
Multi-Scale Stochastic Simulation of Diffusion-Coupled
Agents and Its Application to Cell Culture Simulation
Yishai Shimoni1,2*., German Nudelman1*., Fernand Hayot1, Stuart C. Sealfon1

1 Department of Neurology and Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, New York, United States of America, 2 Center for

Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York, United States of America

Abstract

Many biological systems consist of multiple cells that interact by secretion and binding of diffusing molecules, thus
coordinating responses across cells. Techniques for simulating systems coupling extracellular and intracellular processes are
very limited. Here we present an efficient method to stochastically simulate diffusion processes, which at the same time
allows synchronization between internal and external cellular conditions through a modification of Gillespie’s chemical
reaction algorithm. Individual cells are simulated as independent agents, and each cell accurately reacts to changes in its
local environment affected by diffusing molecules. Such a simulation provides time-scale separation between the intra-
cellular and extra-cellular processes. We use our methodology to study how human monocyte-derived dendritic cells alert
neighboring cells about viral infection using diffusing interferon molecules. A subpopulation of the infected cells reacts
early to the infection and secretes interferon into the extra-cellular medium, which helps activate other cells. Findings
predicted by our simulation and confirmed by experimental results suggest that the early activation is largely independent
of the fraction of infected cells and is thus both sensitive and robust. The concordance with the experimental results
supports the value of our method for overcoming the challenges of accurately simulating multiscale biological signaling
systems.
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Introduction

Gene expression and signaling events in single cells are

stochastic processes. Population measurements and simulations

that reflect average cellular responses obscure many aspects of

cellular dynamics [1–7]. When stochastic processes are considered,

analyses of single cell systems are normally performed assuming

that the cells do not interact, and simulations are done using either

Gillespie’s algorithm [8], or Langevin equations [9]. Gillespie

simulations follow the number of molecules present in a cell for

several molecular species, and quickly become inefficient as the

number of molecules becomes large. Langevin equations can be

solved efficiently numerically, but can only be used accurately

under a set of restrictive assumptions. Several modifications to the

classical Gillespie algorithm have been proposed, some of which

lead to more efficient computation [10–13]; others offer

parallelization of the algorithm [14,15], and others separation of

time scales through the use of hybrid deterministic-stochastic

approaches [16,17], or by allowing to estimate the effect of

processes that may occur multiple times during a time-step (also

known as tau-leaping) [18].

All the techniques mentioned above assume that the cell’s state

can only change due to processes explicitly defined within the

simulation framework. Therefore, when multiple interacting cells

are simulated, all cells must be incorporated into a single large

simulation, in which identical processes in different cells are

counted as different processes. When cells are close to each other,

or if the interaction between them is direct in some other way, an

efficient compartmental model can be used by including the

volume immediately surrounding each cell in the simulation [19].

Such simulations, however, must account for each and every

molecule that passes from one compartment to the next, and

become unfeasible for large concentrations of signaling molecules.

The computational problem is compounded when the signaling

molecules diffuse in the medium and are not directly transferred

from cell to cell, since the volume between the cells must be

divided into more and more compartments. One way to deal with

this problem is to use agent-based models (ABMs), where many

individual cells are simulated using the same set of rules (where

each agent is a simulation of a single cell). The simulation allows

each cell to interact with its local environment. In this case the

diffusion process can be simulated separately from intracellular

dynamics, allowing separation of time-scales between the internal

and external processes.

Such an ABM model was recently developed, in which

independent stochastic agents were simulated in conjunction with

diffusion processes [20]. However, this work used a deterministic

solution to the diffusion equation for cell to cell signaling. Thus,

the simulation and resulting analysis ignored the stochastic nature

of the interaction between cells. At high concentrations stochas-
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ticity may not cause significant variations, but when small

concentrations of molecules are involved, an explicitly stochastic

approach must be used. Such a simulation, however, that follows

the movement of every single molecule is computationally

impractical.

Multiple techniques were recently developed to efficiently

simulate stochastic reaction-diffusion prcoesses [21–23]. These

techniques utilize the statistical properties of independent diffusion

processes to allow multiple events of diffusion to occur in each time

step (tau-leaping). Notably, one of the methods [24] employs a

similar solution to the one we propose here, and may also be

applicable to the system we analyze. The solution presented in

[24], however, is more complicated conceptually, and more

elaborate to implement.

Here we present a method than can be used to stochastically

simulate a population of cells that interact by exchanging mediators

in a diffusive manner. We first introduce an algorithm that is used to

efficiently and stochastically simulate diffusion, and is based on the

Monte-Carlo approach. We show that the algorithm leads to

random walk behavior for low concentrations, and to dynamics

identical to those obtained from the diffusion equation for high

concentrations. A second algorithm is introduced, which is a

modification of the Gillespie algorithm, and is used to stochastically

simulate the internal dynamics of individual cells in a way that

ensures a behavior suitable for a Markovian process while allowing

changes in external conditions. Diffusing molecules that bind to cell

surface receptors activate signaling pathways inside the correspond-

ing cells. The challenge is to match the dynamical intracellular

updating as given by Gillespie’s algorithm (which is of the order of

several minutes), to the time scale associated with diffusion and

binding in the extra-cellular medium (which is of the order of several

seconds). The modification introduced in the algorithm allows

synchronization between the diffusion simulation and the simula-

tion of individual cells at preset time intervals, and is a natural

consequence of the Markovian assumption. For convenience we

refer to this algorithm as the synchronized Gillespie algorithm.

Applying the stochastic diffusion algorithm and the synchronized

Gillespie algorithm jointly in an ABM provides an accurate

stochastic simulation method for a culture of cells which interact

through the diffusion of molecules. As required, this method allows

a separation of the time scales between the stochastic diffusion

simulation and the synchronized Gillespie algorithm, since the time

scales in each one is independent from the other, thus creating a

multi-scale simulation.

Specifically, the proposed method allowed us to simulate a

culture of monocyte-derived human dendritic cells (DCs), which are

the primary response cells mediating the progression from innate to

adaptive immunity [25,26]. When a virus such as the Influenza A

virus or Newcastle Disease virus infects a DC, the DC is able to

detect the infection using the Rig-I protein [27]. This causes the cell

to secrete various chemokines and cytokines, of which the most

important is interferon. When interferon binds to cell-surface

receptors on DCs, it activates the transcription of a large number of

genes, including the gene that encodes Rig-I, thereby completing a

positive feedback loop that enhances the DCs response to viral

infection [28]. A schematics of the mechanism is shown in Fig. 1.

Using our simulation method we have recently shown that only a

small subset of the cells recognize the viral infection at early times

(early responders), and that these cells signal the other DCs and alert

them by secreting amounts of interferon that are undetectable

experimentally [29]. This small subset is hard to distinguish from

experimental noise, and thus simulations become the appropriate

method of investigation of this system. Since only a small subset of a

population of identical cells cause the response, accurate simulation

requires stochastic simulation of individual cells. Additionally, in

order to capture the effects of local interferon concentrations at

early times, diffusion processes must also be handled stochastically,

with allowance made for the high concentrations measured

experimentally at longer times following infection. Thus to

accurately simulate this system a simulation procedure such as the

one proposed is required.

Although DCs are known to adjust the magnitude of response to

viral load, the relation of the sensitivity and the control

mechanisms to multiplicity of infection (MOI), which is the ratio

between the number of viruses and the number of cells in the

culture, remains unclear. Here we use our algorithm to investigate

how the spreading of cellular response to viral infection depends

on MOI. We show that all the infected cells can be activated with

similar timing with any MOI of 0.5 or higher, leading to similar

interferon production levels. This allows a highly sensitive response

to viral infection, which is robust, controlled, and reliable. The

results presented here exemplify the value of algorithms for

simulations of large systems in which stochastic agents interact via

a diffusive process.

Methods

Stochastic Spatially Explicit Diffusion Algorithm
Stochastic simulation of diffusion processes are challenging since

they must account for the positions of large numbers of molecules,

requiring both large amounts of memory, and strong computa-

tional power. One solution to this problem is to consider the local

Figure 1. Schematics explaining the positive feedback loop between Rig-I and interferon beta in infected cells. Viral infection is
detected by basal levels of Rig-I proteins, which become activated and induce transcription and subsequent secretion of interferon beta. Interferon
beta molecules that bind to cell-surface receptors enhance the transcription of Rig-I proteins, thus either completing or activating the positive
feedback loop.
doi:10.1371/journal.pone.0029298.g001

Stochastic Simulation of Diffusion Coupled Agents

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e29298



concentration of molecules instead of the location of individual

molecules, and follow their dynamics using the diffusion equation.

Here, the simulation follows the local concentration by dividing

the space into voxels (or grid squares in 2D), and following the

number of diffusing molecules N per grid square. Using an

optimized Monte Carlo algorithm, this allows the underlying

random walk behavior of individual molecules while allowing

efficient simulation with memory costs that do not depend on the

number of molecules in the simulation.

For simplicity we introduce the algorithm in 2D, and later

discuss its extension to 3D. We limit the discussion to the

experimental scenario described in section I. It should be noted,

however, that the simulation can be performed for any set of

stochastic entities that interact using secretion and binding of

diffusing molecules.

Consider a system in which the agents in the simulation are cells

in a medium which we represent as a square lattice. The cells are

randomly distributed in the lattice, and periodic boundary

conditions are used. We choose the lattice square size to be the

size of a single DC, with characteristic length x0~30mm. Thus,

each grid square can either contain a single cell or no cell, and

conversely, each cell occupies a single lattice square and does not

move throughout the simulation. Additionally, each grid square

contains a number of interferon molecules, that can diffuse to

neighboring lattice squares with a diffusion coefficient D~

10{11 m2

sec
that was determined experimentally [30]. The diffusion

algorithm itself is iterative, with each iteration consisting of two

steps for each lattice square:

a. For each molecule, decide randomly with a probability p
whether within the next time-step it diffuses to a neighboring

lattice square.

b. For each diffusing molecule, choose with equal probability the

direction in which it diffuses, and move it to the appropriate

neighboring square.

As presented above, the algorithm is not efficient since a

random number has to be generated for each molecule, which is

essentially equivalent to following the movement of every single

molecule. To avoid this computationally taxing procedure we

reformulate the steps for each grid square as follows:

a. Choose the number of diffusing molecules according to a

binomial distribution Nd~B(N,p).

b. Out of the diffusing molecules choose the number of

molecules that diffuse north and south according to a

binomial distribution Nns~B(Nd ,0:5). The rest of the

diffusing molecules will diffuse east and west, giving

New~Nd{Nns.

c. Out of Nns choose the number of molecules that diffuse north

according to a binomial distribution Nn~B(Nns,0:5), thus the

number of molecules diffusing south is Ns~Nns{Nn.

d. Out of New choose the number of molecules that diffuse east

according to a binomial distribution Ne~B(New,0:5), and so

the number of molecules diffusing west is Nw~New{Ne.

This strategy eliminates the need to follow each molecule by

choosing a random number for it, and sets the number of random

numbers at a constant 4 per lattice square. However, choosing a

number from the binomial distribution B(N,p) requires compu-

tation time that still depends linearly on the number of molecules

N . A simple way to make this process much more efficient is to

build a lookup table for the cumulative binomial distribution

C(N,n,p). This lookup table holds C(N,n,p)~
Xn

i~0

N

i

� �

pi(1{p)N{i for every 0ƒnƒN and for every NƒNmax, where

Nmax is the maximal number of molecules found in any lattice

square. Thus, a random number can be chosen from a uniform

distribution between 0 and 1, and the appropriate location in the

sorted lookup table can be efficiently found using a binary search.

Using such a lookup table, the execution time of the algorithm

scales like log2 Nmax, and scales linearly with the area of the

simulated system. More accurately, the run-time of each step

depends on the sum
X

i
log2 Ni, where Ni is the local

concentration in grid square i. It is reasonable to choose p~0:5,

so that a single lookup table can be used both for choosing the

number of diffusing molecules and for choosing the number of

molecules diffusing in each direction.

It should be noted that relatively efficient approximation

methods are available to compute the cumulative probability

distribution function for the binomial distribution for any choice of

p [31]. The approximation presented in Ref. [31], however, scales

like
ffiffiffiffiffi
N
p

and is therefore less efficient than using a lookup table.

For large numbers the binomial distribution B(n,p) can be

approximated by a normal distribution with an average m~np and

variance s2~np(1{p), which can be calculated efficiently using

many existing libraries.

The algorithm to simulate diffusion in 3D can be easily

generalized from the 2D procedure presented above. Here, the

number of diffusing molecules in each lattice cube will be chosen

with some probability p, similar to the 2D case. After choosing the

number of diffusing molecules one of six directions has to be

chosen. Five random numbers must be chosen for this (e.g. two to

choose between axes X, Y, and Z, and one to choose the sign in

each axis). A straightforward implementation of this algorithm

requires two lookup tables, one for the binomial distribution

B(n,0:5) and the other for B(n,1=3). This slightly increases the

memory requirements of the algorithm, but retains the property

that the computation time scales like log2 Nmax, and linearly with

the volume of the simulated system. Alternatively, one can use the

lookup table with p~0:5 to choose between axis X, Y, Z, and R,

(where R stands for ‘repeat’), and repeat the process for R

iteratively until the number of molecules in direction R is zero.

This is a potentially infinite procedure, but on average would

require
1

2
log2N iterations, and so the total average algorithm run-

times will scale like (log2N)2, while only a single lookup table is

required.

Selecting Appropriate Time Step and Lattice Square Size
When simulating diffusion processes, the diffusion coefficient D

determines a connection between the time interval t and the grid

size. Normally, one of the parameters (i.e. grid size or time

interval) is determined using some external considerations. In our

example the lattice grid size was chosen according to the average

cell length x0. To determine the other parameter, the dimension-

ality of the diffusion coefficient is used to obtain x2
0~aDt, where a

is an unknown multiplicative constant that depends on p. For the

simulation to be accurate it is necessary to obtain the correct value

for a.

This was done by fitting the diffusion simulation algorithm

described above to an analytical solution of the diffusion equation,

as shown in Fig. 2. Consider the analytically solvable case where at

time t~0 all the molecules are located at the origin (using the

Kronecker delta function). We initialized the simulation with all

the molecules (N~220) concentrated at the middle of a 201 by 201

lattice, and ran the simulation for 1000 time steps. Due to the high

Stochastic Simulation of Diffusion Coupled Agents
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number of molecules stochastic effects are negligible, and therefore

at each time step we moved exactly one half of the molecules in

each grid square, and distributed them equally in all four

directions. For the simulation to be considered accurate, the

concentration profile of the simulation must follow the solution of

the diffusion equation for this condition, which is given by

r(x,y,t)~
M

4pDt
e
{

x2zy2

4Dt , ð1Þ

where M is the total amount of molecules in the system.

Fig. 2A shows the concentration at the origin as a function of

simulation time in a log-log plot (dots), and a fitted A=t function

(solid line), where A is the fitted parameter. Except for several steps

at the beginning of the simulation, the fitted functions shows a

remarkable fit (r-square R2
w1{10{8). Fig. 2B shows the

concentration of a section through the origin at the end of the

simulation (dots), and a fitted Gaussian (solid line), and shows an

exceptional fit (r-square R2
w1{2:10{10).

The fit presented in Fig. 2A not only shows that the simulation

produces the correct dynamics in the functional sense, but also

suggests a means to find the appropriate time-length t to be used

in the simulation (given the size of the lattice square x0 and p).

Comparing the fitted function f (j) to the required solution we get

f (j)~
A

j
~

M

4pDt
: ð2Þ

where j is the number of simulation steps. Since t~jt, we

immediately get that t~
M

4pDA
. M and D are known and A is

given by the fit, and so t can be extracted.

The fit presented above provides an accurate relation between

simulation time and real time using the specific values for x0 and

D presented in our system. This can be generalized by

remembering that the simulation is independent of D and x0

and only depends of p, so we can derive the multiplicative constant

a(p)~
x2

0

Dt
. By substituting the values for x0, D, and t we get a&

1

8
,

or t&
x2

0

8D
. We note that this result is true only for a 2D simulation

with p~0:5. However, the correct coefficient can be easily found

in a similar fashion for any value of p, as well as for a 3D

simulation. Specifically, for 3D and p~0:5 we get t~(
M

A
)
2
3

1

4pD
,

and by performing a simulation and fitting the resulting function

we get t&
0:0818x2

0

D
&

4x2
0

50D
.

Determining the Fraction of Diffusing Molecules
In some cases both the time step t and the lattice size x0 are

determined from other considerations. Under such circumstances

it is necessary to determine p, the average percentage of molecules

that diffuse out of a lattice square within a single time step. The

procedure presented in the previous section does not provide a

solution for this case, since Eq. 1 provides a relation between x0

and t, but not p. An approximate relation between all three

variables can be derived by assuming that at time t~0 all the

molecules are concentrated in the middle of a grid square, and

integrating over the solution to the diffusion equation across the

lattice square at time t~t. This gives the proportion of the mass

that remains in a grid square after time t, which is 1{p.

Mathematically, this means solving the equation

1

4pDt

ðx0=2

{x0=2

ðx0=2

{x0=2

e
{

x2zy2

4Dt dxdy~1{p ð3Þ

for p. Using the symmetry of the problem and substituting the

integration variable the equation can be re-written in the form

ð x0ffiffiffiffiffiffi
4Dt
p

0

e{g2
dg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1{p)

p
2

: ð4Þ

Figure 2. Fitting simulation results to analytical solution. Results of a deterministic diffusion simulation in which at each time step half the
molecules at each grid square are equally distributed to neighboring squares. N~220 molecules were placed in the middle of the grid at time t~0. A.
The concentration in the middle of the grid as a function of simulation steps (dots) and a fit to the inverse of time (solid line). B. The concentration in
a horizontal section through the middle of the grid after 2000 simulation steps (dots), and a fit to a Gaussian function (solid line).
doi:10.1371/journal.pone.0029298.g002
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This integral is known as the error function (erf) and cannot be

solved analytically, but can easily be solved numerically to find p
(and is available as a built-in function in most mathematical

libraries).

We note that there are two approximations involved in this

analysis. The first is that in the simulation we assume that the

molecules are equally distributed (well-mixed) within each grid

square, while the mathematical analysis assumes that they are all

concentrated at the middle of the square at the start of every time

step. The second approximation is that the simulation only allows

molecules to diffuse to a neighboring cell at each time step, while

the mathematical analysis allows a small percentage to diffuse

farther away at that time. In agreement with this analysis,

substituting the values found above for x0 and for t in Eq. 4, we

find a value for p that is close to 0.5 (p&0:45). In order to find the

accurate value of p simulations are needed in which the value of t
(or x0) is fixed. As explained in the previous subsections, the values

of p and x0 determine the time step t�(p) that must be used in the

simulation (or p and t determine the size of the lattice square

x�(p)). Using half-interval search a value of p can be efficiently

found up to arbitrary precision so that t�(p)~t (or x�(p)~x0).

The Synchronized Gillespie Algorithm
The Gillespie algorithm is a simple algorithm that allows

accurate simulation of a Markovian process [8]. The algorithm

follows the number of molecules for m molecular species involved

in n processes. The rate at which process i (i~1::n) occurs is given

by ri(N1,::,Nm), where Nj (j~1::m) is the number of molecules of

type j. The vector ~NN~(N1,::,Nm) represents the state of the

system, and the vector ~rr(~NN)~(r1,:::,rn) is the vector holding the

transition rates. The fact that the rates of transition between states

depend solely on the state itself and not on the simulation history

makes it a Markovian process. The algorithm is an iterative one,

where at each simulation step the following procedure is

performed:

a. Choose the time Dt until the occurrence of the next process

from an exponential distribution with an average r~
Pm

i~1 ri,

and advance time by Dt.

b. Choose randomly which process occurs, where each process

has a probability proportional to its rate.

The Gillespie simulation results in a different trajectory in phase

space at each execution. Still, the statistics of these trajectories are

identical to the solution of the master equations for the same

system, which are equations describing the dynamics of the

probability to find the system in any given state at any given time.

The Gillespie algorithm, however, assumes that the state of the

system ~NN and the transition rates~rr(~NN) can only be changed by the

algorithm. Namely, it assumes that every process that can change
~NN or~rr(~NN) is described by the Gillespie algorithm itself, and not by

some other algorithm running in parallel to it. Although it is

theoretically possible to incorporate every process within the same

Gillespie simulation, such a simulation would become increasingly

more complex and inefficient. When integrating a Gillespie

simulation into an ABM that allows interactions between agents,

the state of the system will invariably be changed by other agents

or the environment.

For example, in our case diffusion (which is part of the ABM)

changes the number of bound interferon receptors, which affects

the virus detection capabilities of the cell through the rate of Rig-I

production. In the context of the Gillespie simulation of each cell,

the diffusion simulation changes ~NN externally at constant intervals,

thus breaking the basic assumption of the Markovian process. To

account for this, the synchronized Gillespie simulation stops if it

tries to update ~NN or~rr(~NN) after the time at which ~NN is supposed to

be changed externally (tu), and advances its internal time to tu. It

then allows the external update of ~NN and the resulting rates, and

continues from that point on using the newly updated rates. This

translates to a modification in the Gillespie updating procedure at

each simulation step:

a. Choose the time until the occurrence Dt of the next process

from an exponential distribution with an average r~
Pm

i~1 ri.

b. If the expected time for the next step is larger than the next

external state update time tzDt§tu then advance the time to

tu and allow the external state update. Otherwise advance

time by Dt, and choose which process occurs, where each

process has a probability proportional to its rate.

This modification is an immediate consequence of the

Markovian assumption that is at the heart of the algorithm. To

show this, we briefly explain the derivation of the exponential

distribution for the time-step in the original Gillespie simulation,

and then proceed to explain the validity of the modification. We

start by assuming that the rate r of a process depends only on the

state of the system. As a result, until any process occurs the

probability of that process occurring within the next short time

interval P(Dt) is constant. Therefore, by dividing a long time

interval t into n short intervals the probability of nothing

happening within t can be written as

P(t)~ lim
n??

(1{P(t=n))n: ð5Þ

Since r is the derivative of P(Dt) according to time, for short

enough time intervals P(Dt)~rDt, and so Eq. 5 can be rewritten

as

P(t)~ lim
n??

1{
rt

n

� �n

~e{rt: ð6Þ

Similarly, consider the case where at a certain time tu the state

of the system changes so that the rate of the process changes to r’.
For tƒtu the analysis remains as presented above, but for twtu

the probability P(Dt) changes, and so we get

P(t)~ lim
n1,n2??

1{
rtu

n1

� �n1

1{
r’(t{tu)

n2

� �n2

~e{rtu e{r’(t{tu):

ð7Þ

Therefore, an initial time t at which the process may occur should

be drawn from an exponential distribution with an average of r, as

before. If the time t is smaller than tu then this time should be

used. However, if t is larger than tu (which happens with

probability e{rtu ) then a new time t’ should be chosen,

independendt of t, from an exponential distribution with an

average r’, and the time at which the process occurs is then tuzt’.
This procedure is reflected precisely in the proposed modification

to the Gillespie algorithm. We note that this method can be

considered a simplified special case of a method presented in [18].

To ensure that this procedure does not introduce artifacts we

performed a synchronized Gillespie simulation where at each

synchronization step the algorithm stops but no change is made to

the state of the simulated system. The times between successive

occurrences of the process in such a simulation should display a

distribution that is identical to the original Gillespie simulation.

Stochastic Simulation of Diffusion Coupled Agents
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Fig. 3 shows such histograms derived from two simulations

involving two processes with rates r1~1sec{1 and r2~0:5sec{1.

The first simulation used the original Gillespie algorithm (dots and

X’s), and the second one used the synchronized Gillespie

algorithm (open circles and open squares). The rates were not

changed throughout the simulations, which were performed to a

total of 107 process occurrences. Both simulations result in

identical exponential distribution with the correct mean time

between occurrences, showing that the procedure is accurate.

Simulation parameters
Simulation parameters were the same as those previously

reported [29]. Below we give a brief description. The modified

Gillespie simulation for internal cell dynamics follows the time

dependence of interferon transcript (IFN), Rig-I transcripts

(DDX ) and Rig-I proteins (RIG), which are involved in six

reactions: DDX transcription, IFN transcription, RIG translation,

DDX degradation, IFN degradation, and RIG degradation. The

rate constants for maximal IFN and DDX transcription are given

by KIFN~(20sec){1 and KDDX ~(50sec){1, respectively. The

translation rate constant for RIG is given by KRIG~(50sec){1.

The degradation rate constants for IFN, DDX , and RIG
are given by dIFN~(104sec){1, dDDX ~(104sec){1, and

dRIG~(104sec){1, respectively. The transcription rate of Rig-I

transcripts depends on the number of bound interferon receptors,

denoted by B, in a Michaelis-Menten form using a Hill coefficient

of HDDX ~1:5 and a half-induction level given by 1=b~75
(meaning that when B~75 Rig-I reaches half it maximal

induction). According to experiments, Rig-I is constitutively

expressed in the cells. The ratio between the maximal induction

of Rig-I and the constitutive induction is given by C~1=50.

Interferon induction depends on Rig-I concentration in a

Michaelis-Menten form with a Hill coefficient HIFN~3, and a

half-induction concentration given by 1=c~7000. All the

degradation processes follow an exponential decay.

For the diffusion simulation we use a two-dimensional 40 by 40

square lattice with a square-side length of L~30mm (which is the

average diameter of a cell ,as observed experimentally), and

holding 200 randomly distributed cells. The diffusion coefficient

was determined experimentally to be D~10{11 m2

sec
[30]. The

diffusion time step was determined (as explained above) to be

t~9sec. At each grid square the simulation follows the number of

free interferon molecules I , and in squares containing cells also the

number of bound receptors B and free receptors F . The initial

number of free receptors is F~1000 per cell. At each time step

interferon molecules in lattice squares containing cells may bind to

free surface receptors, while bound receptors may unbind. The

binding rate constant is given by KON~(8:105sec){1, and the

unbinding rate constant is KOFF~(103sec){1. We assume that the

number of new interferon molecules that are translated at each

time step is the number of IFN transcript multiplied by M~0:1.

We further assume that interferon secretion is rapid and that all

the newly synthesized molecules are secreted at each time step.

Results

We used the proposed ABM simulation to investigate the

response to viral infection of monocyte-derived human dendritic

cells (DCs), which are the primary response cells that detect

infection and trigger the initial innate immune response [25,26].

As depicted in Fig. 1, during the innate immune response, DCs

detect viral infection using several receptors and proteins, one of

which is Rig-I. Activated Rig-I molecules set in motion a signaling

Figure 3. Consistent behavior of the synchronized Gillespie algorithm. Histograms of the intervals between consecutive occurrences of
processes in two stochastic simulations. Both simulation were performed with two processes whose rates do not change during the simulation. The
first simulation used the original Gillespie algorithm (dots and X’s), and the second one used the modified Gillespie algorithm (open circles and open
squares) without changing the state of the system during synchronization. Both processes display the same exponential distribution with the correct
mean.
doi:10.1371/journal.pone.0029298.g003
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cascade that leads to the induction of the interferon beta gene,

which upon translation into protein is secreted from the cell.

Interferon molecules bind to cell-surface receptors on both

infected and uninfected DCs, activating a host of interferon-

induced genes, among which is the gene coding for Rig-I. These

interactions constitute a positive feedback loop between interferon

beta and Rig-I. We recently showed that a fraction of the DCs (less

than 1%, the early responder cells) which have sufficient levels of

constitutive Rig-I initiate interferon transcription. These cells

secrete large amounts of interferon that create locally high

concentrations and activate neighboring cells, which in turn

produce elevated levels of Rig-I, and if infected subsequently

produce and secrete high amount of interferon as well. [29] The

ABM proposed here presents a suitable approach to follow the

dynamics of the system in a reliable manner, and allows an

understanding of the effects of stochasticity on inter-cellular

interferon signaling. Fig. 4 shows the levels of Rig-I mRNA vs.

interferon mRNA in individual cells, as obtained either from

experimental results [29] (left) and from simulation (right) at 6 hrs

after infection (top) and 10 hours after infection (bottom).

Although the early response mechanism enables a sensitive

yet controlled response to viral infection, the effect of MOI on

the early activation of the small sub-population of cells remains

unclear. In order to explore the important aspect of robustness

of the immune response with changing levels of the multiplicity

of infection (MOI), we expanded the previous analysis and

performed simulations with varying levels of MOI. In these

simulations we examined the efficiency of the immune response

activation by the early responder cells. Fig. 5A and Fig. 5B

show the levels of interferon and Rig-I mRNA (respectively) as

predicted by simulations with MOI = 0.1, 0.5, 1, and 5, which

can be compared to the experimental results shown in Fig. 5C

and Fig. 5D (the experimental results redrawn from reference

[29]). As expected, in a simulation with MOI = 0.1 (dotted

lines) the number of early responders that are activated in the

simulation is insufficient to efficiently activate the whole

population of cells. Most of the cells in the simulation are self

activated, and as a result there is hardly any difference between

the time of half-maximal induction of interferon and that of the

Rig-I gene, (marked by +’s in Fig. 5A and Fig. 5B). On the

other hand, it is notable that the lines for MOI = 0.5, 1, and 5

(dash-dotted, dashed, and solid lines, respectively) are very

similar. This result suggests that the coordinated response of the

cells when activated by early responder cells is highly robust, in

the sense that it is both sensitive to low levels of infection, and

produces a similarly controlled response even at high levels of

infection. The results of these simulation are consistent with the

experimental results presented in Fig. 5C and Fig. 5D, where it

is shown that increasing the MOI does not result in an

increased induction of Rig-I. High noise levels in the

experimental results make it difficult to estimate the goodness

of the fit at early times (especially for MOI = 0.1, at 5 and

6 hours), but the final result (at 10 hours) is consistent with the

simulation predictions, and suggests that the ratio of early

responder cells is similar to the one used in the simulation,

namely approximately one percent.

Discussion

In this paper we introduced a methodology to combine two

stochastic algorithms into an agent based model (ABM) of agents that

interact via a diffusive process. The first algorithm allows accurate

and efficient stochastic simulation of diffusion processes at both low

and high concentrations, and the second allows stochastic simulation

of a Markovian system in which the conditions are changed due to

external circumstances (i.e. outside the scope of the simulation).

Figure 4. Comparison between experimental results and simulation results of the transcription induction of Rig-I and of interferon.
The panels show the amount in individual cells (dots), and an interpolated contour plot of the 2D histogram (solid lines). The two left panels show the
experimental results and the two right panels show simulation results. The two top panels and two bottom panels show results obtained at 6 hours
and 10 hours, respectively. Significant similarity can be seen between the experimental results and the simulation results. A small population of early
responders can be seen in the simulation results at 6 hours, corroborating the early responders hypothesis.
doi:10.1371/journal.pone.0029298.g004
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The stochastic diffusion algorithm was introduced and was

shown to reproduce the required random walk behavior at low

concentrations, and to fit the exact solution to the diffusion

equation at high concentrations. The algorithm was introduced in

2D and extended to 3D. The fact that the algorithm depends on

the probability p of a molecule to diffuse to a neighboring lattice

point at every simulation step allows to extend the algorithm to the

diffusion of multiple molecular species. To do that, each species

receives its own value of p. The value of p for each molecular

species can be obtained in a similar way to the one presented

above.

The synchronized Gillespie algorithm introduces an important

modification to the original Gillespie algorithm, that allows it to

accurately run in parallel to other simulations, even when both

simulations affect the same molecular species. The proposed

modification can be easily applied in combination with various

improved versions of the Gillespie algorithm [10–15], allowing for

even more efficient and modular simulations.

The usefulness of the combination of these algorithms was

demonstrated by applying them for a culture of human DCs that

alert each other to viral infection using secretion and diffusion of

interferon molecules. The simulation method was previously used

[29] to corroborate the hypothesis that a small sub population of

the DCs are activated quickly by the infection and alert the other

cells, thus expediting the overall immune response. We expanded

on these results, and showed that this mechanism of activation is

sensitive to small levels of infection (i.e. low MOI), but is highly

controlled even for high levels of infection.

It should be noted that our method is not limited to simulation

of DCs secreting interferon, or even only to cell cultures, but that it

can also be applied to other fields in which agents interact using

diffusion processes (e.g. biofilms). Additionally, the modification to

the Gillespie algorithm enables precise stochastic simulations of

systems that can be affected by external conditions (e.g. externally

triggered or time dependent cell division). Finally, the combination

of both algorithm allows a separation of time scales between the

Figure 5. Simulated time-courses of average concentrations for several MOIs and corresponding experimental results. The lines
represent the average concentrations of interferon transcripts (panels A and C), and Rig-I transcripts (panels B and D) as obtained by simulation
(panels A and B) or from experiments (panels C and D). Both the simulations and the experiments were performed with MOI = 0.1 (dotted lines),
MOI = 0.5 (dash-dotted lines), MOI = 1 (dashed lines), and MOI = 5 (solid lines). Specifically, panel A displays the number of interferon mRNA molecules
per infected cell as a function of time as predicted by simulation, and panel B presents the number of Rig-I mRNA molecules per cell as predicted by
simulation. The time and value of half of the maximal induction is marked by plus markers. Panels C and D show experimental results corresponding
to the simulation predictions in panels A and B, respectively. MOI = 0.5, MOI = 1, and MOI = 5 exhibit very similar dynamics, suggesting the activation
mechanism is both sensitive and controlled.
doi:10.1371/journal.pone.0029298.g005
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Gillespie simulations and the diffusion simulation. Each individual

Gillespie simulation uses its own set of reaction rates, allowing for a

simulation with multiple time scales.

In conclusion, the methodology presented here paves the way to

more extensive analysis of stochastic processes that occur at the

scale of cell culture and tissue, or that involve different time scales.
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