DPN by tar-
geting various signaling molecules. This effect is in accord-
ance with previous reports that documented the ability 

of EMPA to activate this axis in kidneys of diabetic mice 
(Lee et al. 2019), hearts of lipopolysaccharide-treated mice 
(Koyani et al. 2020), and a cardiac ischemia model in mice 
(Lu et al. 2020) as well as in healthy conditions in vivo and 
in vitro (Koyani et al. 2020). Noteworthy, AMPK activation 
by anti-hyperglycemic drugs has been implicated to a cer-
tain extent in their protective effects, as seen in metformin-
induced alleviation of cardiomyopathy in OVE26 diabetic 
mice (Xie et al. 2011). This effect might be explained by 
the inhibitory action of metformin on the respiratory chain 
complex I, causing a decline in intracellular ATP level, thus 
elevating AMP/ATP ratio and activating AMPK (Owen et al. 
2000; Zhou et al. 2001). However, other studies reported the 
potential of metformin to activate AMPK apart from disrupt-
ing the AMP/ATP ratio (Hawley et al. 2002; Bergheim et al. 
2006). Similarly, the SGLT-2 inhibitor canagliflozin inhib-
ited complex I in human embryonic kidney and liver cells to 
activate AMPK, thus reducing inflammation (Hawley et al. 
2016). Regarding EMPA, it restored AMP/ATP ratio, which 
activated AMPK, thus preserving cardiac and mitochondrial 
function in mice cardiomyocytes. Furthermore, EMPA can 
either phosphorylate or prolong AMPK activation (Zhou 
et al. 2018). Also, Lu et al. (2020) showed that EMPA could 
activate AMPK by stimulating its upstream activator, liver 
kinase B1(LKB1). In addition, Ibrahim et al. (2022) reported 
that the SGLT-2 inhibitor dapagliflozin directly phosphoryl-
ated LKB1, leading to increased hippocampal expression of 
p-AMPK in the ovariectomized/D-galactose rat model of 
Alzheimer’s disease.

In the current work, EMPA mediated-sciatic AMPK-acti-
vation suppressed MAPK signaling that played a crucial part 
in neuropathic pain via peripheral nociceptors sensitization 
and reduced plasticity-related proteins (Obata and Nogu-
chi 2004; Anand et al. 2011). As observed herein, previous 
studies reported that p38 MAPK phosphorylation at Tyr182 
and Thr180 as well as phosphorylation of ERK at Thr202 
and Tyr204 were predominant in experimental models of 
neuropathy (Jin et al. 2003; Schäfers et al. 2003; Tsuda et al. 
2004; Zhuang et al. 2005). In addition, they reported that 
using p38 MAPK or ERK inhibitors ameliorated such neuro-
pathic insult. Of note, AMPK activation negatively regulates 
p38 MAPK and ERK1/2 via phosphorylating the adaptor 
proteins that regulate receptor tyrosine kinases as well as 
inhibiting small GTPases, which are upstream activators 
for the MAPK signaling (Asiedu et al. 2016). In context, 
EMPA-induced AMPK activation inhibited p38 MAPK and 
ERK1/2 activation in hepatocytes of mice intoxicated with 
carbon tetrachloride.

In the current study, reduced MNCV and SNCV observed 
in STZ-injected rats could be mediated through polyol path-
way-stimulated p38 MAPK signaling, resulting in NCV defi-
cits (Agthong and Tomlinson 2002). EMPA administration 
improved both MNCV and SNCV in harmony with Eid et al. 
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(2020) results, indicating that EMPA partially increased 
MNCV and SNCV in the DM type 1 mouse model. Note-
worthy, EMPA may modulate NCV via downregulation of 
sciatic p38 MAPK, and this was in alignment with an earlier 
work displaying the in vitro repressing effect of EMPA on 
p38 MAPK (Das et al. 2020). Furthermore, EMPA inhibi-
tory effect on p38 MAPK may be through oxidative stress 
suppression seen in the current study and represented by 
reduced lipid peroxidation and enhanced SOD activity; 
such event is in line with Das et al. (2020) and Eid et al. 
(2020), who documented antioxidant capacity of EMPA in 
different models. Indeed, increased ROS generation due to 
hyperglycemia resulted in decreased mitochondrial mem-
brane potential with subsequent ATP depletion, ultimately 
causing attenuation of nerve conduction ability (Visnagri 
et al. 2012).

Likewise, after nerve injury, p38 MAPK/ERK1/2 upregu-
lated the transcription factor NF-κB p65 as shown herein 
(Ji and Suter 2007; Milligan and Watkins 2009) as well 
as enhanced related downstream mediators viz. IL-1β and 
TNF-α (Krakauer 2004). These inflammatory mediators 
stimulate the nociceptive neurons developing pain hypersen-
sitivity (Ji and Suter 2007). Herein, EMPA ameliorated the 
deleterious effect of such inflammatory mediators through 
suppressing p-p38 MAPK/p-ERK1/2/p-NF-κB p65 expres-
sion, and this coincides with earlier studies displaying the 
potential impact of EMPA to treat inflammatory kidney dis-
eases as well as hepatic inflammation and fibrosis via inhibi-
tion of this axis (Das et al. 2020; Abdelhamid et al. 2021).

Noteworthy, EMPA’s inhibitory effect on NF-κB p65/
TNF-α and IL-1β might be linked to the activation of AMPK 
reported in the current work. In parallel, a previous study 
displayed the connection between this signaling pathway 
where AMPK activation downregulated NF-κB in the com-
plete Freund’s adjuvant-induced inflamed skin tissues, thus 
decreasing the inflammatory mediators resulting in reduced 
pain sensation (Xiang et al. 2019).

In the current work, mTOR contributes to DPN devel-
opment in STZ receiving animals due to hyperglycemia-
reduced AMPK activation or -enhanced TNF-α, which were 
formerly documented (He et al. 2019). Also, mTOR-related 
DPN could be explained by reducing the adapter protein 
APPL1, a crucial protein in synaptic plasticity, or trigger-
ing mTOR activation. Thereby, inducing mechanical and 
thermal hyperalgesia could be stimulated by synapsin II-
mediated neurite outgrowth, participating in hyperalgesia 
(He et al. 2019). On the contrary, this hyperalgesia was ame-
liorated through EMPA administration via the modulatory 
effect on AMPK and/or EMPA mediated anti-inflammatory 
properties, as seen herein. Recently, Sun et al. (2020) has 
reported the impact of EMPA in alleviating AMPK/mTOR 
cue in obesity-related cardiac dysfunction in mice. Notewor-
thy, by an alternative mechanism, mTOR inhibition could 

ameliorate DPN through induction of autophagy, removing 
any damaged cellular components and permitting cells to 
correct their metabolic demands, hence increasing myelin 
sheath thickness and the myelinated axons (Liu et al. 2018). 
Downregulation of mTOR stimulated the phosphorylation 
of ULK1, consequentially activation of beclin-1 to alleviate 
pain via enhancing autophagy (Russell et al. 2013). This 
effect was parallel with a study reporting that EMPA ame-
liorated diabetic tubulopathy by controlling autophagy (Lee 
et al. 2019).

Of note, in this work, MMP-2 and MMP-9 expression 
in the sciatic nerves was upregulated in the diabetic group, 
which was in accordance with Moustafa et al. (2018b), who 
documented alleviation of DPN via controlling extracel-
lular matrix (ECM) remodeling. These metalloproteinases 
were involved in DPN through degrading ECM components 
implicated in arteries abnormalities leading to ischemia 
and neural death (Singh et al. 2011). This elevation may be 
related to enhanced oxidative stress/p38 MAPK/NF-κB p65 
that affects transcriptional regulation of MMPs as reported 
in photoaging and photocarcinogenesis (Pittayapruek et al. 
2016). Additionally, the observed modulatory effect of 
EMPA on MMPs expression could be attributed to enhanc-
ing RECK expression, an endogenous MMP inhibitor, via 
inhibiting oxidative stress/p-NF-κB p65 and p-p38 MAPK/
miR-21 shown herein and goes align with Das et al. (2020), 
who suggested this renoprotective pathway of EMPA. 
Moreover, miR-21 stimulation was associated with reduced 
mechanical thresholds and heat withdrawal latencies as doc-
umented in spared nerve injury to contribute to neuropathic 
pain (Karl et al. 2017). Such effect was reversed with EMPA 
treatment.

Collectively, all beneficial effects produced by EMPA 
were almost abolished by using DORSO, an AMPK antago-
nist, which emphasizes the significance of AMPK involve-
ment in DPN management as a promising contender.

In conclusion, the SGLT-2 inhibitor, EMPA, may be a 
promising candidate not only for DPN but also in neuro-
pathic pain generally. It improved DPN and its associated 
symptoms apart from EMPA anti-diabetic effect. EMPA 
neuroprotective effects could be mediated via modulation 
of the signaling pathways: AMPK/p38 MAPK/ERK1/2/
NF-κB p65/inflammatory mediators, AMPK/p38 MAPK/
miR-21/RECK/metalloproteinases, or AMPK/mTOR to give 
credit to AMPK activation in combating DPN. This study 
has some limitations that should be considered. The current 
study explored the neuroprotective impact of EMPA against 
peripheral neuropathy in the STZ-induced DM type 2 model 
in rats, and more experiments in different pain models are 
needed to verify its efficacy against other types of neuro-
pathic pain. In addition, this study examined EMPA’s poten-
tial mechanistic pathway in curbing DPN through targeting 
AMPK. Thus, additional in vitro and/or in vivo experiments 
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are necessary to thoroughly investigate the exact underlying 
mechanisms using different blockers for the possible down-
stream pathways. On the other hand, the current study is the 
first to report that EMPA is effective against DPN in the rat 
model of DM type 2, along with exploring some possible 
underlying mediators and signaling pathways. A few recent 
studies revealed that EMPA ameliorated peripheral neu-
ropathy in DM type 1 experimental models without mecha-
nistic insights, though SGLT-2 inhibitors have not yet been 
approved for type 1 DM (Lee et al. 2018; Eid et al. 2020).
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