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Mesenchymal stem cells (MSCs) have a potently immunosuppressive capacity in
both innate and adaptive immune responses. Consequently, MSCs transplantation
has emerged as a potential beneficial therapy for autoimmune diseases even though
the mechanisms underlying the immunomodulatory activity of MSCs is incompletely
understood. Transplanted MSCs from healthy individuals with no known history of
autoimmune disease are immunosuppressive in systemic lupus erythematosus (SLE)
patients and can ameliorate SLE disease symptoms in those same patients. In contrast,
autologous MSCs from SLE patients are not immunosuppressive and do not ameliorate
disease symptoms. Recent studies have shown that MSCs from SLE patients are
dysfunctional in both proliferation and immunoregulation and phenotypically senescent.
The senescent phenotype has been attributed to multiple genes and signaling pathways.
In this review, we focus on the possible mechanisms for the defective phenotype
and function of MSCs from SLE patients and summarize recent research on MSCs
in autoimmune diseases.
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INTRODUCTION

Systemic autoimmune disease is caused by abnormal immune reactivity and antibody production
to self-antigens with subsequent inflammation and damage to host tissues or target organs such
as skin, kidney, joints, and muscles (Fanouriakis et al., 2019). Systemic lupus erythematosus
(SLE) is a systemic autoimmune disease characterized by aberrant activation of lymphocytes and
autoantibody production (Marion and Postlethwaite, 2014). Prominent among the autoantibody
specificities in SLE are nuclear antigens including DNA, RNA, ribonuclear proteins, and histones.
Pathogenesis in SLE is notoriously heterogeneous and may involve multiple connective tissues,
skin, and organ systems. Similarly, the disease heterogeneity complicates diagnosis (Petri et al.,
2012). Anti-inflammatory and immunosuppressive drugs have improved survival and prognosis
of SLE patients (Bernatsky et al., 2006) and notably in China, according to the statistics of the
Chinese SLE Treatment and Research group (CSTAR) (Zhao et al., 2016). Renal disease has the
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highest standardized mortality ratio in SLE, although patients
who fail to respond to conventional therapies or whose disease
is accompanied with pulmonary arterial hypertension (PAH) or
other serious complications, also have high mortality.

Recently, mesenchymal stem cell (MSC) transplantation has
emerged as a promising therapy in refractory SLE patients
because of MSCs’ strong immunosuppressive potential (Barbado
et al., 2018). MSCs are multipotential, self-replicating stem cells
that may differentiate into different mature specialized cells
(Weissman and Shizuru, 2008). MSCs can modulate both the
adaptive and innate immune system in patients with autoimmune
diseases (Munir and McGettrick, 2015), although the intricate
details by which MSCs exert their therapeutic effects are not
fully understood.

Bone marrow-derived MSCs (BM-MSCs) were effective
in clinical trials for steroid-resistant graft-versus-host
disease (GVHD), a complication in allogeneic bone marrow
transplantation (Le Blanc et al., 2008). The MSCs elicited a
suppressive immunoregulatory response that was thought
to involve multiple immunosuppressive mechanisms. A 6
years follow-up observational study has provided evidence for
the safety and efficacy of allogeneic umbilical cord-derived
MSCs transplantation in refractory SLE patients (Wang et al.,
2017b). Although a large proportion of the refractory SLE
patients attained clinical remission or reduced disease activity
after transplantation of allogeneic MSCs from healthy, non-
autoimmune individuals, SLE patients benefit little from
autologous stem cell transplantation (Barbado et al., 2018),
implying that the capabilities of MSCs from SLE patients may be
impaired. In this review, we aim to further explore the potential
mechanisms that account for the apparent dysfunction of MSCs
derived from SLE patients by referring to relevant literature.

OVERVIEW OF MSCs

Stem cells are a class of undifferentiated cells in multicellular
organisms that are pluripotential and self-replicating. Through
unequal cell division, stem cells produce one daughter cell with
multiple differentiation potential and one identical daughter cell
for self-renewal (Weissman and Shizuru, 2008). There are two
major types of stem cells in mammals. One is the embryonic stem
cell from the inner cell mass of blastocysts that can form cells
from all three embryonic germ layers, endoderm, mesoderm, and
ectoderm (Thomson et al., 1998). The other is the adult stem
cell, which can selectively replenish dying cells and regenerate
damaged tissues, for example hematopoietic stem cells (HSC)
in bone marrow and intestinal stem cells in the small intestine
(van der Flier and Clevers, 2009).

In 1976, multipotential stromal precursor cells were identified
by Friedenstein et al. (1976) since the bone marrow cells they
cultured differentiated into bone-like and chondrocyte-like cells
both in vitro and in vivo. The concept that the multipotential
stromal precursor cells, MSC, identified by Friedenstein et al.,
could be used to therapeutic benefit was raised in 1991
(Caplan, 1991). Bone marrow MSCs can be expanded 104–
108-fold in vitro with a Hayflick’s limit of 13–25 doublings

(Wagner et al., 2008). In vitro cultured MSC retain multipotent
stromal cell potential and may differentiate into multiple mature
cell types from mesodermal lineage such as lipocytes, osteoblasts
and chondrocytes. The latter potential is what provides them with
potential for regenerative and traumatic medicine (see Figure 1).

The International Society for Cellular Therapy proposed
minimal criteria to define human MSC in 2006 (Dominici et al.,
2006). Cultured MSC must be plastic-adherent and capable of
differentiating into adipocytes, osteoblasts, and chondroblasts
in vitro. Phenotypically, MSC must express CD73, CD90, and
CD105 but none of the hematopoietic differentiation markers
CD11b, CD14, CD34, CD45, CD19, CD79α, or HLA-DR. Bone
marrow was the first identified and, historically, most frequently
utilized source of MSCs. More recently, MSCs have been
identified in and isolated from umbilical cord, adipose tissue,
molar cells, urine, amniotic fluid, and connective tissue (Dong
et al., 2018; Xie and Shen, 2018).

MSCs have aroused widespread interest because they are
capable of differentiating into both mesenchymal and non-
mesenchymal lineages after isolation from several tissues and
in vitro expansion. MSCs are considered promising reagents
in regenerative medicine and cell-based therapies because of
their self-renewal and multilineage potential (Squillaro et al.,
2016). The culture environment to which stem cells are
exposed is especially relevant for their differentiation. The
specific lineages into which naïve MSCs will differentiate and
the morphology and phenotypes they will display depend
upon differential in vitro culture conditions that may vary
among individual donors (Engler et al., 2006; Lin et al., 2017;
Stojanovic et al., 2018). The proliferative and differentiative
capabilities of MSCs decline with donor age and passage
number of MSC cultures in vitro (Infante and Rodriguez,
2018). To obtain functionally differentiated cells or tissues,
stem cells have been cultivated in vitro under controlled
conditions. The environmental cues (Dinsmore et al., 1996;
Liu et al., 2017) that control MSC differentiation include
special culture media, various chemical, biological and physical
factors, and mechanical stimuli. For instance, osteogenic stimuli
such as dexamethasone, ascorbic acid, and β-glycerophosphate
can promote the osteogenic differentiation of cultured MSCs.
Osteogenic differentiation can be distinguished by the ALP
activity, deposition of extracellular calcium, and expression of
osteogenic genes. Furthermore, studies revealed that miRNAs
and several signaling pathways may affect the regulation of MSC
differentiation (Sun X.K. et al., 2017).

THE IMMUNOREGULATORY ACTIVITIES
OF MSCs

MSCs have immunoregulatory effects on multiple immune
system cells and functions (see Figure 2). MSCs mediate
their immunoregulatory effect by secreting soluble factors or
directly interacting with a variety of immune effector cells
(Gebler et al., 2012), and it should be emphasized that MSCs
are not always immunosuppressive. MSCs may have different
properties and immunoregulatory effects depending on the
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FIGURE 1 | The multipotentiality and immunomodulatory effects of MSCs. The figure illustrates the multitasking capabilities of MSC. Those capabilities include
self-renewal, damaged tissue repair, and multipotential differentiation into multiple mesodermal cell types. MSCs also have immunoregulatory function with potential
to inhibit or suppress autoimmune and chronic inflammatory reactions by direct cell contact, paracrine release and secretion, and/or cytokine secretion.

FIGURE 2 | MSC immunoregulatory activities. MSCs can inhibit the proliferation and activation of B and T lymphocytes and NK cells and increase or restore the ratio
of Tregs to Th effector cells. MSCs can also promote a switch from pro-inflammatory to anti-inflammatory phenotype and cytokine secretion by T cells, dendritic
cells, and natural killer cells.

inflammatory milieu and disease setting (Djouad et al., 2005;
Zhou et al., 2013; Dorraji et al., 2018). MSCs can suppress
proliferation of both CD4 + and CD8 + T lymphocytes
in vitro in a dose-dependent, non-apoptotic-induced manner,

and the immunosuppressive properties against T cells varies
among different MSC sources (Di Nicola et al., 2002; Castro-
Manrreza et al., 2014). Transforming growth factor-β (TGF-β),
prostaglandin E2 (PGE2), nitric oxide (NO), and indoleamine
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2,3-dioxygenase (IDO) were reported to be involved in the MSC-
mediated T cell suppression (Aggarwal and Pittenger, 2005; Groh
et al., 2005; Sato et al., 2007; Li W. et al., 2012). MSCs can
also exert immunoregulatory effects by release of microvesicles
(MVs) (Di Trapani et al., 2016) although several studies
have substantiated the in vitro superiority 0f MSCs over
their MVs for antiproliferation effects on T cells (Gouveia
de Andrade et al., 2015; Di Trapani et al., 2016). For that
reason, infusion of MVs may not be the ideal substitute for
MSCs in affecting immune-mediated disorders where T cells
are predominate.

MSCs secrete numerous cytokines, chemokines, and
hormones to exert paracrine effects on adjacent immune cells
to modulate their proliferation, differentiation, migration, and
adhesion functions under injury conditions (Meirelles Lda et al.,
2009). Paracrine effects of MSC have been referred to as trophic
effects, which can be divided into immunosuppressive, anti-
fibrogenic, anti-apoptotic, pro-angiogenic, and pro-mitogenic
functions (Caplan and Dennis, 2006). Several chemokine
receptors including CXCR5, CCR1, CCR4, CCR7, and CCR10
are expressed on MSCs, which might be involved in their
homeostatic and tissue-specific recruitment (Von Luttichau
et al., 2005). In addition, MSCs secret PD-L1 and PD-L2, two
ligands of the programmed death-1 (PD-1) receptor, that inhibit
activation and proliferation of T cells, suppress T cell effector
function, and modulate peripheral tolerance (Davies et al., 2017).
The ability of MSCs to be therapeutic without engraftment or
differentiation into tissue-specific cells may expand their range
of clinical applications.

Different subpopulations of T cells are differentially affected
by the immunoregulatory potential of MSCs. IFN-γ and TNF-
α synergistically enhanced the ability of MSCs to adhere to
Th17 in vitro, inhibited the differentiation of naïve T cells into
Th17, and promoted the expression of Foxp3 so as to facilitate
differentiation of Th17 toward regulatory T cells (Tregs) that in
turn inhibited CD4+ Th effector cell activation (Ghannam et al.,
2010). MSCs can inhibit T follicular helper (Tfh) differentiation
and IL-21 cytokine production in vitro and in autoimmune MRL-
MPlpr/lpr mice in vivo. The in vivo MSCs infusion prolonged
life and alleviated lupus nephritis in the autoimmune mice
(Yang et al., 2018). Autologous MSCs from two SLE patients
were able to inhibit lymphocyte activation in vitro and, when
respectively infused, increased the circulating Treg cell number
in vivo but had no effect on disease activity (Carrion et al.,
2010). In lupus-prone mice, infusion of BM-MSCs did not
significantly affect serum anti-dsDNA autoantibody but did result
in improved renal histopathology, including reduced immune
complex deposition, glomerular proliferation, and lymphocytic
infiltration (Schena et al., 2010), all of which are consistent
with a potential role for MSCs in the prevention of glomerular
damage. Further, the renoprotective effect has been shown to be
partially mediated by paracrine effects in mice (Togel et al., 2005).
An imbalance in Th1 and Th2 cytokine profiles is suggested
to play an important role in the pathogenesis of GVHD, SLE,
and other autoimmune diseases. While it is debatable how
MSCs modulate and balance the differentiation of the Th1
and Th2 lymphocyte subpopulations, most research on MSC

function in immunosuppression has revealed that MSCs exert
an immunomodulatory effect by activating or increasing Treg
and Th2 and inhibiting or decreasing proinflammatory Th1 and
Th17 cells both in vivo and in vitro (Ghannam et al., 2010;
Luz-Crawford et al., 2013; Campanati et al., 2017; Sun Y. et al.,
2017; Yan et al., 2017). Results from a few studies indicate
that MSCs showed no significant effects on the proliferation
or secretory function of Th1 or Th2 subsets individually but
did cause a global decrease in the ratio of Th1/Th2 cells (Lim
et al., 2014; Choi et al., 2016). In contrast at least one study
in arthritic mice indicated that MSC transplantation promoted
accumulation of Th1 (Gonzalo-Gil et al., 2016). Nevertheless, in
general, MSCs can inhibit proinflammatory cytokine secretion
and reduce Th1/Th2 ratios.

Currently, there are contradictory viewpoints regarding
immunomodulatory properties of MSCs on B lymphocyte
proliferation and activation (Corcione et al., 2006; Tabera et al.,
2008; Schena et al., 2010). Corcione et al. (2006) observed
that MSCs induced inhibitory effects on B cell proliferation,
antibody secretion, and chemotactic function. MSCs blocked
proliferation of B cells in the G0 or G1 phase of the cell cycle,
but they were not induced to apoptosis (Corcione et al., 2006;
Tabera et al., 2008). Schena et al. (2010) found that MSCs
inhibited the proliferation of mature murine splenic B cells
in a dose-dependent and cell-to-cell contact-dependent manner
but failed to affect B cell differentiation to plasma cells. The
immunoregulatory effects of MSCs on B cells are mediated, at
least in part, by secreted cytokines. The immunosuppressive
activity on B cells in vivo maybe partially, if not mostly, due to
the inhibition of Th cells by MSCs.

As for innate immune cells, MSCs also play a key role in
modulating the maturation and function of dendritic cells (DC)
(Zhang et al., 2004), potent antigen presenting cells. MSCs alter
cytokine secretion from DC1 and DC2, stimulating a decrease
in the secretion of TNF-α by DC1 and an increase in IL-10
from DC2 (Aggarwal and Pittenger, 2005). MSCs have been
shown to mediate the polarization of macrophages by skewing
macrophages toward the M2 lineage (Cho et al., 2014), an anti-
inflammatory macrophage phenotype. In addition, MSCs can
also inhibit the proliferation, cytokine secretion, and cytotoxicity
of natural killer (NK) cells (Li et al., 2015).

MSCs exhibited two distinct, non-MHC-restricted
immunomodulatory functions that depended on the relative
numbers of MSCs and local inflammatory conditions. Low
numbers of MSCs had less inhibitory effects and sometimes
enhanced lymphocyte proliferation, whereas large doses of MSCs
always exerted a suppressive effect (Le Blanc et al., 2003; Bocelli-
Tyndall et al., 2009). MSCs provided no clinical amelioration
in murine collagen induced arthritis (CIA), and in fact, even
increasing the number of MSCs could not reduce affected paw
swelling in the respective CIA mice due to the high level of
proinflammatory cytokines, especially TNF-α (Djouad et al.,
2005). In contrast, other in vivo studies of MSC effects on CIA
indicated that MSCs can effectively inhibit CIA inflammation
and joint pathology (Park et al., 2017; Sun Y. et al., 2017). Indeed,
preliminary evidence for MSC efficacy has been reported in
some RA patients (Alvaro-Gracia et al., 2017). MSCs could also
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suppress autophagy of activated T cells induced by respiratory
mitochondrial metabolism in SLE patients (Chen et al., 2016)
and, consequently, reduce T cell apoptosis and maybe play a
crucial role in SLE treatment.

Overall, these findings strongly suggest a crucial therapeutic
role for MSCs in regulating the proliferation and functional
activation of lymphocytes and other immune cells in chronic
inflammatory disease. Nevertheless, the relative numbers of
MSCs and the proinflammatory cytokine environment may
profoundly affect the immunoregulatory effect of MSC therapy.

GENETIC FACTORS CONTRIBUTING TO
MSC DYSFUNCTION IN SLE

SLE is a heterogeneous autoimmune disease with clinical
manifestations ranging from butterfly erythema and mild
arthritis to severe lupus nephritis and lupus encephalopathy
(Marion and Postlethwaite, 2014; Fanouriakis et al., 2019).
SLE patients often have familial association, for example,
monozygotic twins and siblings with a family history are more
likely to suffer with lupus compared to siblings in families with
no history of systemic autoimmune diseases (Cooper et al.,
1999). Genome wide association studies (GWAS) have identified
many genetic loci that associate with lupus (Sanchez et al.,
2011; Bentham et al., 2015). Together the familial associations
and GWAS indicate that SLE is a heterogeneous disease with
strong, but complicated genetic background. Given that MSCs
from SLE patients have dysfunctional immunomodulatory effect
in vitro, genetic factors that contribute to, albeit heterogeneous,
development of SLE may contribute to the dysfunction of
autologous MSCs from SLE patients.

The human leukocyte antigen (HLA) complex encodes the
major histocompatibility complex (MHC) proteins that regulate
the immune system in humans (Bodis et al., 2018). Autoimmune
diseases such as SLE, RA, ankylosing spondylitis (AS), and
Behcet’s disease (BD) all have known associations with particular
HLA alleles. SLE was found to have significant association with
HLA-DMA and DMB alleles (Yen et al., 1999), but neither DMA
nor DMB was correlated with disease activity. RA susceptibility
is linked to HLA-DRB1 alleles (Raychaudhuri et al., 2012), and
there is a strong linkage between ankylosing spondylitis (AS) and
HLA-B27 (Brewerton et al., 1973). BD has a relatively strong
correlation with HLA-B51 (Ohno et al., 1982).

HLA-G molecules are mainly expressed in human placental
tissue (Curigliano et al., 2013). HLA-G generates seven alternative
mRNAs encoding four membrane-bound isoforms (mHLA-G:
HLA-G1, G2, G3, and G4) on the cellular surface and three
soluble HLA-Gs (sHLA-G: HLA-G5, G6, and G7). HLA-G5 is one
of the HLA-G family of non-classical MHC class I molecules that
is secreted by MSCs. HLA-G5 was found to be critical for the
immunomodulatory function of MSCs by inhibiting reactivity
and cytolytic function of alloreactive T cells in vitro (Riteau
et al., 2001; Selmani et al., 2008). The HLA-G5 alloprotective
activity of the MSCs was mediated both by cell contact and
soluble HLA-G5, and HLA-G5 secretion was enhanced by cell-
cell contact between alloreactive T cells and MSCs. HLA-G5

functions in the initial cell contact between MSCs and stimulated,
alloreactive T cells and contributes to the suppression of T
cell proliferation and subsequent T cell differentiation toward
Tregs (Selmani et al., 2008). HLA-G5 expression by MSCs was
enhanced by IL-10 in a dose-dependent relationship. The latter
finding is important since IL-10 is increased in SLE patients
compared to healthy individuals. The association between IL-
10 and HLA-G5 secretion by MSCs notwithstanding, BM-MSCs
from SLE patients have a proinflammatory and senescence-
associated phenotype mediated by a mitochondrial antiviral
signaling protein (MAVS) that induces an IFN-β feedback loop
(Gao et al., 2017). MAVS, IFN-β promoter stimulator protein
1, was significantly increased in SLE MSCs as were IFN-
β-induced messenger RNAs. Notably, silencing of MAVS could
downregulate IFN-β, p53, and p16 proteins and alter cytokine
production in SLE MSCs. This newly identified pathway may
provide critical insight about cellular mechanism that contribute
to lupus autoimmunity and, as such, may define new potential
therapeutic targets.

SENESCENCE-ASSOCIATED
PHENOTYPE OF MSC IN SLE

BM-MSCs are gradually gaining attention because of their
multidirectional differentiation potential that in turn may offer
broad application prospects in clinical treatment of autoimmune
diseases (Munir and McGettrick, 2015) and regenerative
medicine (Mahla, 2016). However, MSCs from SLE patients
possess a very limited proliferation potential in vitro and
present a morphological appearance of senescence characterized
by inflated volume, deeply stained nucleolus, and disordered
cytoskeletal organization (Gao et al., 2017; Ji et al., 2017). The
in vitro proliferative rate is decreased, and the proportion of
apoptotic cells increased with MSCs from SLE patients compared
with those from healthy, normal individuals.

MSCs from SLE patients also exhibit impaired capabilities
for differentiation, migration, and immune regulation (Gao
et al., 2017; Gu et al., 2016). MSCs from SLE patients
have abnormalities in F-actin cytoskeleton accompanied by
increased levels of intracellular reactive oxygen species (ROS)
and MAVS, when compared to MSCs from normal, healthy
individuals (Gao et al., 2017). The endoplasmic reticulum
stress response (ERS) is involved in the senescence of
MSCs from SLE patients and accounts for the dilated,
distorted, and swollen morphology of SLE patient MSCs
(Gu et al., 2015) detected by electron microscopy. The
endoplasmic reticulum (ER) is an intracellular organelle that
performs essential cellular functions including protein synthesis,
post-translational modification, and protein folding (Ma and
Hendershot, 2004). The endoplasmic reticulum stress response
(ERS) occurs when chaperone proteins in the ER perceive
and respond to abnormalities in normal ER function, such
as protein folding (Ma and Hendershot, 2004). The ERS
induces apoptosis and autophagy if the conditions that
initiated the ERS are not resolved. However, the mechanisms
that control the abnormal phenotype(s) of MSCs in SLE
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patients, including increased senescence and apoptosis, remain
incompletely understood.

MSCs from SLE patients have elevated MAVS, TGF-β, ROS,
telomerase activity, DNA damage, and increase expression of
senescence associated genes that block the cell cycle (Nie et al.,
2010; Gao et al., 2017). MSCs from SLE patients also have
up-regulated immunoregulatory factors such as TGF-β, IDO-
1, and LIF (Shi et al., 2014; Ji et al., 2017). MAVS is the only
adaptor protein between retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs) and NF-κB and the downstream IRF-3/7
signaling pathways (Vazquez and Horner, 2015). Thus, MAVS
plays an indispensable role in the innate immune signaling
pathway and induces IFN expression, especially IFN-β. A MAVS-
IFN-β positive feedback loop essentially provides feed-forward
stimulation for increased IFN-β in MSCs from SLE patients.
Further, MSCs from SLE patients exhibited proinflammatory and
aging features mediated by ROS induced as a consequence of
the MAVS-IFN-β positive feedback loop (Shi et al., 2014; Gao
et al., 2017; Ji et al., 2017). Growth restriction, enhanced β-gal
activity, and impaired migration capacity are also consequences
of the MAVS-IFN-β positive feedback loop. IFN-β triggers
DNA signaling pathways by inducing chemical modification of
p53, ROS that affects the transcriptional activity and function
of P53, all of which interfere with the tumor inhibition
pathways controlled by p53 that also trigger cellular aging
and senescence (Moiseeva et al., 2006). Senescence-associated
secretory phenotype–related gene expression, including IL-6, IL-
8, and granulocyte–macrophage colony-stimulating factor (GM-
CSF), is significantly increased in MSCs from SLE patients (Gao
et al., 2017). In contrast, Bcl-2, which is important for inhibiting
apoptosis (Li X. et al., 2012), is markedly reduced in SLE patient
MSCs. Furthermore, abnormal activation of several signaling
pathways including JAK-STAT, p53/p21, PTEN/Akt, PI3K/Akt,
and Wnt/beta-catenin (Gu et al., 2014; Chen et al., 2015; Tan
et al., 2015; Ji et al., 2017) are involved in development of
the senescence phenotype in SLE patient MSCs. Inhibition or
knockout of the expression of these pathways could reverse the
senescent phenotype of MSCs from SLE patients, upregulate
immunomodulatory cytokines such as TGF-β and IL-10, and
downregulate proinflammatory cytokines, such as IFN-β, IL-17,
and IL-6 (Tan et al., 2015; Gao et al., 2017). Thus, we speculated
that the senescence of MSCs might be both a part of or an
indicator for regulatory abnormalities in SLE patients, which may
be related to the underlying SLE pathogenesis. Of note, IFN-
β has a higher affinity to the type I IFN receptor than IFN-α
(Schreiber and Piehler, 2015).

ABNORMAL INFLAMMATORY NICHE
IN SLE

Autoimmune diseases create microenvironments of chronic
inflammation as a consequence of immunological dysregulation
that leads to excessive innate and adaptive immune stimulation.
As a classic model systemic autoimmune disease, SLE can
be characterized by the loss of peripheral immune tolerance,
increased lymphocyte numbers and activation, and other

immune cell activation, and autoantibody production, all of
which contribute to pathogenic chronic inflammation (Marion
and Postlethwaite, 2014). The homeostatic regulatory balance
that generally prevents and controls autoimmunity is lost. Key
among the regulatory elements lost are Tregs. Tregs function
by downregulating the activation and proliferation of effector
T cells (Li and Rudensky, 2016), and critical to SLE, Treg
numbers are decreased in SLE patients, especially in active disease
(Tselios et al., 2014).

In addition to inhibiting the secretion of proinflammatory
cytokines, MSCs can also induce naïve CD4+T cells to
differentiate into Tregs (Luz-Crawford et al., 2013; Wang et al.,
2017a), indicating that allogeneic MSC transplantation may
be able to restore the balance between Treg and Th in SLE
patients. Working against that potential are antigen presenting
cells, particularly plasmacytoid dendritic cells (pDC), that are the
primary producers of IFN-α (Swiecki and Colonna, 2015). In
SLE patients, pDC drive the differentiation of immature B cells
to plasmablasts but fail to induce Bregs, and this compromised
cross-talk with pDC and B cells has been associated with
increased production of IFN-α (Menon et al., 2016). Additionally,
the proinflammatory effect of IFN-α will not only promote T
cell activation but will also stimulate more differentiation of
CD4+ T cells to become effector cells, Tfh, Th1, and Th17,
rather than iTregs further tipping the balance away from the
immunosuppressive function of Tregs and loss of peripheral
tolerance in SLE patients (Yan et al., 2008; Golding et al., 2010;
Ambrosi et al., 2012).

The immunophenotype and immunoregulatory function of
MSCs may be altered by microenvironments as a consequence
of the local pro-inflammatory cytokine milieu (Djouad et al.,
2005). For example, in SLE, aberrant accumulation and activation
of immune cells and overexpression proinflammatory cytokines
causes pivotal change in MSCs. The immunomodulatory
function of MSCs stimulated with both IL-1β and TNF-α
was pro-inflammatory and enhanced CD4+ T cell proliferation
and differentiation to Th effector cell subsets rather than the
anti-inflammatory immunomodulatory function of MSCs not
stimulated with TNF-α and IL-1β (Dorraji et al., 2018). In fact, the
role of TNF-α in MSCs remains controversial as TNF-α may exert
different effects on MSC migration under different conditions.
Normally, TNF-α upregulates MSC migration by activation of
the NF-κB signaling pathway via IKK-2 (Haasters et al., 2013),
a key regulatory enzyme of the NF-κB pathway. However, the
significantly increased TNF-α in SLE patient serum inhibited
the migration capacity of MSCs revealing what seems to be an
impaired phenotype in the TNF-α-dependent migration of bone
marrow-derived MSCs from SLE patients (Geng et al., 2014).

IDO, mainly secreted by DCs and macrophages, is an enzyme
that mediates tryptophan degradation into immunosuppressive
metabolites. Lipopolysaccharide and cytokines especially, IFN-
γ, can induce the expression of IDO during inflammation or
infection (Pallotta et al., 2011). Studies have demonstrated that
IDO plays an indispensable role in allogenic MSC-mediated
inhibition of T cell proliferation in lupus patients, which could be
enhanced by IFN-γ (Wang et al., 2014). Intriguingly, MSCs from
active SLE patients exhibited defective IDO production under
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IFN-γ stimulation (Wang et al., 2014). Consequently, modulation
of IDO activity might be a novel therapeutic way to restore the
defective properties of SLE patient MSCs. In contrast, mouse
MSCs require nitric oxide synthase (NOS) instead of IDO to
catalyze production of NO to mediate their immunosuppressive
function (Sato et al., 2007; Ren et al., 2008). There are three
isozyme subtypes of NOS, including neuronal nitric oxide
synthase (nNOS) and endothelial nitric oxide synthase (eNOS)
expressed under normal conditions, and inducible nitric oxide
(iNOS) induced by injury (Forstermann and Sessa, 2012). MSCs
were able to inhibit Tfh cells in lupus-prone mice by producing
NO, and iNOS was an important mediator in the process since
L-NMMA, a specific inhibitor of iNOS, could partially restore the
generation of Tfh cells inhibited by MSCs in vitro (Sato et al.,
2007; Zhang et al., 2017).

There is another reason why transplanted autologous
MSCs may fail to suppress the excessive and damaging
immune reactions in SLE patients. The number of autologous
immunosuppressive MSCs present in relevant organs and tissues
subject to chronic inflammation after autologous transplantaion
may be too low to exert an efficient immunosuppressive effect.
Compared with MSCs from healthy individuals, MSCs from SLE
patients are morphologically biased toward senescent cells with
reduced proliferative and migratory capabilities (Geng et al.,
2014; Gao et al., 2017). Whether this abnormality is an inherent
MSC defect alone or in addition to effects from drug treatment
requires further research. As discussed above, previous studies
showed that inhibition or reversal of the MSC aging-associated
genes or signaling pathways could partially or fully reverse the
senescent phenotype and immunoregulatory function of SLE
patient MSCs (Gu et al., 2014; Chen et al., 2015; Tan et al., 2015; Ji
et al., 2017). Consequently, reversing MSC senescence may allow
autologous MSCs to be an effective therapy for SLE.

ADVANTAGES AND PROSPECTS OF
TREATING SLE WITH MSCs

SLE is a systemic autoimmune disorder involving a multitude
of autoantibodies that are produced by over-activated B cells
that circulate in peripheral blood and deposit in organs (Marion
and Postlethwaite, 2014). The autoantibodies are produced by B
cells activated in germinal centers to produce isotype-switched,
somatically mutated IgG autoantibodies most notably specific
for nuclear antigens but other autoantigens as well. SLE is
more prevalent in women of childbearing age and shows a
significant gender bias with a male to female ratio of 1:9,
although men and children tend to have more severe disease
(Bernatsky et al., 2006; Aggarwal and Srivastava, 2015; Hwang
et al., 2015). Most SLE patients show a chronic remission-
relapse course except for a small number of patients that can
achieve long-term remission (Fanouriakis et al., 2019). SLE is
a potentially fatal autoimmune disease that can affect multiple
tissues and organ with lupus nephritis being one of the most
common and severe complications (Marion and Postlethwaite,
2014). Among all the complications, renal involvement carries
substantial mortality and morbidity.

Treatment of SLE is challenging because of clinical
heterogeneity and unpredictable disease flares. The current
guideline for treating moderate to severe lupus nephritis is
a two-stage treatment regimen including an initial induction
phase and a prolonged maintenance phase (Fanouriakis et al.,
2019). Induction therapy with intensive immunosuppressive
agents, for example, high-dose methylprednisolone combined
with cyclophosphamide (CTX) intravenous infusion, is adopted
at the initial stage to control autoantibody production and
lymphocyte activation, restore organ function and inhibit tissue
damage (Austin et al., 1986; Grootscholten et al., 2006). To
consolidate disease remittance and reduce recurrence, long-term
maintenance treatment with less intense and moderate side
effects such as low-dose prednisone and mycophenolate mofetil
(MMF) is recommended (Contreras et al., 2004; Ruiz-Irastorza
et al., 2010). Although most lupus patients respond well to
the conventional treatment of steroid and immunosuppressive
agents such as CTX, tacrolimus, and MMF, there are remarkable
and potentially serious side effects associated with each
including infection, metabolic disorders, ischemic osteonecrosis,
gastrointestinal adverse reactions, liver and renal toxicity,
gonadal inhibition, and myelosuppression (Kamanamool et al.,
2010; Ishii et al., 2015; Kishi et al., 2018; Fanouriakis et al.,
2019). Conventional therapy usually requires the use of multiple
immunosuppressive agents for several years or even for the
lifetime of a patient. Long-term complex prescriptions and
tapering methods, regular follow-up and routine blood tests
not only plague the patient’s daily life, but also aggravate the
patient’s financial and psychological burdens (Barber and
Clarke, 2017; Zhao et al., 2018). Even worse are refractory
patients who fail to response to conventional therapy and have
persistently active disease (Nikpour et al., 2009). Therefore,
there is a strong, urgent need to develop a new treatment for
SLE that not only can effectively control disease flares with
acceptable side effects, but also reduce the patient’s burden
for continuous medication and extend the follow-up time. B
cell depletion therapies have engendered hope for availability
and effectiveness of new biologics to treat, if not cure, lupus
(Looney, 2010). Results from both the EXPLORER (Looney
et al., 2010) and LUNAR (Rovin et al., 2012) clinical trials
of the B cell targeting monoclonal antibody rituximab were
disappointing since neither trial achieved the predetermined
endpoint for success. Belimumab trials have been much more
promising with significant improvement in immunologic
parameters, but clinical disease improvement was still only
moderate compared to placebo (Navarra et al., 2011; Manzi et al.,
2012; Stohl et al., 2012). New approaches and new therapies
are desperately needed for SLE. The more recent success of
B cell depletion with anti-CD19 CAR-T (chimeric antigen
receptor-T) cells in lupus-prone mice may offer an alternative,
more successful approach for B cell depletion therapy for SLE in
humans (Kansal et al., 2019). MSC may be the much-needed new
approach to therapy.

For patients who respond poorly to conventional therapy,
MSC therapy has shown satisfactory efficacy with acceptable
treatment-related adverse events (Wang et al., 2017b; Barbado
et al., 2018; Liang et al., 2018). Data from North and South
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FIGURE 3 | Possible mechanism that may contribute to MSC dysfunction in SLE. The figure depicts several hypothetical mechanisms to explain why MSCs are
defective in SLE patients. Both genetic factors and the immune system environment, particularly pro-inflammatory, are expected to contribute to the
immunosuppressive dysfunction of MSCs from SLE patients. The morphological changes associated with aging of MSCs from SLE patients are the consequence of
several senescence-associated genes and signaling pathways. The proinflammatory niche created by immune system dysfunction in SLE synergistically contributes
to the abnormalities in MSC.

American transplantation centers have indicated that the 3
years MSC transplantation-related mortality (TRM) was no
more than 5% (Pasquini et al., 2012), while in a Chinese
long-term retrospective study, the TRM was 0.2% (1/404)
(Liang et al., 2018).

In recent years, various countries or regions have attached
great importance to stem cell research and clinical translation.
The number of clinical trials for stem cell-based therapies for
autoimmune diseases registered in www.clinicaltrials.gov website
reached 212 cases worldwide as of July 4, 2019. Moreover,
there are 14 different stem cell-associated products approved for
therapy1, most of which are MSCs or HSCs.

Anecdotal case reports have reported that total remission can
be achieved after HSC transplantation in refractory SLE patients
with severe disease and who were resistant to conventional
therapies (Traynor and Burt, 1999; Rosen et al., 2000). In a
5 year follow-up study, most of the refractory SLE patients
who underwent autologous HSC infusion, after immunoablation
and depletion of mononuclear cells, attained durable clinical
and serological remission (Burt et al., 2018). In another clinical
study, autologous HSC transfusion also restored Treg numbers
and immunosuppressive function in SLE patients (Zhang
et al., 2009). Autologous HSC transfusion in conjunction with
non-myeloablative immunoablation with CTX, rituximab, and
thymoglobulin (rATG) may be therapeutically effective in SLE
since the autoreactive immune cell clones are eliminated, and
the reconstituted immune competent cells develop with normal,
effective self-tolerance. The most common adverse events in the

1www.clinicaltrials.gov

treatment with HSC are fever, infection, and infusion reactions,
but most adverse events were determined to be unrelated to
infusion (Liang et al., 2018). The success of autologous HSC
therapies has encouraged a possible therapeutic use of MSCs to
treat SLE patients.

MSCs are non-hematopoietic, multipotent progenitor stem
cells that possess immunomodulatory capabilities. Several clinical
studies have been performed to evaluate the potential clinical
efficacy for MSC transplantation as an alternative therapeutic
approach to the current pharmacologic therapy for SLE. Results
from those studies indicate that MSC transplantation is a safe
and effective therapy (Munir and McGettrick, 2015; Squillaro
et al., 2016; Wang et al., 2017b) that can ameliorate multiorgan
injuries and induce long-term disease remission in active and
refractory SLE patients (Liang et al., 2010; Deng et al., 2017;
Barbado et al., 2018). MSCs were able to re-establish the defective
osteoblastic niche in lupus-prone mice and effectively reverse
multiorgan dysfunction, especially glomerulonephritis, in mice
and patients compared with CTX (Sun et al., 2009; Choi et al.,
2016). Unlike anti-CD20 and TNF inhibitor biological agents,
MSC could restore the ratio of Treg/Tfh cells in CIA mice (Sun
Y. et al., 2017). Finally, experiments in mice have evaluated
the effect of combination therapy with MSCs and five kinds
of drugs including prednisone, dexamethasone, cyclosporine
A, mycophenolate mofetil, and rapamycin for their effects
on T cell subpopulations. The results indicated that MSCs
could enhance the anti-inflammatory effects of the drugs and
attenuate the cytotoxic side effects of the immunosuppressants
(Hajkova et al., 2017). Hence the combination of MSCs and
immunosuppressants may become a more ideal therapeutic
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strategy to treat autoimmune diseases, especially SLE, compared
to pharmacologic immunosuppression alone.

Our review shows that, although allogeneic MSCs are
promising candidates for treating SLE, autologous MSCs may
not be therapeutically useful because of their defects in both
immunomodulatory function and regenerative characteristics.
MSCs from SLE patients present a morphological appearance
of senescence with impaired capabilities of differentiation,
migration and immune regulation (Gu et al., 2016; Gao et al.,
2017; Ji et al., 2017). B cells contribute to pathogenesis in
SLE through both autoantibody-dependent and autoantibody-
independent mechanisms. Abnormally activated B cells in SLE
patients affect the function of MSCs, and depletion of B cells may
help to restore the potential immunosuppressive of autologous
MSCs. Notably, previous studies have shown that MSCs are
capable of inhibiting the proliferation and differentiation of B
cells (Corcione et al., 2006) and hence may have a promising
efficacy in treating SLE. On the other hand, MSCs could enhance
proliferation and differentiation into immunoglobulin-secreting
cells of naïve and transitional B lymphocytes from SLE patients
in vitro (Traggiai et al., 2008) raising concerns regarding the
therapeutic use of MSC to suppress B lymphocytes. These results
suggest caution in considering and monitoring MSC therapy to
treat SLE. Further studies are needed to uncover the underlying
regulation between MSC and immune cells and how those effects
may affect disease in SLE patients.

CONCLUSION

Likely, no single factor can account for the intricate
mechanisms of the MSCs-mediated immunosuppressive effect
on autoimmune diseases. There are several hypothetical
mechanisms why MSCs from SLE patients appear defective (see
Figure 3). GWAS have indicated that autoimmune diseases,
including SLE, are associated with numerous, heterogeneous
genetic loci. MSCs from SLE patients are characterized
by morphological and phenotypic changes associated with
aging. These include functional changes modulated by
expression of several senescence-associated genes and signaling
pathways that decrease proliferative potential. Likely, the
proinflammatory microenvironment in patients with lupus alters
the immunosuppressive potential of MSCs from those patients.
Similar results were found in patients with other inflammatory
diseases such as abdominal aortic aneurysm (AAA). MSCs
isolated from human AAA wall display a dysregulated

immunosuppressive effect on peripheral blood mononuclear cells
(PBMCs) proliferation (Ciavarella et al., 2015).

In conclusion, murine models and clinical trials have
produced evidence for the therapeutic potential of MSCs
for SLE. Our review shows that although allogeneic
MSCs are promising candidates for treating SLE, autologous
MSCs may not be eligible to treat SLE patients because of their
defective immunomodulatory function and poor regenerative
characteristics. Moreover, whether the immunological rejection
of allogeneic stem cell transplantation will influence the efficacy
of MSC therapies or have long-term effects on recipients is
not known. If the causes of MSC dysfunction for MSCs from
SLE patients can be better understood in the future, maybe
modification or transformation of SLE patient MSCs to restore
immunosuppressive and regenerative function can yield a
therapeutically beneficial treatment. In fact, recent research has
indicated that MSCs transfected with an etanercept-encoding
vector can successfully produce the drug in vitro and had superior
suppressive effects in CIA mice compared to non-modified MSCs
(Park et al., 2017). Prospects for MSCs as immunosuppressive
therapy in other rheumatic diseases are being and should
continue to be explored. However, only through further research
and clinical trials can we completely resolve this mystery of why
MSCs are defective in SLE patients. Studying the mechanism
of MSC defects in SLE patients can provide new ideas for the
pathogenesis of SLE, and provide a new theoretical corroborate
for cellular therapy that may be of great significance for clinical
application in rheumatic diseases.
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