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Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses

of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited

to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks

that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections

unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data

across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for

combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the reg-

ulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly

enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human

transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to recon-

struct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic

variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identi-

fying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved

understanding of the complex relationships of the human transcriptome across tissues.

[Supplemental material is available for this article.]

Gene co-expression networks are an essential framework for eluci-
dating gene function and interactions, identifying sets of genes
that respond in a coordinated way to environmental and disease
conditions, and highlighting regulatory relationships (Penrod
et al. 2011; Xiao et al. 2014; Yang et al. 2014). Each edge in a co-
expression network reflects a correlation between two transcrip-
tional products, represented as nodes (Stuart et al. 2003). Most
gene co-expression networks focus on correlation between total
gene expression levels, with edges representing transcriptional
coregulation. However, posttranscriptional modifications, includ-
ing alternative splicing, are important in creating a transcriptome
with diverse biological functions (Matlin et al. 2005). Mutations
that lead to disruption of splicing play an important role in tissue-
and disease-specific pathways (López-Bigas et al. 2005; Wang et al.
2008;Ward andCooper 2010; Lee et al. 2012; DeBoever et al. 2015;
Li et al. 2016c).

While a number of splicing factors are known, regulation of
splicing and specific regulatory genes involved remain poorly un-
derstood relative to the regulation of transcription (Melé et al.
2015; Scotti and Swanson 2015). Although abundance of different
isoforms can be influenced by processes includingusage of alterna-

tive transcription start or end sites and RNA degradation, variation
in isoform levels is often the direct result of alternative splicing.
RNA sequencing (RNA-seq) now allows quantification of isoform-
level expression, providing an opportunity to study regulation of
splicing using a network analysis. However, current research esti-
mating RNA isoform-level networks (Li et al. 2014, 2015, 2016a)
has focused on total expression of each isoform, and the resulting
network structures do not distinguish between regulation of tran-
scription and regulation of splicing in an interpretable way.
Initial work on clustering relative isoform abundances has also
been explored (Dai et al. 2012; Iancu et al. 2015) but does not sup-
port discoveryof fine-grainednetwork structure or identificationof
regulatory genes. Neither approach has been applied to large RNA-
seq studies for network reconstruction in diverse tissues.

Another important gap in our interpretation of regulatory ef-
fects in complex traits is a global characterization of co-expression
relationships that are only present in a specific tissue type. Per-
tissue networks have been estimated for multiple tissues (Piro
et al. 2011; Pierson et al. 2015), but, critically, these analyses do
not directly separate effects unique to each tissue from effects
shared across all or many tissues. Recent studies have recognized
the essential role that tissue-specific pathways play in disease etiol-
ogy (Greene et al. 2015) but have developed these per-tissue
networks by aggregating single tissue samples acrossmultiple stud-
ies. However, differences in study design, technical effects, and
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tissue-specific expression make cross-study results difficult to in-
terpret mechanistically, with large groups of genes expressed in
similar tissues and studies tending to be highly connected rather
than including sparse edges that detail tissue-specific network
structure (Lee et al. 2004).

In this work, we reconstruct co-expression networks from
the Genotype Tissue Expression (GTEx) v6 RNA-seq data (The
GTEx Consortium 2015, 2017), including 449 human donors
with genotype information and 7310 RNA-seq samples across
50 tissues. We apply computational methods designed to reveal
novel relationships between genes and across tissues as compared
to previous analyses, specifically addressing two important
goals in regulatory biology: identification of edges reflecting regu-
lation of splicing, and discovery of edges arising from gene
relationships unique to specific tissues.We introduce a new frame-
work, Transcriptome-Wide Networks (TWNs), which captures
gene relationships that reflect regulation of alternative splicing
in an interpretable model. We built TWNs to identify candidate
regulators of both splicing and transcription across 16 tissues.
Next, we identified Tissue-Specific Networks (TSNs) for 26 tissues,
where each network edge corresponds to a correlation between
genes that is uniquely found in a single tissue. We study the bio-
logical interpretation of both network types by quantifying en-
richment of known biological functions among well-connected
nodes. Finally, we use genetic variation to validate network edges
from each network by testing associations between a regulatory

variant local to one gene with that gene’s network neighbors.
Interpretation of regulatory and disease studies will benefit greatly
from these networks, providing a much more comprehensive de-
scription of regulatory processes, including alternative splicing
across diverse tissues.

Results

Reconstructing Transcriptome-Wide Networks across

human tissues

First, we aimed to identify networks that capture a global view of
regulation across the transcriptome of diverse human tissues using
the GTEx project v6 data (The GTEx Consortium 2017). We devel-
oped an approach for estimating Transcriptome-Wide Networks
from RNA-seq data, which captures diverse regulatory relation-
ships beyond co-expression, including coregulation of alternative
splicing across multiple genes. To build a TWN, we first quantified
both total expression levels and isoform expression levels of each
gene in each RNA-seq sample and then computed isoform ratios
(Fig. 1A), representing the relative, rather than total, abundance
of each isoform with respect to the total expression of the gene
(Methods). We included both isoform ratios (IRs) and total expres-
sion levels (TEs) as network nodes, as opposed to estimating a stan-
dard correlation network across expression levels of each isoform.
This difference is critical to distinguishing correlation due to

Figure 1. Transcriptome-Wide Network conceptual framework. (A) Schematic of the effect of a splicing regulator on inclusion of a cassette exon and
resulting total expression and isoform ratios of the target gene. Splicing factor expression levels can affect splicing of target genes (Sveen et al. 2015).
Higher expression of a splicing regulator S (first row) results in relatively more transcripts of isoform-1 and fewer of isoform-2. Total expression level is cons-
tant (5), but isoform ratios are different (0.4 and 0.6) as splicing factor S levels change (second row). (B) The (i,j)th cell of the sample covariance matrix
contains covariance (Cij) between the ith and jth feature in data. We created a sparse precision matrix Θ (inverse covariance) from the sample covariance
matrix using a graphical lasso to estimate the parameters of a Gaussian Markov random field. A nonzero value (Θij) in the precision matrix denotes an edge
between the ith feature and jth feature in the network. (C) Edges in a TWN represent diverse relationships between total expression (TE) and isoform ratio
(IR) nodes. Dotted rectangles group together isoform ratios for different isoforms of the same gene. Of particular focus are network “hub” nodes; in a TWN,
there are four possible hub configurations depending on the node type of the central and neighboring nodes.
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regulation of splicing (or other posttranscriptional effects) from
correlation due to regulation of transcription.While transcription-
al regulation affects total expression of a gene and regulation of
splicing primarily affects isoform ratios rather than total expres-
sion, bothmechanisms affect the expression level of each isoform.
Therefore, a standard isoform level network confounds these regu-
latory mechanisms, and network edges cannot be directly inter-
preted to inform regulation of splicing.

For example, to represent the relationship between a tran-
scription factor (TF) and expression of a target gene, where all iso-
forms are equally affected, a standard network would require edges
fromeach isoform level of the TF to each isoform level of the target.
The same structure would be required to capture the relationship
between a splicing factor (SF) and its target gene, where transcrip-
tion may not be grossly affected but relative production of iso-
forms is altered (Sveen et al. 2015). In contrast, in a TWN, a TF
would only be connected to the total expression of its target,
and a SF would be connected only to target isoform ratios (Fig.
1C; Supplemental Fig. S1). TWNs can be more easily interpreted,
automatically predicting specific biological relationships, includ-
ing regulation of relative isoform abundance.

Before estimating TWNs, all total expression and isoform
ratio values were separately projected onto quantiles of a standard
normal distribution. We then applied a graphical lasso (Friedman
et al. 2008) to estimate edge weights of a sparse Gaussian Markov
random field (GMRF) (Rue and Held 2005) over all nodes jointly,
including both the total expression of each gene and the isoform
ratio for each isoform (Fig. 1B; Methods). A GMRF captures direct
relationships between nodes—a nonzero entry in the precision
matrix (interpreted as an edge between two nodes) indicates that
the nodes are correlated after controlling for effects of all other
nodes in the network (i.e., a partial correlation) (Schäfer and
Strimmer 2005a).Wemodified the graphical lasso to penalize edg-
es between different node types with different weights (Methods;
Supplemental Table S1; Supplemental Figs. S2, S3).

We reconstructed TWNs independently for each of 16 tissues
from theGTExdata, restricting to tissueswith samples fromat least
200 donors (Supplemental Data S1). We focused on a subset of
6000 TE and 9000 IR nodes for each tissue, based on expression
levels, gene mappability, and isoform variability (Methods). We

excluded Chromosome Y, noncoding genes, and mitochondrial
genes. Both technical and biological confounding factors may in-
troduce correlations among genes (Leek et al. 2010), resulting in
false positives in co-expression network analysis (Buettner et al.
2015). Therefore, before applying the graphical lasso, we corrected
expression data from each tissue for known and unobserved con-
founding factors using HCP (Mostafavi et al. 2013; Methods).
Additionally, after applying the graphical lasso, we excluded edges
that were unlikely to represent meaningful biological relation-
ships, such as edges connecting gene pairs with overlapping
positions in the genome, edges connecting gene pairs with cross-
mapping potential, and edges between distinct features of the
same gene (Methods).

On average, each TWN contained 60,697 edges, with 24,527
edges between TE nodes, 18,539 edges between IR nodes, and
17,631 edges connecting TE and IR nodes (Fig. 2A). We found
many nodes with large numbers of neighbors (hub nodes), as ex-
pected in biological and other scale-free networks (Barabasi and
Oltvai 2004). Based on a threshold of 10 or more neighbors,
TWNs had a mean of 1853 “TE-TE” hub genes (total expression
nodes connected to many total expression neighbors) and 325
“TE-IR” hub genes (total expression nodes connected to many iso-
form ratio neighbors) across tissues (Fig. 2A). Hubs with numerous
total expression neighbors were more common, but hubs with iso-
form ratio neighbors were also found in every tissue (Fig. 2A).

Reconstructing co-expressionnetworks requires estimation of
a large number of parameters (in our case, over 2 × 108) despite a
small number of samples (≤430); robustness and replicability of
network edges are thus important considerations. While there
are not other large-scale RNA-seq data sets for most GTEx tissue
types, we replicated relationships identified by our GTEx whole
blood TWN using an independent whole blood RNA-seq data set
on 922 individuals of European ancestry from the Depression
Genes and Networks study (DGN) (Battle et al. 2014; Mostafavi
et al. 2014). First, we tested whether TE and IR nodes connected
by an edge in the GTEx whole blood TWN were also correlated in
DGN. For all edge types, we found that a higher fraction of node
pairs connected by an edge in the GTEx TWN were correlated in
DGN compared to nodes from random networks (84.7% versus
45.6%, 31.9% versus 5.9%, and 20.9% versus 2.6% for TE-TE,

Figure 2. GTEx Transcriptome-Wide Networks summary and replication. (A) For each tissue, number of edges and number of hub nodes (≥10 neigh-
bors), segmented by the type of nodes connected by each edge. A “TE-IR” hub is a TE node with multiple IR neighbors, and an “IR-TE” hub is an IR node
with multiple TE neighbors. (B) Fraction of whole blood TWN edges replicating in an independent RNA-seq data set (DGN) (Battle et al. 2014; Mostafavi
et al. 2014).
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TE-IR, and IR-IR edges, respectively; false discovery rate (FDR)≤
0.05) (Fig. 2B). Next, we reconstructed a TWN from DGN data
over genes and isoforms common to both data sets. All pairs of
nodes connected directly or indirectly in the GTEx whole blood
TWN had significantly shorter network path distance in the DGN
network compared to the distance in the same network with the
node labels shuffled (Wilcoxon rank-sum test, P≤ 2.2 × 10−16)
(Supplemental Fig. S4). This provides replication in an indepen-
dent data set for the same tissue, despite different alignment and
isoform quantification pipelines between the two data sets.

TWN relationships were also replicated by substituting a sec-
ond gene regulatory network reconstruction method, ARACNE
(Margolin et al. 2006), in place of the graphical lasso, using the
same overall framework and quantification of TE and IR levels in
the GTEx data. ARACNE captured 37.73% of the graphical lasso
edges on average, compared to the expected proportion (0.15%)
of edges captured at random (Supplemental Fig. S5), showing that
the TWN signal is robust to choice of network estimationmethod.

TWN hubs are enriched for regulators of splicing

Weused the sixteenTWNs to characterize the regulation of relative
isoform abundance in each GTEx tissue. Here, we focused on
evaluation of network hubs. Hub genes tend to be essential in
biological mechanisms and, in a co-expression network, are
likely to have regulatory functions (Jeong et al. 2001; Barabasi
and Oltvai 2004; Albert 2005). Unlike traditional networks,
TWNs have four categories of hub genes that likely reflect different
regulatory functions (Fig. 1C). For instance, a hub arising froma to-
tal expression node connected to a large number of isoform ratio
neighbors (TE-IR hub) may reflect a gene important in regulation
of alternative splicing. We identified the top hub nodes by degree
centrality—the number of edges per node—for all node categories
in each of the 16 tissues (Supplemental Table S2; Supplemental
Data S2). To avoid bias due to different numbers of isoforms per
gene, we measured degree centrality of a node by the number of
unique genes among neighboring nodes in each category
(Methods).

We investigated whether hub nodes with many IR neighbors
were likely to be regulators of alternative splicing. For each tissue,

we evaluated the top TE-IR hubs for enrichment of Gene Ontology
(GO) terms related to RNA splicing and observed a significant
abundance of known RNA splicing genes (annotated with
GO:0008380) among the top TE-IR hubs. Indeed, 13 of 16 tissues
(81.25%) showed significant enrichment of RNA splicing genes
in the top 500 TE-IR hubs (significance assessed at Benjamini-
Hochberg [BH]-corrected P≤ 0.05; median across all tissues P≤
6.22 × 10−4, Fisher’s exact test) (SupplementalMethods), and every
tissue had a larger than unit odds ratio of RNA splicing genes
among the top hubs (Fig. 3A). Enrichment was robust to choice
of hub degree threshold (Supplemental Fig. S6). Next, we tested
for enrichment of RNA binding proteins, many of which are
known to be important regulators of RNA splicing and processing
(Wang and Burge 2008; Chen and Manley 2009; Witten and Ule
2011). We found that RNA binding genes (annotated with
GO:0003723) were also significantly enriched, at BH-corrected
P≤ 0.05, among the top TE-IR hubs of every tissue except heart–
left ventricle (median P≤ 3.17 × 10−4) (Fig. 3A). Across all GO
terms, splicing, RNA binding, and RNA processing were consistently
among the most enriched for TE-IR hubs across tissues
(Supplemental Tables S3, S4). The replication network estimated
from the DGN data also indicated relevant enrichment among
TE-IR hubs (RNA splicing: P≤ 1.07 × 10−5, odds ratio 2.72; RNA
binding: P≤ 2.5 × 10−11, odds ratio 2.37).

Many regulatory relationships are shared between tissues,
and assessing hubs across all tissues jointly may improve robust-
ness (Ballouz et al. 2015). Therefore, we identified TE-IR hubs
shared across tissues (Table 1; Supplemental Data S3) using rank-
product (Zhong et al. 2014). We first ranked hub genes according
to the number of neighbors in each network. We then aggregated
the ranks of those genes across all networks by computing the
product of these ranks and sorted genes to find the top TE-IR
hubs (those with the largest number of neighbors in the most tis-
sues) (Methods). We observed much stronger enrichment for RNA
splicing and RNA binding in the joint analysis than in individual
tissues (Fig. 3B).

Many of the top ranked TE-IR hubs shared across tissues are
known to regulate splicing. RBM14 (rank 2), an RNA binding
gene also known as COAA, interacts with a transcription regulator
TARBP2 to regulate splicing in a promoter-dependent manner

Figure 3. Enrichment of candidate splicing regulators among TWN hubs. (A) In each TWN, the odds ratio and P-value of enrichment among the top 500
TE-IR hub genes for GO annotations reflect RNA binding and RNA splicing. (B) Among consensus TE-IR hubs across all tissues, enrichment for GO anno-
tations reflects RNA binding and RNA splicing functions.
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(Auboeuf et al. 2002, 2004). Another RNA binding gene PPP1R10
(rank4)hasbeen implicated inpre-mRNAsplicingusingmass spec-
trometry analysis (Du et al. 2014). SRRM2 (rank8) and SRSF11 (rank
9) are also known splicing regulators (Zhang and Wu 1996;
Blencowe et al. 2000; Wu et al. 2006; Chen and Manley 2009).
For 11 of the top 20 cross-tissue TE-IR hubs, we found previous
work supporting a role in the regulation of splicing (Table 1).
These results suggest thatTWNhubsare informativeof splicing reg-
ulation, and uncharacterized TE-IR hub genes in a TWN are good
candidates for regulatory effects on isoform abundance.

Coregulation of expression and isoform ratios reflects biological

pathways

Genes with similar function or that participate in the same path-
way often have correlated patterns of gene expression (Prieto
et al. 2008; Roider et al. 2009; Khatri et al. 2012; Hormozdiari
et al. 2015). In the GTEx TWNs, we observed enrichment of edges
between transcription factors and known target genes (Supple-
mental Methods; Supplemental Fig. S7). We also observed greater
enrichment of closely connected genes for Reactome (Fabregat
et al. 2016) and KEGG (Kanehisa et al. 2016) pathways as com-
pared with permuted networks (95−180 Reactome and 39–82
KEGG pathways enriched per tissue at Bonferroni corrected P≤
0.05; Wilcoxon rank-sum test) (Fig. 4A; Supplemental Fig. S8; Sup-
plemental Methods).

Patterns of correlation among relative isoform abundances
are not well studied, and it has not been established whether the
regulation of splicing is coordinated across functionally related
genes. Initial studies have identified such correlation in particular
tissues (Iancu et al. 2015) and specific processes (Dai et al. 2012).
To extend this, we evaluated each TWN for enrichment of edges
between functionally related genes. For all 16 tissues, the TWNs
demonstrated significant abundance of edges between isoform ra-
tios of two distinct genes that participate in the same Reactome

pathway (Fisher’s exact test; all tissues significant at BH-corrected
P≤ 0.05; median P≤ 10−14) (Fig. 4B). Similarly, TE-IR edges were
enriched for pairs of genes that participate in the same pathway
(median P≤ 10−5) (Fig. 4C). As expected, we also observed
shared-pathway enrichment for nodes connected by TE-TE edges
(Supplemental Fig. S9). The patterns of functional enrichment
were stronger among pairs of TE nodes, which may be due to
more accurate quantification of total expression versus isoform ra-
tios from RNA-seq data, functional annotations derived from gene
expression studies, or tighter coregulation of transcription than
splicing among functionally related genes. Leveraging the coregu-
lation of splicing among functionally related genes, TWNs can be
used to predict gene function (Warde-Farley et al. 2010) based on a
more comprehensive understanding of coregulation, including
regulation of splicing.

Comparison between TWNs reveals per-tissue hub genes

We evaluated the overall similarity of the TWNs between tissues.
We tested concordance of hubs between each pair of tissues us-
ing Kendall’s rank correlation computed over genes ordered by
degree centrality (Supplemental Fig. S10). We observed greater
than random levels of similarity between most tissues for all
hub types (Kendall’s rank correlation test; median P≤ 1.0 × 10−5

for each hub type), and functionally related tissues showed great-
er levels of similarity. For example, the two skin tissues were
grouped together for each hub type and were found to be similar
to esophagus–mucosa, which contains primarily epithelial tissue
(Squier and Kremer 2001). Skeletal muscle and heart–left ventri-
cle grouped together, and breast–mammary was similar to the
two adipose tissues, reflecting shared adipose cell type composi-
tion. While these results may be influenced by overlapping do-
nors, they provide evidence that splicing is more similar in
tissues with shared cell type compositions (Qian et al. 2005;
Ong and Corces 2011; The GTEx Consortium 2017).

Table 1. Top 20 cross-tissue TE-IR hubs

Rank Hub gene #Tissues Evidence (and references)

1 TMEM160 16
2 RBM14 15 Nuclear receptor coactivator that interacts with NCOA6 to regulate splicing in a promoter-dependent manner

(Auboeuf et al. 2002, 2004; Sui et al. 2007).
3 ZMAT1 16
4 PPP1R10 15 Mass spectrometry analysis suggests its involvement in pre-mRNA splicing through interaction with ZNF638 (Du et al.

2014).
5 ODC1 16
6 MGEA5 16
7 KLHL9 14
8 SRRM2 15 Helps forming large splicing enhancing complexes (Chen and Manley 2009). A mutation in SRRM2 predisposes

papillary thyroid carcinoma by changing alternative splicing (Tomsic et al. 2015).
9 SRSF11 14 A known serine/arginine-rich splicing factor (Zhang and Wu 1996; Wu et al. 2006).
10 ZNF692 15
11 ARGLU1 16 Arginine/glutamate-rich gene modulates splicing affecting neurodevelopmental defects (Magomedova et al. 2016).
12 PPRC1 16 Encodes protein similar to PPARGC1 that regulates multiple splicing events (Martínez-Redondo et al. 2016).
13 LUC7L3 15 Regulates splice-site selection (Zhou et al. 2008) and affects cardiac sodium channel splicing regulation (Gao and

Dudley 2013).
14 DUSP1 16
15 FOSL2 16
16 XPO1 16 Interacts with TBX3 (Kulisz and Simon 2008) that regulates alternative splicing in vivo (mouse) (Kumar et al. 2014).
17 PNISR 15 Interacts with PNN, a suggested splicing regulator, and colocalizes with SRrp300, a known component of the splicing

machinery (Zimowska et al. 2003).
18 PNN 12 Likely to be involved in RNA metabolism including splicing (Li et al. 2003).
19 PTMS 12 Involved in RNA synthesis processing (Vareli et al. 2000).
20 CCDC85B 15

(Rank) Rank-product rank of the gene; (#Tissues) number of tissues, out of 16, for which the hub gene (TE) has at least one IR neighbor.
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To identify candidate tissue-specific regulatory genes, we
evaluated TE-IR hubs that had a high rank in related tissues but
a low rank among unrelated tissues (Methods; Supplemental
Table S5; Supplemental Data S4). Several of the top ranked tis-
sue-specific hubs were genes with evidence of known tissue-spe-
cific function or relevance. In the tissue group including breast–
mammary and the two adipose tissues, the top tissue-specific TE-
IR hub was TTC36, a gene highly expressed in breast cancer (Liu
et al. 2008). The second ranked hub gene for the tissue group in-
cluding skeletal muscle and heart–left ventricle was LMOD2,
which was observed to be abundantly expressed in both tissues
and has been reported to regulate the thin filament length in
muscles affecting cardiomyopathy in mice (Pappas et al. 2015;
Li et al. 2016b).

We evaluated the tissue-specificity of our identified hub
genes. To do this, we computed the fraction of top 100 TWN
hubs of each tissue that did not appear in the list of top 500
TWN-hubs of any other tissue (SupplementalMethods).We found
that 8%–43%,11%–39%,0%–24%,and0%–20%ofour top100TE-
TE, TE-IR, IR-TE, and IR-IR hubs, respectively, were uniquely iden-
tified in a single tissue (Supplemental Fig. S11). TE hubs (TE-TE and
TE-IR hubs) were more likely to be tissue-specific than matched IR
hubs (IR-TE and IR-IR hubs; one-sided Wilcoxon signed rank test,
P≤ 4.13 × 10−7). Tissue-specific hub proportions were not signifi-
cantly different between TE-TE and TE-IR hubs (two-sided
Wilcoxon signed rank test, P≤ 0.52). Many of the hub genes were
differentially expressed across tissues (Supplemental Methods;
Supplemental Table S6).

An average of 69.87%of tissue-specific TWNedges connected
nodeswhere at least one nodewas differentially expressed between
the tissue of interest and all other tissues (Supplemental Table S7).
For 6.9% of tissue-specific edges, at least one node was not includ-
ed in a TWN for any other tissue because of low expression or other
filters. However, for the remaining 23.22% of tissue-specific edges,
both nodes were expressed in other tissues and included in other
networks, so the tissue-specificity of edges is not exclusively due
to expression levels.

Tissue-Specific Networks identify gene co-expression patterns

unique to tissues

A per-tissue TWN contains both shared and tissue-specific co-ex-
pression relationships between genes, without making any dis-
tinction between them, reflecting the full gene network in each
tissue. To directly assess the tissue-specificity of co-expression
relationships, we built Tissue-Specific Networks (TSNs) by consider-
ing all GTEx samples across 50 tissues simultaneously, decomposing
the contributions to gene expression level variation into signals
shared across tissues and those specific to single tissues. To do
this, we applied a Bayesian biclustering framework, BicMix (Gao
et al. 2016), and reconstructed tissue-specific networks (Methods;
Supplemental Figs. S12, S13). BicMix incorporates a prior distribu-
tion that encourages sparsity in the solution in order to differentiate
between gene co-expression relationships specific to a single tissue
and those shared across tissues, simultaneously controlling for batch
effects, population structure, and shared individual effects across
tissues (Gao et al. 2016). Applied to over 7000 RNA-seq samples
withmore comprehensive sampling of heterogeneous tissues types,
this approach is able to isolate co-expression signals unique to
single tissues and to reconstruct precise and interpretable TSNs.

We identified TSNs for 26 GTEx tissues. Here, we limited net-
work nodes to total gene expression for simplicity. Across the 26
TSNs, themean number of nodes (considering only genes with tis-
sue-specific edges) was 24, and the average number of edges was
107 (Supplemental Fig. S14; Supplemental Table S8). As expected,
TSNs contained a small subset of edges from full per-tissue TWNs,
representing the co-expression components that are tissue-specific
rather than shared. However, the signal in the TSNs is still reflected
within their matched TWNs for the eight tissues where we recon-
structed both types of networks based on multiple metrics of con-
cordance (Supplemental Figs. S15–S17).

Additionally, we built 10 TSNs for groups of similar tissues
(see Supplemental Methods), including a group combining all
brain tissues, to capture gene relationships common within each
group but unique compared with all other tissues. Most tissues

Figure 4. Pathway enrichment in TWNs. Tissue colors are matched with tissue names in Figure 2. (A) Per-tissue, the number of Reactome pathways en-
riched among connected components/total number of tested pathways for that tissue, considering only TE nodes. (B) Enrichment for shared Reactome
pathway annotation among gene pairs connected by an edge between two TE nodes. (C) Enrichment for shared Reactome pathway annotation among
gene pairs connected by an edge between a TE and an IR node.
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showed expression patterns close to at least one other assayed tis-
sue (Supplemental Fig. S18), leading to a depletion of tissue-specif-
ic effects andmotivating evaluation of similar tissues together. On
average, tissue group networks contained 2018 edges and 93
nodes. However, thiswas skewed by the brain network, which con-
tained 18,854 edges connecting 648 nodes. Excluding the brain
network, we found 147 edges and 31 nodes, on average, across
the other nine tissue group networks.

Functional analysis of TSNs

We investigated the functional properties of each TSN. First, we
measured sharing of network components between the 26 distinct
TSNs. We found minimal sharing of network nodes and even less
sharing of network edges among all pairs of tissues (Jaccard coeffi-
cient) (Fig. 5A). This was expected as a result of BicMix’s strong
control over confounding effects and co-expression shared across

tissues. Tissue pairs that appeared to share network genes predom-
inantly included brain tissues.

We studied the genes within each TSN for biological rele-
vance, evaluating each network for enrichment using all GO bio-
logical process terms. We found that, for 21 out of 26 TSNs,
significantly enriched pathways included tissue-relevant GO bio-
logical process terms (Fisher’s exact test, BH-corrected P≤ 0.05)
(Supplemental Table S9).We also confirmed enrichment of known
tissue-specific genes using a previously defined list of GO terms
(Ashburner et al. 2000) indicative of tissue-specific transcription
factor functions available for 11 tissues (Fisher’s exact test)
(Supplemental Fig. S19; Pierson et al. 2015). We found four of
the 11 TSNs nominally enriched for genes with specificity in the
matched tissue, namely artery–coronary (BH-corrected P≤ 0.23),
EBV transformed lymphocytes (with blood, BH-corrected P≤
0.09), skeletal muscle (BH-corrected P≤ 0.13), and stomach
(BH-corrected P≤ 0.15). Perhaps due to cell type heterogeneity
and shared cell types, significant cross-tissue enrichments were

Figure 5. Cross-tissue comparison of TSN results. (A) Jaccard coefficient quantified on shared edges (upper triangular) and shared nodes (lower triangular)
across pairs of TSNs. (B) Gene expression levels, removing factors from BicMix not included in the network, for the genes identified in the TSN for artery–
aorta. The y-axis is ordered by similarity to artery–aorta, with a star by the samples from artery–aorta. The colors on the y-axis correspond to the GTEx tissue
legend above. The x-axis is ordered by expression similarity (i.e., hierarchical clustering), and hub genes are labeled, with the large hub denoted in bold. (C)
TSN for artery–coronary. Node size reflects betweenness centrality of the nodes. Orange nodes reflect replication in the BioCarta acute myocardial infarction
(AMI) pathway; orange edges show the neighbors of the AMI pathway nodes.
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observed in a small number of tissues. For example, in the artery–
aorta TSN, pituitary genes were significantly enriched (BH-correct-
ed P≤ 0.0049).

Next, we evaluated the hub genes in each TSN, considering
three thresholds of centrality: ≥5 edges (“small hubs”), ≥10 edges
(“hubs”), and ≥50 edges (“large hubs”). Hubs were not enriched
overall for cross-tissue transcription factors (hypergeometric test
across all TSNs, P≤ 0.84; small and large hubs showed similar re-
sults), or for cross-tissue and tissue-specific TFs (hypergeometric
test across all TSNs, P≤ 0.90; small and large hubs showed similar
results). This may be because TFs that are not tissue-specific and
that affect many genes downstream will be captured by BicMix in
dense, multi-tissue factors; because these factors will not be used
to construct the networks, such broad TF signals will be systemati-
cally removed. Similar results have been observed in expression
quantitative trait loci (eQTL) analysis, where cis-eQTL target genes
are depleted for TFs (Battle et al. 2014) and trans-eQTL variants are
not enriched as targeting TFs in cis (The GTEx Consortium 2017).
This could arise due to the tightly controlled regulation of the ex-
pression of TFs themselves (Battle et al. 2014) but could also be
the result of removing latent factors correlated with TF expression
(Weiser et al. 2014; The GTEx Consortium 2017), including broad
biological effects and confounders. However, hubs in several net-
works included genes known to play a role in tissue-specific func-
tion and disease. Specifically, we found that the single large hub
in brain–caudate, MAGOH, which is a part of the exon junction
complex that binds RNA, has been found to regulate brain size in
mice through its role in neural stem cell division (Silver et al.
2010). The single large hub for artery–aorta, MAB21L1, has been
shown to be an essential gene for embryonic heart and liver devel-
opment in mice by regulating cell proliferation of proepicardial
cells (Saito et al. 2012).

Additionally, wemeasured enrichment of known pathways in
the TSNs. While we did not observe enrichment across all tissues,
we found that the EBV transformed lymphocyte TSN was signifi-
cantly enriched for the hematopoietic cell lineage KEGG pathway
(Fisher’s exact test, BH-adjusted P≤ 0.05); a hematopoietic stem
cell is the developmental precursor of leukocytes. The EBV trans-
formed lymphocyte TSN also had significant enrichment in the
BioCarta IL-17 signaling and T cytotoxic cell surface molecules path-
ways (Fisher’s exact test, BH-adjusted P≤ 1.50 × 10−4). IL-17 is a
cytokine produced in T-cells that is involved in inflammation.
Although not significant after multiple testing correction, artery–
coronary showed nominal enrichment in four tissue-relevant path-

ways (uncorrected P≤ 0.016 for all): the ACE2 pathway, which reg-
ulates heart function; the acutemyocardial infarction (AMI) pathway;
the intrinsic prothrombin activation pathway, which is involved in
one phase of blood coagulation; and the platelet amyloid precursor
protein (APP) pathway, which includes genes involved in anti-coag-
ulation functions. In the brain group TSN, we observed signifi-
cantly shorter distances between the genes in each of the KEGG
Parkinson’s, Alzheimer’s, and Huntington’s pathways compared to a
randomly permuted network, reflecting three canonically brain-
specific diseases (Wilcoxon rank-sum test, BH-corrected P≤ 0.075).

Integration of networks with regulatory genetic variants

Both TWNs and TSNs were estimated using gene expression data
alone. However, the GTEx v6 data also include genotype informa-
tion for each donor. We intersected the edges detected by our net-
works with expression quantitative trait locus (eQTL) association
statistics to replicate specific network edges through evidence of
conditional associations with genetic variants across those edges
and to increase power to detect long range (trans) effects of genetic
variation on gene expression.

First, we demonstrated that, for both TWNs and TSNs, there
was enrichment for associations between the top cis-eVariant
(the variant with lowest P-value per gene with a significant cis-
eQTL) for each gene and the expression level or isoform ratio of
its networkneighborsbasedonQTLmapping in the corresponding
tissue (Fig. 6). This provides evidence of a causal relationship be-
tween connected genes. For TWNs, evaluating TE nodes with an
IR neighbor, we found evidence for 61 trans (i.e., inter-chromo-
somal) associations and 86 intra-chromosomal associations tested
betweena cis-eVariant for theTEgeneand the IRof theneighboring
node (FDR≤ 0.05). Our top two associationswere between two var-
iants, rs113305055 inartery–tibial and rs59153288 inbreast–mam-
mary (both near TMEM160), with isoform ratios ofCST3 (P≤ 9.3 ×
10−8, and P≤ 4.0 × 10−7, respectively). TMEM160 is the top cross-
tissue hub in our TWNs with many IR neighbors (Table 1). Thus,
we tested for association of these variantswith all isoform ratios ge-
nome-wide and observed a substantial enrichment of low P-values
in numerous tissues (Fig. 6A; Supplemental Fig. S20). In the TSNs,
we identified five cis-eVariants across five tissues associated with
six different trans-eGenes through six unique cis-eGene targets,
one of which was intra-chromosomal (FDR≤ 0.2) (Supplemental
Table S10). We also observed enrichment for low P-values over
the tests corresponding to each network edge (Fig. 6B).

Figure 6. Association of local genetic variants with distant network neighbors. (A) Enrichment of association between rs113305055, a genetic variant
near a cross-tissue TWN hub TMEM160, with all isoform ratios genome-wide in artery–tibial. (B) Enrichment of associations between local genetic variants
(either the top cis-eVariant or any variant within 20 kb) of each gene, and network neighbors in the TSNs. (C) Enrichment of association between
rs115419420, a genetic variant local to CRELD1, with all isoform ratios in skeletal muscle.
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We also performed a restricted test to identify novel trans-
QTLs, without relying on the cis-eQTL signal from the same
data, to avoid discoveries driven by potentially spurious correla-
tions among expression levels. From the TWNs, we sought to iden-
tify trans-splicing QTLs (sQTLs) based on TE-IR hub genes, using
the top 500hubs by degree centrality.We tested every single nucle-
otide polymorphism (SNP) within 20 kb of the TE hub-gene’s tran-
scription start site (TSS) for association with isoform ratios of each
neighbor in the TWN. Using this approach, we identified 58 trans-
sQTLs corresponding to six unique genes (sGenes) at FDR≤ 0.2
(Table 2; Supplemental Data S5). For example, we identified a
trans-sQTL association in skeletal muscle between rs115419420
and CARNS1 (P≤ 2.18 × 10−5) that is supported by a cis association
with the TE-IR hub CRELD1. This variant also showed enrichment
for low P-values with numerous isoform ratios genome-wide (Fig.
6C). In the TSNs, we identified 14 trans-eQTLs using variants with-
in 20 kb of each gene and testing for association with the neigh-
bors of those genes in the gene expression data of the same
tissue (FDR≤ 0.2) (Supplemental Table S11). All of these associa-
tions were inter-chromosomal. Overall, we saw an enrichment of
P-values for association between genetic variants local to a gene
and the gene’s neighbors in each network (Fig. 6B).

Discussion

We reconstructed co-expression networks that capture novel regu-
latory relationships in diverse human tissues using large-scale
RNA-seq data from the GTEx project. First, we specified an ap-
proach for integrating both total expression and relative isoform
ratios in a single sparse Transcriptome-Wide Network. Splicing is
a critical process in a number of tissue- and disease-specific pro-
cesses and pathways (Hutton et al. 1998; D’Souza et al. 1999;
Glatz et al. 2006; Ghigna et al. 2008), but, critically, isoform ratios
have not been included in co-expression network analysis to allow
the study of splicing regulation. We estimated TWNs from 16 tis-
sues and demonstrated that hubs in TWNs are strongly enriched
for genes involved in RNA binding and RNA splicing. We found
that, across tissues, the top hub genes with isoform ratio neighbors
included many genes with known impact on splicing such as
RBM14, a hub in all 16 tissues with TWNs.We identified a number
of novel shared and tissue-specific candidate regulators of alterna-
tive splicing.While TWNs demonstrated clear enrichment for cap-
turing desired regulatory relationships, care should be taken in
interpreting individual edges and network relationships, as false
positives may still arise due to confounding technical and biolog-
ical factors and from estimating large networks based on limited
sample sizes. However, as more large-scale RNA-seq studies and
better transcript quantification tools become available, TWNs
will continue to be a useful and extensible framework for analyz-

ing diverse types of regulatory relationships in disease, longitudi-
nal, and context-specific studies.

Next, we estimated Tissue-Specific Networks for 26 single tis-
sues and across 10 tissue groups; these networks represent co-ex-
pression relationships unique to individual tissues and sets of
closely related tissues. Distinguishing between shared and tissue-
specific structure across single tissue co-expression networks is
challenging but essential for understanding tissue-specific regula-
tory processes in disease. From these TSNs, we identified hub genes
involved in the tissue-specific regulation of transcription, such as
MAGOH in the brain–caudate-specific network and MAB21L1 in
the artery–aorta-specific network, both of which are essential for
the development of their specific organs. A majority of networks
were enriched with genes annotated to tissue-relevant GO terms.
We used these networks to quantify shared relationships across tis-
sues and found minimal sharing of relationships across these 26
tissues. Finally, we replicated edges in our networks by integrating
genetic variation, and we identified 20 novel trans-QTLs affecting
both expression and splicing. Together, our results provide the
most comprehensive map of gene regulation, splicing, and co-ex-
pression in the largest set of tissues available to date. These net-
works will provide a basis for interpreting the transcriptome-
wide effects of genetic variation, differential expression, and splic-
ing in complex disease, and the impact of diverse regulatory genes
across human tissues.

Methods

Data from the GTEx project

We collected RNA-seq and genotyping data from the Genotype-
Tissue Expression (GTEx) consortium v6 data (The GTEx
Consortium 2017). GTEx obtained tissue samples (averaging
about 28 per individual) from postmortem donors between ages
21 and 70, BMI 18.5 to 35, and not under exclusionary medical
criteria such as whole blood transfusion within 24 h or infection
with HIV. Seventy-six-base pair (bp) pair-ended RNA-seq was per-
formed with Illumina HiSeq 2000 following the TrueSeq RNA pro-
tocol. After quality control, we aligned the RNA-seq reads using the
STAR aligner in 2-pass mode (Dobin et al. 2013). We then per-
formed transcript and gene quantification using RSEM v1.2.20
(Li and Dewey 2011). See The GTEx Consortium (2017) and
Supplemental Methods for details. We used RNA-seq data across
50 tissues in 449 individuals.

Approximately 1.9 million SNPs were genotyped using
whole blood samples with Illumina HumanOmni 2.5 M and 5 M
BeadChips (see Supplemental Methods). Additional variants
were imputed using IMPUTE2 (Howie et al. 2009). The genotypes
were filtered for MAF≥ 0.05, leaving approximately 6 million
variants.

Table 2. Trans-sQTLs detected based on TWN hubs

Variant Trans-eTranscript Trans-sGene Local gene P-value FDR Tissue

rs6122466 ENST00000496440.1 CEP350 PPDP 9.08 × 10−7 0.09 Adipose–visceral
rs397828484 ENST00000528430.1 PPP1R16A NMRK2 1.66 × 10−6 0.10 Muscle–skeletal
rs7668429 ENST00000340875.5 MEF2D CLOCK 4.81 × 10−6 0.10 Muscle–skeletal
rs7980880 ENST00000409273.1 XIRP2 CALCOCO1 9.91 × 10−6 0.11 Muscle–skeletal
rs56359342 ENST00000396435.3 IQSEC2 CRAMP1L 1.43 × 10−5 0.14 Muscle–skeletal
rs115419420 ENST00000531388.1 CARNS1 CRELD1 2.18 × 10−5 0.19 Muscle–skeletal

(Variant) The most significant variant per trans-sGene listed; P-value and FDR for association between the variant and the trans-sGene listed; local gene
target listed for reference.
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Preprocessing for per-tissue TWNs

We considered only protein-coding genes on the autosomes and
Chromosome X to construct TWNs in all tissues. We used genes
and isoforms with at least 10 samples with ≥1 TPM and ≥6 reads.
We filtered out genes where the Ensembl gene ID did not uniquely
map to a single HGNC gene symbol. Isoform ratio was computed
by using annotated isoforms in GENCODE V19 annotation, and
undefined ratios (0/0, when none of the isoforms were expressed)
were imputed from the mean ratio per isoform across individuals.
Each gene’s least abundant isoform was excluded to avoid linear
dependency between isoform ratio values. We log-transformed
the total expression data and standardized both total expression
levels and isoform ratios. To correct hidden confounding factors,
we applied the hidden covariates with prior (HCP) method
(Mostafavi et al. 2013), whose parameters were selected based on
an external signal relevant to regulatory relationships. Namely,
we selectedparameters that producedmaximal replicationof an in-
dependent set of trans-eQTLs from meta-analysis of a large collec-
tion of independent whole blood studies (Westra et al. 2013). For
both total expression levels and isoformratiosof genes inall tissues,
the best HCP parameters (k = 10, λ = 1, σ1 = 5, σ2 = 1), which consis-
tently reproduced a largest subset of the gold-standard trans-eQTLs
in GTEx whole blood samples even when subsetting the number
of samples, were used for correcting data. Finally, quantile-normal-
ization to a standard normal distribution was applied per gene.

To avoid spurious associations due to mismapped reads, we
filtered out genes with mappability < 0.97 and their isoforms (see
Supplemental Methods; The GTEx Consortium 2017). We also fil-
tered out isoforms of a gene if the mean IR of the most dominant
isoform was ≥0.95. In each tissue, we further reduced the number
of features to 6000 genes and 9000 isoforms for computational
tractability based on expression level and isoform variability
(see Supplemental Methods). On average, the final selected iso-
forms for each tissue belong to 4357 unique genes (Supplemental
Table S12).

Per-tissue Transcriptome-Wide Networks

We built per-tissue Transcriptome-Wide Networks using a scalable
graphical lasso (Hsieh et al. 2011). We estimated a sparse precision
matrix (Θ) by optimizing the following objective withΛ specifying
different penalties for different types of edges:

Q̂ = argmin
Q

− log detQ+ tr(SQ)+ ‖ L ◦Q ‖1, (1)

where the entry in the rth row and cth column of Λ was

Lrc =

ld if r = c
ls if r = c and gene(r) = gene(c)
ltt if gene(r) = gene(c) and type(r) = type(c) = ´TÉ
lti if gene(r) = gene(c) and {type(r), type(c)} = {´TE,́´IŔ}
lii if gene(r) = gene(c) and type(r) = type(c) = ´IR.́

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)
Here, gene(k) denotes the gene that the kth feature belongs to;
type(k) denotes whether or not the kth feature represents total ex-
pression (“TE”) or isoform ratio (“IR”).

We did not penalize diagonal entries (λd = 0), and we put in a
small nonzero penalty for edges between distinct features belong-
ing to the same gene (λs = 0.05), such as distinct isoforms of the
same gene. We selected the other penalties (λtt, λti, λii) such that
the network had a scale-free topology with a reasonable number
of edges. The empirical pairwise correlation distributions for differ-
ent types of edges were different: Correlations between two total
expression nodes were generally much higher than correlations
between two isoform ratio nodes or between a total expression

node and an isoform ratio node (Supplemental Fig. S2), while
the latter two distributions were apparently similar. We tried all
(λtt, λti, λii) combinations where λtt∈{0.3,0.35,0.4,0.45,0.5},
λti∈{0.25,0.3,0.35,0.4}, and λti = λii. We measured the scale-free
property by the square of correlation (R2) between log(p(d)) and
log(d), where d is an integer and p(d) represents the fraction of
nodes in the network with d neighbors (Zhang and Horvath
2005). We selected penalty parameters so that R2≈ 0.85 and there
were at least 5000 edges of each type. Selected parameters for each
tissue are shown in Supplemental Table S1. Each nonzero element
inΘrc in the precisionmatrix with selected penalty parameters rep-
resents an edge between the rth and cth features in our network.

We excluded some edges from our networks for quality pur-
poses and interpretability. Specifically, we excluded edges between
nodes belonging to the same gene for downstream analysis. Then,
we aligned every 75-mer in exonic regions and 36-mers in UTRs of
every genewithmappability < 1.0 to the reference human genome
(hg19) using Bowtie (v 1.1.2) (Langmead et al. 2009). If any of the
alignments started within an exon or an UTR of another gene,
then these two genes were considered “cross-mappable,” and we
excluded edges between cross-mappable genes. We also excluded
edges between genes with overlapping positions in the reference
genome to avoid mapping artifacts.

Replication of whole blood TWN

We replicated our network edges with GTEx whole blood tissue in
an independent RNA-seq data set: DepressionGenes andNetworks
(Battle et al. 2014;Mostafavi et al. 2014). DGN includes quantifica-
tions of 15,231 genes and 12,080 isoforms from whole blood in
922 samples, out of which 5609 genes and 1464 isoforms were
uniquely mapped to the set of genes and isoforms used in GTEx
whole blood TWN reconstruction. First, to check if the genes
and isoforms directly connected in the GTEx whole blood
network were supported by correlation in the DGN data set, we
computed the fraction of significantly correlated (Spearman corre-
lation, FDR≤ 0.05) TE-TE/TE-IR/IR-IR pairs in DGN.We then com-
pared these fractions with those in random pairs generated by
permuting genes/isoforms labels in the TWN. Next, to verify if
our method could reproduce relationships in the GTEx whole
blood network for DGN data, we tested if node pairs connected
directly or indirectly in the GTEx whole blood network had a
shorter distance (path length) between them in the DGN network
compared to the same network with the node labels shuffled. We
performed a one-sided Wilcoxon rank-sum test between two
groups: (1) pairwise distances between GTEx-connected TE-TE/
TE-IR/IR-IR pairs in the DGN network; and (2) those in random
DGN networks generated by permuting genes/isoforms among
themselves. Here, we generated random networks 10 times to esti-
mate the null distribution.

TWN replication using ARACNE

Using the same quantification of TE and IR levels in theGTEx data,
we reconstructed ARACNE networks (Margolin et al. 2006) over TE
and IR jointly from a Spearman correlation-basedmutual informa-
tion matrix using the minet R package (Meyer et al. 2008) for 16
tissues. Following similar procedures as for TWNs, we excluded
edges between features of same gene, cross-mappable genes, and
position-overlapped genes fromdownstream analysis. For each tis-
sue, we computed the fraction of TWNedges that were also present
in the ARACNE network for the matched tissue. We compared
these results with the comparison of the ARACNE network with
a random TWN generated by permuting gene/isoform labels.
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TWN hub ranking

We ordered the network hubs by degree centrality for each tissue
according to the number of unique gene-level connections to
avoid the effect of different numbers of isoforms per gene. To do
this, we created a gene-level network from the original TWNs by
keeping TE nodes as they were and grouping all isoforms of the
same gene together to form a compound IR node. We put an
edge between a compound IRnode and a TE node (or another com-
pound IR node) if any isoform of the compound had an edge with
the TE node (or any isoform of the other compound) in the origi-
nal TWN, and theweight was equal to the sum of absoluteweights
of all such edges in the original TWN. TE-TE and IR-TE hubs were
ordered by the number of TE nodes they were connected with. TE-
IR and IR-IR hubs were ordered by the number of compound IR
nodes they were connected with. If multiple hubs had the same
number of connections, ties were broken by the sum of corre-
sponding edge weights.

TWN hubs shared across tissues

We used rank-product (Zhong et al. 2014) to find hubs generally
ranked highly in a set of tissues.We first ranked genes by the num-
ber of neighbors in the gene-level network. If a gene had no edge in
the network, its rank was considered to be the number of genes
with neighbors plus one. A gene’s rank-product is the product
of its ranks from each network. The top shared hub gene had the
lowest rank-product.

TWN hubs specific to a group of related tissues

To find hubs specific to a group of tissues, we used rank-product to
rank hubs in both the target group of tissues and in all other tis-
sues, separately. Then, we normalized ranks so that the top- and
bottom-ranked hubs have a score of 1 and 0, respectively. Let the
normalized rank of a gene in the target group of tissues and other
tissues be rt and ro, respectively. Then, the F-score for the gene (r),

r = 2
1
rt
+ 1
1− ro

, (3)

will be high if it ranks highly in the target group but low in other
tissues.

We computed related tissue-specific hubs for five groups of re-
lated tissues: (1) skin–sun exposed and skin–not sun exposed; (2)
adipose–subcutaneous, adipose–visceral, and breast–mammary;
(3) heart–left ventricle and skeletal muscle; (4) esophagus–mucosa
and esophagus–muscularis; and (5) artery–aorta and artery–tibial.

Tissue-Specific Networks

Webuilt Tissue-Specific gene co-expressionNetworks using an un-
supervised Bayesian biclustering model, BicMix on the gene level
TPM measurements (from RSEM v1.2.20 [Li and Dewey 2011] as
described above) from all of the GTEx v6 samples jointly (Gao
et al. 2016). The expression data were normalized for GC content,
length, and depth. For each tissue, we removed genes that had zero
read counts in more than 90% of samples. We took the intersec-
tion of all remaining genes across the 50 tissues and only used
those 15,589 genes for the analysis. All 50 tissue expression matri-
ces were appended together and subsequently quantile-normal-
ized within each gene across all tissues. We performed 40 runs of
BicMix on these data and used the output from iteration 300 of
the variational Expectation-Maximization algorithm. We set the
hyperparameters for BicMix based on extensive simulation studies
in prior work (Gao et al. 2013). We selected factors to build the tis-

sue-specific covariance matrix estimate by including those for
which nonzero factor values were exclusive to samples from the
tissue of interest. We inverted these matrices and used GeneNet
(Schäfer and Strimmer 2005b) with a confidence threshold of
0.8, as in previous work, to build TSNs for each run (Gao et al.
2016). For each tissue, we looked across the TSNs produced by
each run (some runs did not produce a TSN) and included every
edge that appeared in at least 25% of those networks in the final
TSN. With this approach, we tried to build networks for all of
the tissues but discarded TSNs for which there were fewer than
five edges, resulting in 26 TSNs.

Cis-eQTLs from TSNs

For each tissue in which we recovered a TSN, we used the same set
of genes and expression values as described for TSN creation, prior
to taking the intersection of genes across all tissues. PEER factors
were used to quantify effects of unobserved confounding variables
(Stegle et al. 2012). We optimized the number of PEER factors by
tissue to a test chromosome (Chromosome 11) to maximize the
number of identified cis-eQTLs. The linear model of Matrix-eQTL
(Shabalin 2012) was used to test all SNPs within the 100 kb win-
dow of a gene’s transcription start site or transcription end site
(TES) using an additive linear model. We included in association
mapping a tissue-specific number of PEER factors, sex, genotyping
batch, and three genotype principal components. The correlation
between SNP and gene expression levels was evaluated using the
estimated t-statistic from this model. False discover y rate was cal-
culated using BH.We used these cis-eQTLs for the trans-eQTL anal-
ysis for the TSN edge replication described below.

Trans-eQTLs from TSNs

We computed trans-QTLs in two ways. First, we found the best cis-
associated variant per gene (smallest P-value, from the cis-eQTLs
described in the previous paragraph) in that tissue, if one existed,
and measured association between that variant and every neigh-
bor of that gene in the TSN using the linear model of Matrix-
eQTL (Shabalin 2012). Second, we measured association between
all variants within 20 kb of a gene’s TSS and TES with each neigh-
bor in the network using the linear model of Matrix-eQTL
(Shabalin 2012). In both approaches, we controlled for the first
three genotype principal components (PCs), sex, and platform,
and used BH FDR≤ 0.2 for multiple testing correction.

Trans-splicing QTLs from TWNs

We computed trans-splicing QTLs using two approaches. In the
first approach, we used the best cis-associated variant per gene
(smallest P-value) located within 1 Mb from the transcription start
site of the gene (The GTEx Consortium 2017). Then, for every TE
node connected with an IR node in the network, we measured as-
sociation between the gene’s best cis-associated variant and all the
isoform ratio neighbors using the linear model of Matrix-eQTL
(Shabalin 2012), controlling for the first three genotype PCs and
genotype platform. We corrected for false discovery (BH FDR≤
0.05). In the second approach, for each of the top 500 TE-IR
hubs, we took all variants within 20 kb of the TSS and tested their
association with isoforms located on a different chromosome and
connected with the TE hub using Matrix-eQTL. Here, we used
FDR≤ 0.2 for the false discovery threshold.

Software availability

Source code is available as Supplemental Code S1. It is also freely
available on GitHub: https://github.com/battle-lab/twn_tsn.
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Data access

GTEx v6 data from this study have been submitted to dbGaP, un-
der accession number phs000424.v6. TWNs for 16 tissues and
TSNs for 26 tissues and 10 tissue groups are available at the GTEx
portal (http://gtexportal.org). DGN cohort data are available by ap-
plication through the National Institute of Mental Health (NIMH)
Center for Collaborative Genomic Studies on Mental Disorders
(www.nimhgenetics.org).
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