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Abstract 

Background:  As many complex omics data have been generated during the last two 
decades, dimensionality reduction problem has been a challenging issue in better min-
ing such data. The omics data typically consists of many features. Accordingly, many 
feature selection algorithms have been developed. The performance of those feature 
selection methods often varies by specific data, making the discovery and interpreta-
tion of results challenging.

Methods and results:  In this study, we performed a comprehensive comparative 
study of five widely used supervised feature selection methods (mRMR, INMIFS, DFS, 
SVM-RFE-CBR and VWMRmR) for multi-omics datasets. Specifically, we used five repre-
sentative datasets: gene expression (Exp), exon expression (ExpExon), DNA methylation 
(hMethyl27), copy number variation (Gistic2), and pathway activity dataset (Paradigm 
IPLs) from a multi-omics study of acute myeloid leukemia (LAML) from The Cancer 
Genome Atlas (TCGA). The different feature subsets selected by the aforesaid five differ-
ent feature selection algorithms are assessed using three evaluation criteria: (1) classifi-
cation accuracy (Acc), (2) representation entropy (RE) and (3) redundancy rate (RR). Four 
different classifiers, viz., C4.5, NaiveBayes, KNN, and AdaBoost, were used to measure 
the classification accuary (Acc) for each selected feature subset. The VWMRmR algo-
rithm obtains the best Acc for three datasets (ExpExon, hMethyl27 and Paradigm IPLs). 
The VWMRmR algorithm offers the best RR (obtained using normalized mutual infor-
mation) for three datasets (Exp, Gistic2 and Paradigm IPLs), while it gives the best RR 
(obtained using Pearson correlation coefficient) for two datasets (Gistic2 and Paradigm 
IPLs). It also obtains the best RE for three datasets (Exp, Gistic2 and Paradigm IPLs). 
Overall, the VWMRmR algorithm yields best performance for all three evaluation criteria 
for majority of the datasets. In addition, we identified signature genes using supervised 
learning collected from the overlapped top feature set among five feature selection 
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methods. We obtained a 7-gene signature (ZMIZ1, ENG, FGFR1, PAWR, KRT17, MPO and 
LAT2) for EXP, a 9-gene signature for ExpExon, a 7-gene signature for hMethyl27, one 
single-gene signature (PIK3CG) for Gistic2 and a 3-gene signature for Paradigm IPLs.

Conclusion:  We performed a comprehensive comparison of the performance evalu-
ation of five well-known feature selection methods for mining features from various 
high-dimensional datasets. We identified signature genes using supervised learning 
for the specific omic data for the disease. The study will help incorporate higher order 
dependencies among features.

Keywords:  Feature selection, Multi-omics data, Classifier, Representation entropy, 
Redundancy rate

Background
So far, pattern recognition techniques have huge impacts in solving most of the com-
plicated real-life problems such as motif discovery from sequence features, detection 
of gene signatures for disease status, among others [1–4]. These methodologies are 
applied either separately or in conjunction with various soft-computing tools such as 
neural networks, evolutionary computing, swarm intelligence, etc. to solve various 
problems. Dealing with biological problems has revealed many challenges from real 
and complex data [5–7].

In general, a pattern recognition scheme involves three stages: data acquisition, 
dimensionality reduction, and classification or clustering [8–10]. In many pattern 
mining applications, the data acquisition stage yields huge number of features, some 
of which may be unimportant and redundant. Thus, the dimensionality of the data 
needs to be reduced by removing those unimportant and redundant features. The 
subset of selected features thus obtained keeps the optimal salient characteristics of 
the data as much as possible. In this way, dimensionality reduction accelerates the 
process of knowledge discovery to achieve better pattern recognition tasks such as 
classification and clustering [11–13], etc.

The dimensionality of data can generally be reduced using two methods: feature 
selection and feature extraction [8, 14]. The feature selection methodologies selects 
a small subset of features that are most relevant to the class variable. On the other 
hand, the feature extraction methodologies acquire a new subset of features by taking 
various functions on the original features. As the attribute selection methodologies 
retain the overall originality of attributes when decreasing the number of attributes, 
they are often preferred in several cases where the chosen attributes require to be 
interpreted by the domain experts [15]. There are many applications for feature selec-
tions such as disease status prediction, microRNA transcription start site (TSS) pre-
diction [16, 17], etc. Analyzing micro-array cancer data is one of the most promising 
applications of feature selection.

Feature selection can be accomplished in three ways, viz., supervised, semi-super-
vised and unsupervised [18]. Supervised approaches evaluate each candidate feature 
or feature subset by knowing class labels, while the unsupervised approaches derive 
some alternative criteria without knowing any class labels [19, 20]. The methods 
of feature selection can also be classified into three categories: filter, wrapper, and 
embedded, depending upon how the feature evaluation indicators are computed [21]. 
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Filter-based methods assess each candidate subset of features based on some internal 
data evaluation metrics. These approaches of filter-based feature selection can again 
be classified into two groups, namely, scalar feature selection and feature vector selec-
tion. In a scalar feature selection plan, individual features are assessed based on some 
statistical criteria and eventually some user-specific number of top-ranked features 
are chosen. The features chosen through these approaches are remarkably strong but 
are less robust because they do not consider the inter-dependencies between features 
while choosing the desired number of features. Furthermore, there is no previous 
information about the accurate number of features that are considered in leading to 
offer better classification accuracies.

For the purpose of feature selection, collective knowledge is suggested over many 
alternative criteria such as Pearson correlation coefficient to compute the value (useful-
ness) of a feature subset due to its capacity of analyzing nonlinear dependency. Among 
all these measures, mutual information has appeared as one of the most potential crite-
ria to solve the task of feature section. For example, Mutual Information based Feature 
Selection (MIFS) [22], Mutual Information Feature Selector under Uniform informa-
tion distribution (MIFS-U) [23], minimal Redundancy Maximal Relevance criterion-
based feature selection (mRMR) [24], Normalized Mutual Information- based Feature 
Selection (NMIFS) [25], Improved Normalized Information-based Feature Selection 
(INMIFS) [26], Variable Weighted Maximal Relevance minimal Redundancy crite-
rion-based feature selection (VWMRmR) [27], are some well-known algorithms of the 
mutual information-based approaches. In this connection, a two-stage feature selection 
method is also used where a reasonably small number of features are first selected from 
a high dimensional data using the mRMR criterion, and then a better feature subset of 
features is selected from that candidate sets using a wrapper approach. In contrast to the 
filter-based approaches, the wrapper approaches employ the classification performance 
to choose the best subset of the reduced features. The value (usefulness) of feature sub-
sets depends on selected types of classification models are used to measure the classifi-
cation performances. Besides these, there are several other feature algorithms such as 
Support Vector Machine Recursive Feature Elimination (SVM-RFE) [28], Support Vec-
tor Machine Recursive Feature Elimination along incorporating the Correlation Bias 
Reduction (SVM-RFE-CBR) [29], Discriminative Feature Selection (DFS) [30], etc. How-
ever, the pipeline of this study is provided in Fig. 1.

As already mentioned, the feature extraction methods transform all the features of a 
given data into a new transformed feature space from which the originality of the fea-
tures cannot be found. On the other hand, the feature selection methods select a small 
subset of features, where the originality of the selected features remains the same as it 
was before doing the feature selection. Therefore, the feature selection methods are most 
suitable for generating gene signatures by selecting a smaller subset of genes, while the 
feature extraction methods cannot obtain gene signatures.

In this research work, we considered five different state-of-the-art methods of feature 
selection for gene signature detection, such as mRMR, DFS, INMIFS, SVM-RFE-CBR, 
and VWMRmR. We assessed the their performance on various omics datasets in terms 
of several evaluation criteria. The experimental results showed that the average classifi-
cation accuracy rate of the selected feature subset obtained using the VWMRmR method 
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was superior when compared with other feature selection algorithms. The experimental 
results further showed that the subset of features selected using the VWMRmR method 
is prominent in terms of two other criteria, namely, average redundancy rate and rep-
resentation entropy among all methods. Finally, we applied these five feature selection 
methods to a multi-omics dataset in acute myeloid leukemia, and performed the inter-
section operation among the sets of the selected top statistically significant genes (fea-
tures) obtained by those methods to identify gene signatures from each omic data. Of 
note, MIFS (1994), MIFS-U (2002) and NMIFS (2009) were fundamental baseline fea-
ture selection algorithms that were very old. The mRMR (2005) method is an improved 
version of MIFS (1994) and MIFS-U (2002). On the other hand, another improved latest 
version of NMIFS called INMIFS (2010) was already developed. Thus, instead of consid-
ering the very oldest fundamental methods, we chose the improved version of them for 
our study.

Methods
Currently, dimensionality reduction techniques are becoming more important due to 
the advancement of bigdata (i.e., high-dimensional datasets). Among various techniques, 
feature selection has become an emerging tool to identify the most suitable features in 
big data, both in terms of the number of samples or the number of features. Some of the 
widely used feature selection techniques are demonstrated below.

MIFS
Battiti (1994) proposed the Mutual Information-Based Feature Selection (MIFS) crite-
rion, which is defined as follows.

The selection criterion is utilized to greedily pick the most notable m attributes from a 
collection of d attributes [22]. Provided a set of already selected features S, it is used to 

(1)I(fi;C)− β
∑

fsǫS

I (fs; fi).

Fig. 1  Pipeline of the proposed method
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select a candidate feature fi which makes the most of the relevance to the class I(fi; C) 
at each stage without taking into account the joint mutual information between the 
selected attribute set and the class variable C. The parameter β has a significant impact 
on the selected feature set. In the cases where β is too big, it will enlarge the redundancy 
in the selected features. As a result, the MIFS method may remove redundant features 
that have high relevance with the class variable. The main disadvantage of the MIFS 
method is the selection of an ideal value for the parameter β.

MIFS‑U
Kwak and Choi developed an enhanced version of MIFS called as MIFS-U, which is 
based on the assumption that information is handled uniformly with specific features S 
[23]. The criterion which is used to select the promising feature at each stage is defined 
as follows.

where H(fs) =
∑

fsǫs
P (fs) log P (fs) is the entropy of fs . The uniform probability distri-

bution assumption can ensure conditioning by the class C does not alter the proportion 
of the mutual information between fs and fi , and the entropy of fs.

The MIFS-U method gauges a superior assessment of the MI measure than the MIFS 
method, however, it additionally needs to pick the parameter β cautiously. With an inap-
propriate value of β , the MIFS-U method may provide poor results.

mRMR (minimum redundancy maximum relevance)
Peng et al. proposed a parameter-free feature selection method called minimal Redun-
dancy Maximum Relevance-based feature selection algorithm (mRMR) [24]. The mRMR 
method replaces the β used in the selection criterion of the earlier methods MIFS and 
MIFS-U by 1

|S| , where |S| is the size of the set S of already selected features. The selection 
criterion of the mRMR method is defined as follows.

The main advantage of the mRMR method over the MIFS, MIFS-U methods is that it 
does not require any parameter like β used in their methods.

Feature selection, one of the fundamental issues in pattern recognition as well as 
machine learning, detects subgroups of data which are important to the parameters 
used here and is generally denoted as Maximum Relevance. These subsets involve the 
material that is pertinent but redundant and mRMR attempts to fix its target on this 
issue through providing those redundant subsets. mRMR has a different variation of 
forms in many parts alike speech recognition as well as cancer diagnosis. Features can 
be selected in different ways. One strategy is to select features which correlate strongest 
to the transportation variable. This has been termed as peak-purpose selection. Many 
heuristic approaches can be used, such as the sequential backward, forward, or float-
ing selections. On the other scenario, features can be detected to be mutually that is far 

(2)I(fi;C)− β
∑

fsǫS

I
(
fs;C

)

H (fs)
I(fi; fs),

(3)I(fi;C)−
1

|S|

∑

fsǫS

I(fi; fs).
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away from each other when still possessing parallel to the class-variable. This strategy, 
denoted as Minimum Redundancy Maximum Relevance (mRMR) has been found to be 
more sophisticated and efficient than the maximum relevance selection. In a specified 
case, the “correlation” can be updated by the statistical dependency between the vari-
ables. Mutual information can be used to estimate the dependency. In that scenario, it 
is highlighted that mRMR is basically an approximation to maximize the dependency 
between the joint handling of the chosen features and the distribution variable.

NMIFS (normalized mutual information feature selection)
Estevez et al. enhanced a new version of mRMR, termed as Normalized Mutual Infor-
mation Feature Selection method (NMIFS). The NMIFS method used the normalized 
mutual information to compute the redundancy between the selected features. The 
selection criterion of the NMIFS method is defined as follows [25]:

where Î , the normalized mutual information, is demonstrated as

Using the normalized mutual information measure when computing the feature-feature 
redundancy, the NMIFS method seeks to overcome the problem of imbalance between 
the relevance and redundancy terms of the selection criteria used in the MIFS, MIFS-U 
and mRMR techniques. However, the NMIFS method has some drawbacks. For binary-
class problems, the entropy of the class variable is one if the distributions of the class 
variable are the same. But, if the difference between the two terms is large, the entropy 
value will be less than one, resulting in a discrepancy between these two terms of the 
selection criterion. For multi-class problems, the value of the left term is usually more 
than one, while the value of the right hand term is below one. The imbalance between 
these two terms may sometime force the feature selection algorithm to select a feature 
based on the maximal value of the left-hand term while neglecting the right-hand term. 
Thus, the NMIFS method may often fail to properly select the desired set of features due 
to the imbalance problem.

INMIFS (improved normalized mutual information feature selection)
Vinh et al. proposed an improved version of the NMIFS method called Improved Nor-
malized Mutual Information Feature Selection (INMIFS) method [26]. They used nor-
malized mutual information to compute both the class-relevance and feature-feature 
redundancy. The selection criterion of the INMIFS method is shown below.

where Î denotes the normalized mutual information.

(4)I(fi;C)−
1

|S|

∑

fsǫS

Î(fi; fs),

(5)Î(fi; fs) =
I (fi; fs)

min (H
(
fs
)
, H

(
fi
)
)
.

(6)Î(C; fi)−
1

|S|

∑

fs∈S

Î(fs; fi),
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The main advantage of the INMIFS method over the NMIFS method is that it attempts 
to make both the left and right-hand terms of the selection criterion comparable in mag-
nitude. Vinh et al. (2010) obtained better results using the INMIFS method compared to 
the NMIFS method for six multi-class datasets.

Discriminative feature selection (DFS)
Hong Tao et  al. developed a filter-based feature selection technique through combin-
ing Linear Discriminant Analysis (LDA) and sparsity regularization [30]. To perform the 
feature selection, they utilized row sparsity on the LDA transformation matrix by l2,1
-norm regularisation, and the outcome formulation optimizes to choose the most dis-
criminating features while simultaneously discarding the redundant ones.

They could use the l2,1-norm centred formulation to the l2,p-norm regularised sce-
narios, providing them more p options for fitting the wider range of sparsity necessity. 
They proposed an efficient algorithm to resolve the l2,p-norm minimization problem and 
highlighted that their proposed technique is able to reduce the target in a monotonic 
manner prior to convergence while 0 < p ≤ 2 . In addition, their method maintains the 
power for selecting the most discriminative features while also discarding the redundant 
ones.

SVM‑RFE‑CBR (support vector machine recursive feature elimination with correlation 
bias reduction)
Yan et al. proposed an improved version of SVM-RFE called as Support Vector Machine 
Recursive Feature Elimination with Correlation Bias Reduction (SVM-RFE-CBR) by 
incorporating the correlation bias reduction (CBR) strategy into the feature elimination 
process [29]. Like SVM-RFE, the SVM-RFE-CBR method adopts a backward elimination 
strategy. And so, it is able to model the dependencies between features. They showed 
that the SVM-RFE-CBR performed better than SVM-RFE and many other common 
methods. The main advantage of SVM-RFE-CBR over SVM-RFE is that the former can 
handle feature sets having highly correlated features, while the latter one cannot do it. 
They further suggested that the stability of SVM-RFE-CBR could be improved by apply-
ing some ensemble methods.

VWMRmR (variable weighted maximal relevance minimal redundancy)
Bandyopadhyay et al. developed another normalized mutual information-based feature 
selection algorithm called Variable Weighted Maximal Relevance minimal Redundancy 
criterion based feature selection technique (VWMRmR) [27]. Here, features are selected 
depending upon the weighted maximum relevance minimum redundancy strategy by 
which the relative weight of the redundancy is linearly increased with concern to the 
number of already selected features. The selection criterion of this technique is shown 
below:

(7)Í(C; fi)− (1+
w ∗ |S|

k
) ∗

1

|S|

∑

fs∈S

Í(fi; fs),
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where Í(fi; fs) is the normalized mutual information between two features: fi and fs 
( ∈ S ), w denotes a user-specified positive, real-valued parameter which controls the rela-
tive weight of redundancy relative to the relevance, S is the set of already chosen fea-
tures, and k is the number of the features that needs to be selected.

Comparison of different feature selection algorithms on multi‑omics data
Here, we used five state-of-the-art feature selection algorithms, viz., mRMR, DFS, 
INMIFS, SVM-RFE-CBR and VWMRmR to select a small subset of relevant features 
corresponding to multi-omics datasets. For each dataset, the top-ranked 50 features are 
selected for each of the five feature selection algorithms.

Used datasets
For analysis, five datasets, namely, gene expression (Exp), exon expression (ExpExon), 
copy number variation (Gistic2), DNA methylation (hMethyl27) and Pathway activity 
dataset (Paradigm IPLs) from a multi-omics dataset of acute myeloid leukemia (LAML) 
from The Cancer Genome Atlas (TCGA) were acquired from the publicly available 
repositories [31, 32]. Each of these five datasets has three types of class labels denoting 
three different stages of diseases, such as favorable (31 samples), intermediate/ normal 
(96 samples), and poor (34 samples). Each dataset consists of hundreds to thousands 
continuous features obtained through different biological experiments. There are a total 
of 161 common samples and among all these five data profiles.

Normalization and statistical test
We first started working with common set of genes and samples among all these five 
profiles. Each profile consisting of the common gene set was normalized gene-wise 
through the zero-mean normalization [33, 34] that was formulated below:

where µ refers to the mean of the scores of all samples corresponding to the specific gene 
before normalization and σ denotes the standard deviation of the scores of all samples 
corresponding to that gene before normalization; while xi and xnormi  signify the scores 
of i-th sample of that corresponding gene prior to and after normalization, respectively.

We then performed statistical test using Limma within the R statistical package [33, 
35], which employs Empirical Bayes test gene-wise on the respective normalized data. 
We obtained different sets of statistically significant genes having p value < 0.05 for each 
profile.

Discretization and computation of mutual information
As all attribute variables contain continuous types of values, each of them was pre-pro-
cessed by converting into a Z-score (signifying zero mean and units). Each attribute vari-
able is then was then discretized into three states, such as − 1, 0, and 1. If the value of 
the attribute for a given sample is less than the standard deviation of the attribute, it 
takes − 1; if the value of the attribute is greater than the standard deviation, it takes 

(8)xnormi = (xi − µ)/σ ,
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1; and it takes 0 in all other cases. In this way, all the attributes are transformed into a 
discretized space from a continuous space. Then the mutual information between two 
features is easily computed in the discretized space.

Supervised feature selection
After discretization, we applied those five earlier mentioned supervised feature selection 
strategies (viz., mRMR, INMIFS, DFS, SVM-RFE-CBR and VWMRmR) on each of the 
five data profiles, individually, and extracted 50 top significant features among all the 
statistically significant genes (features).

Used classifiers
For experimental purposes, we used four classifiers, viz., C4.5, Naïve-Bayes, KNN and 
AdaBoost to assess the quality of the reduced feature subsets selected (i.e., 50 top sta-
tistically significant features here) using different feature selection algorithms, and then 
estimated the different evaluation metrics.

Evaluation method
Weka [36] software is employed to make all four classifiers (C4.5, Naïve-Bayes, KNN and 
AdaBoost). The third classifier KNN rule has a user-defined parameter K whose value 
is determined as the rounded value of the square root of the number of objects in the 
training data. On the contrary, Naive Bayes considers that the features are normally dis-
tributed whose means and variances are determined from the data. The worth of these 
classifiers are assessed by reporting the average classification accuracies obtained by first 
applying ten-fold cross validation to the training data, then by repeating the same pro-
cess ten times and finally by averaging these ten results to obtain a single estimation.

Evaluation criteria
For each of the above four classifiers, the performance of the corresponding classifica-
tion model related to a omics datasets is assessed in terms of three evaluation criteria, 
viz., Accuracy, Redundancy Rate and Representation Entropy. The first measure is a 
supervised measure, while the remaining two are unsupervised measures.

Accuracy

The accuracy (Acc) is computed as follows:

where TP, TN, FP and FN stands for the number of true positives, the number of true 
negatives, the number of false positives and the number of false negatives, respectively.

(9)Acc =
(TP + TN )

(TP + TN + FP + FN )
,
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Redundancy rate

For a feature set F having d number of features, the redundancy rate of F (RR) is defined 
as follows.

where Sim(fi, fj) is the similarity between two features fi, fj ∈ F  . To compute the sim-
ilarity, normalized mutual information, correlation coefficient, etc. can be used as the 
underlying measures.

Representation entropy

For a feature set F with d number of features, assume, the eigenvalues of the d ∗ d 
covariance matrix of F be �j , j = 1 . . . d . The representation entropy of F, denoted by 
R_Entropy , is defined as follows.

where �̃j , j = 1, . . . , s, are calculated as follows.

The R_Entropy attains its minimum value (zero) when all the eigenvalues but one are 
equal to zero, that is, when it contains all its information in one coordinate direction. 
However, if all the eigenvalues are equal, then the information is evenly distributed 
among all the features; thus, the R_Entropy will reach its maximum value. Thus, we have 
uncertainty in feature reduction. This measure is known as the representation entropy.

Results and discussion
Experimental results
This subsection first describes the overall performance analysis. Subsequently, the com-
parative performance of five different feature selection algorithms are summarized. 
Then, the comparative performance of different feature selection algorithms are assessed 
in terms of redundancy rate and representation entropy.

(10)RR =
2

d ∗ (d − 1)

∑

fi ,fj∈F ,j>i

Sim(fi, fj),

(11)R_Entropy = −

s∑

i=1

�̃i log �̃i,

(12)�̃i =
�i∑d
i=1 �i

.

Table 1  Fundamental characteristics such as statistically significant features, number of samples 
and number of classes among samples for the used datasets

Data profile # classes # statistically significant 
features

# samples

Exp 3 728 161

ExpExon 3 1100 161

hMethyl27 3 272 161

Gistic2 3 904 161

Pathway activity data 3 265 161
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Differential analysis

Fundamental descriptions (#common samples, #classes, #statistically significant fea-
tures) of each of these five profiles were described in Table 1.

Comparison of different feature selection algorithms in terms of classification accuracy

We have evaluated the performances of the five existing feature selection algorithms - 
mRMR, DFS, INMIFS, SVM-RFE-CBR and VWmRMR, on the above mentioned five 
datasets, viz., Exp, ExpExon, Gistic2, hMethyl27 and Pathway activity. The average 
scores at the 10-fold cross validation with 10 times repetitions obtained by applying dif-
ferent classifiers to the reduced feature subsets selected using the five different feature 
selection algorithms across LAML datasets are reported in Table 2.

Interestingly, during the utilization of classifiers, we had performed hyper parameter 
tuning for some possible classifiers estimated classification accuracy for each turning of 
the parameter. For example, for the KNN classifier, the number of neighbors (K) is tuned 
from 1 to 15 with step size 1, while for the C4.5 classifier, the confidence parameter (C) is 
tuned from 0.05 to 0.5 with step size 0.05, but for the Naive Bayes and Adaboost classi-
fiers, there are no hyper parameters that need to be tuned. Finally, the best result among 
all sets of tuned parameter is considered for that specific classifier. For the first data-
set (Exp), the SVM-RFE-CBR algorithm performs better than all other algorithms for all 

Table 2  Comparison of classification accuracies (with 10-fold cross-validation and 10 times 
repetitions each case) determined by various feature subsets selected through various feature 
selection algorithms

a The best mean scores of percentage accuracy for each row is highlighted in bold font

Dataset Classifier Feature selection algorithm

mRMR INMIFS DFS SVM-RFE-CBR VWMRmR

Avg. (std) Avg. (std) Avg. (std) Avg. (std) Avg. (std)

Exp C4.5 72.67(3.29) 73.98(2.08) 72.73(2.08) 74.34(3.35)a 73.29(3.06)

Naive Bayes 83.04(0.88) 83.66(0.83) 80.94(0.72) 86.52(0.66)a 84.47(0.83)

KNN 89.19(0.52)a 88.01(0.66) 84.35(1.16) 86.15(0.51) 88.01(0.83)

AdaBoost 81.86(1.30) 81.43(1.42) 74.47(2.14) 85.16(1.19)a 81.37(0.97)

ExpExon C4.5 77.08(1.69) 75.09(2.72) 73.23(3.43) 75.03(2.76) 77.45(1.73)a

Naive Bayes 86.27(0.62) 85.22(0.57) 84.10(0.43) 85.90(0.59) 85.46(0.60)

KNN 87.58(0.65) 87.45(1.01) 87.01(1.19) 84.35(0.39) 87.83(0.32)a

AdaBoost 84.03(1.17) 82.24(1.99) 77.20(1.44) 83.35(0.71) 84.47(1.24)a

hMethyl27 C4.5 72.05(2.27) 70.87(1.26) 70.99(1.94) 72.17(2.55)a 71.99(2.18)

Naive Bayes 76.21(1.01) 78.82(1.26) 80.94(1.28) 80.68(1.39) 80.99(1.69)a

KNN 82.48(1.09) 83.48(0.89) 82.80(0.83) 84.41(0.99)a 83.23(0.97)

AdaBoost 74.29(1.74) 77.89(1.38) 77.52(2.41) 78.14(1.77) 80.56(1.58)a

Gistic2 C4.5 73.60(1.53)a 68.01(2.45) 71.49(1.42) 72.55(0.76) 67.95(2.07)

Naive Bayes 78.32(0.85)a 76.89(1.05) 75.84(0.46) 78.07(0.42) 77.20(1.02)

KNN 76.02(0.73) 75.22(0.85) 74.10(0.42) 76.52(1.27)a 74.84(0.60)

AdaBoost 78.70(0.72)a 78.57(0.73) 75.84(0.80) 78.20(0.46) 77.33(0.98)

Pathway C4.5 70.50(1.83)a 66.65(2.70) 68.82(3.28) 64.97(2.72) 66.89(3.26)

activity Naive Bayes 79.44(1.19) 82.30(1.56) 66.65(0.78) 76.83(1.02) 83.66(0.72)a

KNN 78.32(0.99) 77.08(0.80) 80.68(0.90)a 70.37(1.17) 78.32(0.80)

AdaBoost 77.39(2.07) 78.94(1.86) 70.87(1.32) 76.15(1.38) 79.63(1.37)a



Page 12 of 18Bhadra et al. BMC Bioinformatics          (2022) 23:153 

classifiers except KNN. For this dataset, the mRMR algorithm produces the best accu-
racy (=89.19%) for the KNN classifier. For the second dataset (ExpExon), the VWmRMR 
algorithm performs better than all other feature selection algorithms for all classifiers 
except the Naive Bayes classifier. For this dataset, the VWmRMR method achieves the 
best accuracy (=87.83%) for the KNN classifier. For the third dataset (hMethyl27), the 
VWmRMR algorithm performs better than all other algorithms except SVM-RFE-CBR 
for two classifiers, namely, Naive Bayes and AdaBoost. For this dataset, the SVM-RFE-
CBR obtains the best accuracy (=84.41%) for the KNN classifier. For the fourth dataset 
(Gistic2), the mRMR algorithm yields better than all other algorithms for all classifiers 
other than KNN classifier. For this dataset, the mRMR algorithm obtains the best accu-
racy (=78.70%) for the AdaBoost classifier. For the last dataset (Pathway activity), the 
VWmRMR algorithm performs better than other two algorithms, INMIFS and SVM-
RFE-CBR for all classifiers. For this dataset, the VWmRMR algorithm obtains the best 
accuracy (=83.66%) for the Naive Bayes classifier. As an overall, the VWMRmR method 
offers best accuracy in seven cases. On the other hand, the mRMR and SVM-RFE-CBR 
methods yield the best accuracy in six cases. Thus, the the VWMRmR method seems 
to be the best among all five feature selection algorithms in terms of providing the best 
accuracy in most number of times.

The comparative performances of the VWMRmR method against each of the remain-
ing four feature selection algorithms is summarized in Table 3. For each data, the value 
of a cell under the column of a given feature selection algorithm specifies the number of 
times the VWMRmR method wins, draws and looses against the respective feature selec-
tion algorithm on that particular data. For the first dataset (Exp), the VWMRmR method 
wins in all four cases against the DFS method, whereas the VWMRmR method wins 
against the mRMR method the same number cases (=2) , whatever the mRMR method 
wins against the other. For this data, both the INMIFS and SVM-RFE-CBR methods 
wins against the VWMRmR method in more number of cases whatever the VWMRmR 
method wins against each of the them. For the second dataset ExpExon, the VWMRmR 
method wins in all four cases against two methods, viz. INMIFS and DFS methods. For 
this data, the VWMRmR method also wins against each of other two methods: mRMR 
and SVM-RFE-CBR, in three cases out of four cases. For the third data (hMethyl27), 
the VWMRmR method wins against the DFS method in all four cases, whereas it wins 
against each of two methods, namely, mRMR and INMIFS, in three cases. For this data, 
both the SVM-RFE-CBE and VWMRmR methods win against each other the same num-
ber of times (=2). For the fourth data (Gistic2), the VWMRmR against the DSF method 

Table 3  Summary of the comparative performance of the proposed feature selection algorithm 
against other feature selection algorithms

a Other is the feature selection method denoted by each specific column (e.g., mRMR in third column)

Dataset Criteria mRMR INMIFS DFS SVM-RFE-CBR

Exp W-D-L (VWMRmR against othera) 2-0-2 1-1-2 4-0-0 1-0-3

ExpExon W-D-L (VWMRmR against othera) 3-0-1 4-0-0 4-0-0 3-0-1

hMethyl27 W-D-L (VWMRmR against othera) 3-0-1 3-0-1 4-0-0 2-0-2

Gistic2 W-D-L (VWMRmR against othera) 0-0-4 1-0-3 3-0-1 0-0-4

Pathway activity data W-D-L(VWMRmR against othera) 2-1-1 4-0-0 2-0-2 4-0-0
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in three cases. This is the only one data for which any other method (viz., mRMR and 
SVM-RFE-CBR) wins against the VWMRmR method in all four cases. Furthermore, for 
this data, the DFS method wins against the VWMRmR method in three cases. For the 
fifth data (Pathway activity data), the VWMRmR method wins against each of two meth-
ods, viz, INMIFS and SVM-RFE-CBR, in all four cases, whereas it wins against each of 
other two methods, viz., mRMR and DFS, in two cases. As an overall, the VWMRmR 
method performs better than other algorithms for most of the datasets.

Comparison of different feature selection algorithms in terms of redundancy rate

In this section, the performance of the aforesaid five feature selection methods is com-
pared in terms of average redundancy rate. For this purpose, two different kinds of simi-
larity measures are used. The first measure is the normalized mutual information and 
the second measure is the Pearson correlation coefficient. The comparative results of the 
average redundancy rate, in terms of normalized mutual information, of the top-ranked 
50 features selected using different feature selection methods are shown in Table 4. In 
the table, for each data, the boldfaced entry under a given feature selection algorithm 
indicates that it offers the least redundancy rate among all feature selection algorithms 
on the respective data. The lower the value of redundancy rate, the better the selection of 
the feature selection algorithm is. As revealed from the table, the feature subset obtained 
by the VWMRmR approach is observed to be the least redundant in three cases. This 
shows that the VWMRmR algorithm is able to remove redundant features while select-
ing a small subset of relevant features.

Similarly, the comparative results of the average redundancy rates, in terms of the 
Pearson correlation coefficient, of the top-ranked 50 features obtained using the same 
five feature selection methods across all datasets are reported in Table 5. Similar to the 
above case, the lower the value of redundancy rate, the better the feature selection algo-
rithm is. As revealed from Table 5, the VWMRmR method yields a small set of relevant 
features with the least redundancy for two datasets, viz., Gistic2 and Pathway activity 
data. On the other hand, the SVM-RFE-CBR method offers the least redundant feature 
sets for two datasets: Exp and hMethyl27, while the DFS method yields the least redun-
dant feature set for ExpExon data. As an overall, the VWMRmR method is capable of 
removing redundant features to improve the learning performance.

Table 4  Average redundancy rate in terms of normalized mutual information (denoted as RRmi
avg ) of 

different subsets of features selected using various algorithms. Least value of RRmi
avg signifies better 

choice of the feature selection algorithm

a Bold font justifies least RRmi
avg among all algorithms (i.e., best performance) for each data (row)

Dataset Feature selection algorithm

mRMR INMIFS DFS SVM-RFE-CBR VWMRmR

Exp 0.0978 0.1053 0.0988 0.1053 0.0948a

ExpExon 0.0972 0.0991 0.0941a 0.105 0.0961

hMethyl27 0.0984 0.1 0.1045 0.0888a 0.0894

Gistic2 0.3159 0.215 0.4258 0.3209 0.1958a

Pathway activity data 0.0659 0.0533 0.0778 0.1215 0.0487
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Comparison of different feature selection algorithms in terms of representation entropy

Table  6 shows the representation entropy of different feature subsets selected using 
the aforesaid five feature selection algorithms for various datasets. The value of each 
cell under i-th row and j-th column represents the representation entropy of the top-
ranked 50 features obtained by applying the j-th feature selection algorithm to the i-th 
dataset. In the table, the boldfaced value for each entry indicates that the corresponding 
feature selection algorithm is the best among all algorithms in terms of providing the 
maximum representation entropy. The higher the value of representation entropy, the 
better the feature selection algorithm is. As revealed from Table 6, the VWMRmR algo-
rithm obtains the best representation entropy for three datasets, viz., Exp, Gistic2 and 
Pathway activity data. On the other hand, the DFS and SVM-RFE-CBR algorithms give 
the best representation entropy for the remaining two datasets, viz., ExpExon and hMe-
thyl27, respectively. For both these two data, the VWMRmR method offers the second 
maximum value. As an overall, the VWMRmR method seems to be the best in terms of 
obtaining the best representation entropy in most cases.

Intersection of features obtained by different feature selection algorithms

In addition, we carried out the intersection of top 50 extracted statistically significant 
features (genes) among five feature selection algorithms and also represented Venn 

Table 5  Average redundancy rate in terms of Pearson correlation coefficient (denoted as RRpcavg ) of 
different subsets of features selected using various algorithms. Least value of RRpcavg signifies better 
choice of the feature selection algorithm

a Bold font justifies least RRpcavg among all algorithms (i.e., best performance) for each data (row)

Dataset Feature selection algorithm

mRMR INMIFS DFS SVM-RFE-CBR VWMRmR

Exp 0.0281 0.0345 0.0145 0.0124a 0.0219

ExpExon 0.0258 0.0378 0.0177a 0.0545 0.025

hMethyl27 0.109 0.1235 0.1324 0.0754a 0.084

Gistic2 0.2953 0.1665 0.3244 0.2437 0.1277a

Pathway activity data 0.042 0.0291 0.0467 0.0684 0.025a

Table 6  Representation Entropy (RE) of feature subsets obtained using different supervised feature 
selection algorithms. The higher value of representation entropy is the better choice of the feature 
selection algorithm

a Bold font justifies the highest RE among all algorithms (i.e., best performance) for each data

Dataset Feature selection algorithm

mRMR INMIFS DFS SVM-RFE-CBR VWMRmR

Exp 4.4272 4.3292 4.4012 4.3777 4.4731a

ExpExon 4.4364 4.3815 4.4975a 4.4418 4.457

hMethyl27 4.3622 4.3389 4.3951 4.4596a 4.4462

Gistic2 2.275 2.9071 1.5355 1.9769 3.2265a

Pathway activity data 4.7957 4.8386 4.3463 4.0656 4.8581a
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diagrams for expression data (Fig. 2A), exon expression data (Fig. 2B), methylation data 
(Fig. 2C), copy number (Gistic2) data (Fig. 2D), and pathway activity data (Fig. 2E).

For gene expression data, we obtained 7 common genes among the five feature selec-
tion methods (mRMR, INMIFS, DFS, SVM-RFE-CBR and VWMRmR). Those were 
ZMIZ1, ENG, FGFR1, PAWR, KRT17, MPO and LAT2. For exon expression data, 
we obtained 9 common genes among those five feature selection methods (mRMR, 
INMIFS, DFS, SVM-RFE-CBR and VWMRmR). Those were ZMIZ1, ENG, ALOX15, 

Fig. 2  Venn diagrams showing the intersection of top 50 extracted statistically significant features (genes) 
among five feature selection algorithms: A expression data, B exon expression data, C methylation data, D 
copy number variation (Gistic2) data, and E pathway activity data
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RTN4R, FGFR1, KRT17, PTPRM, MPO and LAT2. In the analysis of methylation data, 7 
overlapped genes (namely, PRF1, FCGR2A, CD3D, MPO, ANGPT1, PREX1 and KRT17) 
were identified for those feature selection methods. For copy number (Gistic2) dataset, 
we identified only one gene (PIK3CG), while 3 genes had been found for those feature 
selection methods for pathway activity data (namely, BMP4, STXBP1 and LEP).

Conclusions
In this paper, we presented a comparative study of five widely used state-of-the art 
feature selection methods such as mRMR, INMIFS, DFS, SVM-RFE-CBR, and VWM-
RmR for multi-omics datasets. The usefulness of different feature subsets selected 
using the aforesaid five feature selection algorithms was assessed using three evalua-
tion criteria: classification accuracy, representation entropy and redundancy. For the 
comparison purpose, four different classification methods such as C4.5, Naive Bayes, 
KNN and AdaBoost were used to measure the worth of each selected feature sub-
set. Overall, the VWMRmR method offers the best performance for all three eval-
uation metrics for majority of datasets. The VWMRmR algorithm obtains the best 
Acc for most of the cases across all datasets except the Exp and Gistic2 data. It also 
obtains the best RE for three datasets (Exp, ExpExon and Paradigm IPLs); while the 
DFS and SVM-RFE-CBR algorithms produce the best RE for the remaining two data-
sets - hMethyl27 and Gistic2, respectively. Additionally, we carried out intersection of 
top 50 statistically significant features obtained by those five feature selection meth-
ods for each omic data and overlapped feature set is defined as signature genes using 
supervised learning. We obtained a 7-gene signature (ZMIZ1, ENG, FGFR1, PAWR, 
KRT17, MPO and LAT2) for gene expression, a 9-gene signature for exon expression 
data, a 7-gene signature for methylation data, a single-gene signature (PIK3CG) for 
copy number data and a 3-gene signature for pathway activity data. In future, we plan 
to develop sophisticated feature selection algorithms to speed up the process of fea-
ture selection for such kinds of datasets with more than ten thousand samples. We 
have also planned to incorporate higher order dependencies among features.
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