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The loss of one copy of SHANK3 (SH3 and multiple ankyrin repeat domains 3)
in humans highly contributes to Phelan McDermid syndrome (PMDS). In addition,
SHANK3 was identified as a major autism candidate gene. Interestingly, the protein
encoded by the SHANK3 gene is regulated by zinc. While zinc deficiency depletes
synaptic pools of Shank3, increased zinc levels were shown to promote synaptic
scaffold formation. Therefore, the hypothesis arises that patients with PMDS and Autism
caused by Shankopathies, having one intact copy of SHANK3 left, may benefit from zinc
supplementation, as elevated zinc may drive remaining Shank3 into the post-synaptic
density (PSD) and may additional recruit Shank2, a second zinc-dependent member of
the SHANK gene family. Further, elevated synaptic zinc levels may modulate E/I ratios
affecting other synaptic components such as NMDARs. However, several factors need
to be considered in relation to zinc supplementation such as the role of Shank3 in
the gastrointestinal (GI) system—the location of zinc absorption in humans. Therefore,
here, we briefly discuss the prospect and impediments of zinc supplementation in
disorders affecting Shank3 such as PMDS and propose a model for most efficacious
supplementation.
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INTRODUCTION

Shank3 and PMDS
PhelanMcDermid syndrome (PMDS, also 22q13 deletion syndrome or 22q13.3 deletion syndrome)
is classified as a syndromic form of autism due to a majority of patients falling on the autism
spectrum, displaying autistic or autism-like behavioral traits, caused by a 22q13.3 deletion that
includes the SHANK3 gene. Patients otherwise present with minor facial dysmorphic features,
global developmental delay, mental retardation, as well as absent or delayed language acquisition.
In addition, ADHD, seizures and gastrointestinal (GI) disorders are common medical comorbid
conditions (Wong et al., 1997; Bonaglia et al., 2001; Phelan and McDermid, 2012; Kolevzon et al.,
2014; Pfaender et al., 2017).

Heterozygous loss of SHANK3 seems to be a major factor contributing to the pathology of
PMDS. In addition, SHANK3 is major autism candidate gene (Leblond et al., 2014). In several
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patients with autism, deletions, nonsense, missense and splice
site mutations have been found that affect the function of one
SHANK3 allele (Durand et al., 2007; Gauthier et al., 2009).
Proteins of the SHANK (also known as Proline-rich synapse-
associated protein ProSAP) family are major scaffold proteins
within the post-synaptic density (PSD) of excitatory synapses
(Boeckers et al., 2002). A mouse model for PMDS reflecting
autistic traits seen in human patients has been published
(Bozdagi et al., 2010) and several homozygous Shank3 mutant
animals were reported to display autism-like phenotypes
including impaired social behavior and ultrasonic vocalizations,
repetitive behavior, anxiety and learning and memory problems
(Peça et al., 2011; Wang et al., 2011; Schmeisser et al., 2012).

Interestingly, while pharmacological approaches using IGF-1
and CDPPB, a mGluR5 positive allosteric modulator, were
partly successful in restoring function in Shank3 deletion model
systems (Bozdagi et al., 2010; Verpelli et al., 2011; Wang et al.,
2016; Vicidomini et al., 2017), the regulation of Shank2 and
Shank3 by zinc may be another promising approach to rescue
Shank3 function.

Zinc and Shank3
The heterozygous loss of the SHANK3 gene results in reduced
Shank3 protein levels in PMDS patients. In mutant mice that
lack the SHANK3 gene and may function as an animal model
for PMDS, a comparable decrease in Shank3 protein levels can
be monitored (Peça et al., 2011; Wang et al., 2011; Schmeisser
et al., 2012). Intriguingly, a similar reduction in Shank3 protein
levels was also observed in animals exposed to a mild zinc
deficiency during their embryonic development and in primary
hippocampal neurons cultured under zinc deficient conditions
(Grabrucker et al., 2011, 2014).

Isoforms of Shank3 and the SHANK family member
Shank2 that contain the C-terminal SAM domain directly
bind zinc (Baron et al., 2006; Gundelfinger et al., 2006;
Grabrucker et al., 2011). Additionally, in vitro studies showed
that the SAM domain of Shank3 is responsible for its synaptic
localization (Boeckers et al., 2005) and oligomerization at the
postsynaptic density of glutamatergic synapses (Naisbitt et al.,
1999; Baron et al., 2006). The recruitment and multimerization
of Shank3 at the PSD is a crucial step in the processes of synapse
development and maturation (Grabrucker et al., 2009) and was
shown to be highly zinc dependent (Gundelfinger et al., 2006;
Grabrucker et al., 2011; Tao-Cheng et al., 2016). Experiments
in primary hippocampal neuronal cultures showed that the
synaptic localization and protein concentration of Shank3 and
Shank2 are highly responsive to alterations in neuronal zinc
homeostasis (Grabrucker et al., 2014). In ultrastructural analyses,
an increased recruitment of Shank3 to the PSD upon zinc
supplementation or stimulation was observed (Tao-Cheng et al.,
2016). In addition to that, the presence of zinc was crucial
to maintain the augmented Shank3 label intensity at the PSD
(Tao-Cheng et al., 2016), and increased the number of synaptic
contacts with a ‘‘mature’’ PSD (Grabrucker et al., 2011). On the
contrary, an increased number of synapses without a prominent
PSD was reported under zinc deficient conditions (Grabrucker
et al., 2011), but also Shank deficient conditions. Furthermore,

the reduction of neuronal zinc levels by exposure to the highly
potent zinc chelators CaEDTA and TPEN resulted in a significant
reduction in the number of Shank3 immunoreactive puncta
per dendritic length as well as in their fluorescence intensity
(Grabrucker et al., 2011, 2014). Additionally, a similar reduction
of Shank3 protein levels at synapses was detected by western
blot analyses (Grabrucker et al., 2011, 2014). As a consequence
of zinc depletion, Shank3 is predominantly diffusely localized in
dendritic localizations (Grabrucker et al., 2011) and might enter
an inactive state there (Arons et al., 2016) indicating that zinc is
crucial for stabilizing Shank3 at the postsynaptic site (Grabrucker
et al., 2011; Arons et al., 2016).

Interestingly, the supplementation of primary
hippocampal neurons with zinc chloride increased
Shank3 immunofluorescence levels and therefore the
concentration of Shank3 proteins at synapses (Grabrucker
et al., 2011, 2014). In line with the described findings obtained
from in vitro experiments, prenatal zinc deficiency in mice
was found to tremendously affect synaptic Shank3 (Grabrucker
et al., 2014). Prenatal zinc deficient pups that were nursed by
zinc deficient mothers showed a significant reduction in brain
zinc and Shank3 levels. A loss of synaptic Shank3 comparable
to that observed in Shank3 knock-out mice was detected in
immunohistochemical and biochemical analyses of prenatal
zinc deficient animals (Grabrucker et al., 2014). Again, a
redistribution of Shank3 from the synaptic site to the cytoplasm
was reported (Grabrucker et al., 2014). However, the reduction in
zinc levels and the concomitant lack of Shank3 was fully rescued
by cross-fostering prenatal zinc deficient pups by mothers fed a
zinc adequate control diet indicating that zinc supplementation
is sufficient to restore previously diminished Shank3 levels
in vivo (Grabrucker et al., 2014).

Taken together, reduced Shank3 protein levels comparable
to those observed in models of PMDS can be caused by
the depletion of zinc emphasizing the strong regulatory effect
of zinc on synaptic Shank3. On the other hand, remaining
Shank3 protein, and possibly in addition Shank2 proteins, can
be recruited to synapses by increasing zinc levels. Therefore,
we hypothesize that supplementation with zinc may rescue the
loss of Shank3 in PMDS and through this modify the resulting
phenotype. It was shown that re-establishing Shank3 levels
after birth can ameliorate autism-like symptoms in mice (Mei
et al., 2016). However, performing zinc supplementation in
Shank3 deficient conditions in vivomay face challenges given the
reported role of Shank3 in the GI system.

Shank3 and Zinc Transporters
Aside from GI problems, zinc deficiency was shown to be highly
prevalent in individuals with PMDS (Grabrucker et al., 2014;
Pfaender and Grabrucker, 2014; Pfaender et al., 2017) and ASD
(Yasuda et al., 2011; Arora et al., 2017).With the GI system taking
center stage in themaintenance of zinc homeostasis, regulation of
zinc levels within the body occurs with help of various proteins
including members of the Zinc Transporter (ZnT) and Zrt-and
Irt-like proteins (ZIP) superfamily of zinc transporters, and
metallothioneins (MT; Fukada et al., 2011; Zhao et al., 2014).
In humans, dietary zinc uptake primarily occurs within small
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intestinal enterocytes (Krebs, 2000; Wang and Zhou, 2010) with
ZnT and ZIP transporter moving zinc across cellular membranes
and into organelles (Hershfinkel, 2005). Especially, Zip2 and
Zip4 proteins act as key players of zinc absorption in enterocytes.
Not surprisingly, mutated ZIP4 leads to severe impairments in
zinc uptake as seen in the autosomal recessive inherited disorder
Acrodermatitis enteropathica (AE). AE patients require lifelong
zinc substitution in very large doses as treatment (around 200 mg
daily instead of the required daily intake in healthy individuals
of 15 mg; Maverakis et al., 2007; Andrews, 2008; Pfaender et al.,
2017).

Besides its various other functions in the immune system and
during brain development, zinc also plays a vital role in the
developing GI system and effects gut morphology (Vela et al.,
2015). While current research reports high prevalence of GI
disorders and zinc deficiency in neurodevelopmental disorders
such as non-syndromic and syndromic ASD, it might also have
provided a potential link between these dysfunctions (Vela et al.,
2015; Pfaender et al., 2017).

Pfaender et al. (2017) showed that besides its function
as postsynaptic scaffolding protein in the brain, Shank3 can
additionally be found in human and murine enterocytes in the
GI tract. In the same study, analysis of key regulators of trace
metal homeostasis revealed significant alterations of ZIP2 and
ZIP4 expression on mRNA and protein level in enterocytes
generated from PMDS patient derived induced pluripotent
stem cells (hiPSC) compared to healthy controls. More so,
ZIP2 and ZIP4 expression levels in enterocytes seemed to be
dependent on Shank3 protein levels, which was confirmed by
overexpression and knockdown experiments in the intestinal
Caco-2 cell-line model. Co-immunofluorescence of Shank3 and
Zip4 in hiPSC derived enterocytes and co-immunoprecipitation
experiments of Shank3 protein using wildtype mouse intestinal
epithelial lysate and human enterocyte cell lysates shows that
Shank3 proteins seem capable of forming a protein complex
with Zip4 and to a lesser extent with Zip2 (Pfaender et al.,
2017).

Given that Shank3 levels both in vitro and in vivo regulate zinc
transporter expression, a possible explanation for high incidence
rates of zinc deficiency in PMDS can be found. However,
the loss of zinc transporters in the GI tract may present a
significant challenge for zinc supplementation and similar to AE
patients, high levels and daily lifelong supplementation may be
needed. Therefore, supplementation with commercially available
supplements and dosages reflecting the required daily intake of
healthy individuals may not suffice. However, chronic high levels
of zinc intake that are not toxic per semay have secondary effects
for example on copper levels and may be a challenge especially
for children with PMDS.

PERSPECTIVES

ZnAAs as Effective Zinc Supplement in
PMDS
In the case of a diet low in zinc, Zip4 at the plasma membrane
of enterocytes is upregulated to maximize absorption of zinc

(Dufner-Beattie et al., 2004). However, this mechanism seems
impaired upon Shank3 depletion (Pfaender et al., 2017). Using
novel types of zinc supplements, it is possible to utilize alternative
routes of zinc uptake. Recently, we have shown that zinc
amino acid complexes (ZnAAs) may provide such alternative
absorption/transport pathway opportunity (Sauer et al., 2017).
Due to the overall amino acid-like structure, ZnAAs based
supplements are taken up by amino acid transporters. For
example, using hiPSC from AE patients, we could show that
while an inorganic zinc supplement such as ZnCl2 performed
significantly worse in AE patient cells with non-functional
Zip4 compared to control cells, ZnAAs were able to deliver zinc
into enterocytes effectively and without significant difference
between AE and healthy cells (Sauer et al., 2017). The chemistry
of ZnAAs that may be comprised of different amino acids
such as glutamate, methionine and lysine, among others, in
the form of ZnGlu, ZnMet, ZnLys, allows for release of the
zinc (once inside cells or the systemic circulation) whereby
zinc will be able to participate in its physiological functions
such as the regulation of Shank2 and Shank3 proteins at
synapses.

Therefore, we propose that although supplementation of
trace minerals in humans or animals can be performed using
different types of supplements, the most suited supplement
should be selected, considering the special GI physiology under
Shank3 depleted conditions such as PMDS. With a significantly
higher demand than that of trace minerals, amino acids will
have over a thousand-fold more transporters than any trace
mineral. Thus, a selection of ZnAAs for supplementation in
PMDS might secure the highest efficacy of zinc supplementation
(Figure 1). ZnAAs are currently available on the market as
mineral supplement for animals, where they are safe and
effective and should be explored in human studies in future.
In contrast, using inorganic zinc supplements might need
high dosages and long supplementation times until effects
might be measurable in Shank3 mouse models and human
patients.

Benefits of Zinc Supplementation in PMDS
and ASD—A Hypothesis
Based on the current data, a model can be proposed according
to which zinc supplementation in Shankopathies may be a
promising approach. This is based on several observations.
First, restoring Shank3 levels in adult mice ameliorates their
autism phenotype. Second, increased zinc levels are able to
increase synaptic Shank3 levels, which may compensate the
loss of one functional copy of the gene. Third, in addition,
recruitment of the zinc-dependent Shank2 may contribute to
the compensating effect (Figure 2). Given that Shank proteins
are found in a complex of further autism associated proteins
such as Neurexin (Nrxn) and Neuroligin (Nlgn), as well as
mTOR, strengthening Shank3 scaffolds may also be beneficial
in cases of mutation of other proteins of the proposed
autism associated pathway at excitatory synapses (Bourgeron,
2009).

While PMDS is a very rare syndrome, the prevalence
of mutations in Shank3 and Shank2 is higher in the ASD
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FIGURE 1 | (A) Zinc supplements based on zinc salts such as ZnCl2 or ZnO will dissociate in solution. In healthy individuals, zinc importers Zip4 and Zip2 take up
this “free” (aqueous) zinc ions into enterocytes, which subsequently release zinc on the basolateral side into the blood circulation. Zinc amino acid compounds
(ZnAA) are relatively stable and are taken up by amino acid transporters. (B) In Phelan McDermid syndrome (PMDS) patients, Zip4 and Zip2 may be affected. Thus,
uptake of inorganic zinc supplements may be impaired. In contrast, due to the amino acid-like structure, ZnAAs can still be taken up by amino acid transporters
possibly providing more efficient supplementation in PMDS patients.

population (∼1.5% and 0.17%, respectively, Leblond et al.,
2014). In addition, Shank proteins are physiologically linked to
proteins with mutations reported in the ASD population such as
NMDAR (Pan et al., 2015), Nrxn/Nlgn complexes (Yoo, 2015;
Onay et al., 2017) and mGluR5-mTOR (Fragile X syndrome:
1%–2% of patients with ASD, Tuberous sclerosis: ∼1% of
patients with ASD; Abrahams and Geschwind, 2008). Therefore,
this group of patients may benefit from modulation of
Shank2/3 via zinc as well.

Besides effects on the Shank2/3 scaffold, activation of zinc
signaling may have effects on further synaptic proteins and
thereby synapse function (Sensi et al., 2009, 2011). For example,
zinc acts as allosteric inhibitor of GluN1/GluN2A (NMDA)
receptors (Paoletti et al., 1997). However, it was shown that a
postsynaptic increase in zinc can also activate NMDA receptors
in a Src tyrosine kinase dependent manner, which may be an
important contributor to the rescue of ASD behaviors (Lee et al.,
2015). Further, zinc may inhibit GABAA receptors (Smart et al.,
1994). Thus, zinc modulates excitatory synaptic transmission as
well as inhibitory synaptic transmission andmay be an important
player in maintaining the balance between excitation (E) and
inhibition (I). Changes in E/I ratio have been reported to be
important in the pathogenesis ASD (Rubenstein and Merzenich,
2003) and altered zinc homeostasis may positively influence the
E/I ratio.

In addition, zinc has inhibitory effects on voltage-gated ion
channels (Blakemore and Trombley, 2017), and is linked to
BDNF signaling via metalloproteinase activation, which plays
an important role in Trk receptor activation (Hwang et al.,
2005).

However, with zinc being a non-genetic factor, dosage is
important. While genetic models of Shank3 deficiency follow
a pattern of full loss (homozygous deletion) or loss of half
of Shank3 (heterozygous deletion), zinc will act along a large

spectrum of dosages. Finding the correct dosage may be
complicated. In addition, it is hard to estimate after which time
effects may be observable. While zinc is taken up quickly in the
body, it does not cross freely the blood-brain barrier (BBB). A
constant elevated serum zinc level may be necessary to generate
a sufficient concentration gradient to drive zinc uptake into
the brain. Both, dosage and treatment times will be dependent
on the type of zinc supplement used. In addition, treatment
should be performed as early as possible and therefore, efficacy
might critically depend on the ability to diagnose PMDS/ASD
early in development. According to previously published data
(Grabrucker et al., 2011), forming and immature synapses are
characterized by Shank2 and Shank3 family members at the PSD
and are more reactive to zinc than mature synapses that also
contain the zinc-independent Shank1. Thus, strengthening the
Shank2 and Shank3 scaffold to reach a threshold for the synapse
to mature will be most critical during the time window of brain
development with maximal need for establishment of synaptic
contacts to lie down the basic connectivity in and in between
brain regions. However, it is possible that some brain regions
maintain plasticity throughout later development and will still
benefit from increased zinc levels. In line with this, re-expression
of Shank3 in adult mice that developed in absence of Shank3 was
able to rescue social interaction deficits and repetitive grooming
behavior, but not anxiety and motor coordination deficits (Mei
et al., 2016). This hints to different timewindows in development,
where supplementation will be able to rescue different features of
ASD to different extent.

Taken together, to move forward in animal studies and finally
human studies, various factors need to be considered. The type
of supplement needs to ensure effective zinc uptake, but also zinc
delivery into the brain. Here, recently developed nanoparticles
delivering zinc across the BBB may be promising (Chhabra et al.,
2015; Vilella et al., 2017). Additionally, the standard laboratory
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FIGURE 2 | (A) Current models predict a soluble pool of Shank proteins at the post-synapse, as well as a post-synaptic density (PSD) bound pool recruited to the
PSD by zinc binding. PSD bound Shank scaffolds proteins link receptors at the membrane to the actin cytoskeleton. Further, by binding with Neuroligin (Nlg) and
Neurexin (Nrxn) complexes, the level of Shank3 at the PSD provides a transsynaptic signal to the pre-synapse to coordinate synaptic plasticity of both parts of the
synapse. (B) Loss of Shank3 proteins at the synapse may destabilize synapses and prevent their maturation or formation. Heterozygous deletion or mutation of
Shank3 in humans leaves one copy of the gene intact that produces proteins. (C) Increasing zinc levels by zinc supplementation might restore Shank3 levels by
recruitment of Shank3 from the soluble synaptic pool to the PSD bound pool and might recruit additional Shank2 proteins. Strengthening the PSD scaffold in this
way may compensate some deficits seen in forms of ASD caused by imbalance in the Nrxn-Nlg-Shank pathway.

diet for Shank mouse models has to be carefully controlled for
zinc content. Fortified diets used for mice may contain up to
five times higher zinc levels as the required daily dosage for mice

and it may be possible that heterozygous Shank3 mice on this
diet already representmodels of low zinc supplementation.While
this concentration of zinc may not be enough to cause significant

Frontiers in Synaptic Neuroscience | www.frontiersin.org 5 May 2018 | Volume 10 | Article 11

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Hagmeyer et al. Zinc Supplementation in PMDS

effects, it might contribute to the relatively mild phenotype of
heterozygous mice, despite human patients being heterozygous
as well. Finally, the age of mice and duration of treatment, as well
as dosage of zinc supplementation need to be carefully selected.

Human studies using zinc supplementation in ASD patients
so far reported mixed results. While some studies found benefits
(Russo and Devito, 2011), the results were less clear in others.
In future, the cohort of participants with ASD needs to be more
carefully selected based on their underlying genetic mutation,
and treatment performed early in life for a long time using
therapeutic dosages of classic zinc supplements or alternative
forms of zinc supplementation.
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