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1. Introduction
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The rapid development of intelligent manufacturing provides strong support for the intelligent medical service ecosystem. Researchers
are committed to building Wise Information Technology of 120 (WIT 120) for residents and medical personnel with the concept of
simple smart medical care and through core technologies such as Internet of Things, Big Data Analytics, Artificial Intelligence, and
microservice framework, to improve patient safety, medical quality, clinical efficiency, and operational benefits. Among them, how to use
computers and deep learning technology to assist in the diagnosis of tongue images and realize intelligent tongue diagnosis has become a
major trend. Tongue crack is an important feature of tongue states. Not only does change of tongue crack states reflect objectively and
accurately changed circumstances of some typical diseases and TCM syndrome but also semantic segmentation of fissured tongue can
combine the other features of tongue states to further improve tongue diagnosis systems’ identification accuracy. Although computer
tongue diagnosis technology has made great progress, there are few studies on the fissured tongue, and most of them focus on the
analysis of tongue coating and body. In this paper, we do systematic and in-depth researches and propose an improved U-Net network
for image semantic segmentation of fissured tongue. By introducing the Global Convolution Network module into the encoder part of
U-Net, it solves the problem that the encoder part is relatively simple and cannot extract relatively abstract high-level semantic features.
Finally, the method is verified by experiments. The improved U-Net network has a better segmentation effect and higher segmentation
accuracy for fissured tongue image dataset. It can be used to design a computer-aided tongue diagnosis system.

learning, emphasizes the use of multiple levels of abstraction
of data [4]. Deep learning is not a new technology; its

Nowadays, with the rapid development of mobile and
wireless networking technologies, the Internet of Things
(IoT) has contributed to Wise Information Technology of
120 (WIT 120). Researchers combine modern computer
technology with modern medicine and traditional Chinese
medicine theory to achieve computer-assisted diagnosis
[1-3]. Machine learning and deep learning are also widely
used in the medical field. Deep learning, a branch of machine

concept originates from artificial neural networks. In es-
sence, it refers to a kind of effective training method for
neural networks with deep structure. Deep learning com-
bines low-level features to form more abstract high-level
representation attribute categories or features, to find the
distributed feature representation of data. The motivation of
studying deep learning is to establish a neural network that
simulates the human brain for analytical learning. It
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simulates the mechanism of the human brain to interpret
data, such as images, sounds, and texts. It can automatically
abstract and extract low-, mid-, and high-level features
directly from the original tongue images to combine from
end-to-end [5]. Combining traditional Chinese medicine
theory with deep learning technology and analyzing tongue
images by constructing a neural network model not only
provide a new idea for computer-aided tongue diagnosis but
also improve the modernization and automation level of
disease diagnosis.

The convolutional neural network plays an important
role in the development of deep learning. It plays an irre-
placeable role in improving the research level and practical
performance of computer vision. In 2012, a historic
breakthrough was made in the development of convolu-
tional neural networks. Krizhevsky et al. [6] proposed the
famous model named AlexNet by using the Rectified Linear
Unit (ReLU) as the activation function. It was the pioneering
deep CNN that won the ILSVRC-2012 with a TOP-5 test
accuracy of 84.6% and attained a new state-of-the-art per-
formance. At present, a convolutional neural network has
replaced the support vector machines (SVMs) of traditional
machine learning and has become the most excellent and
widely used deep neural network learning model in the field
of computer vision, such as image classification, object
detection, target tracking, and image segmentation.

Image segmentation can be understood as a method of
outputting the category to which each pixel belongs. In
object recognition, the number of input layer units is equal
to the size of the sample image, and the number of output
layer units is equal to the number of categories. During
image segmentation, the number of input layer units is the
same as object recognition, which is equal to the size of the
sample image. But the number of output layer units is equal
to the product of the sample image size and the number of
categories. The output result of segmentation is the prob-
ability that each pixel belongs to each category. Image
segmentation objects can be road scenes, face images, and
medical images. In 2014, Long et al. [7] designed a fully
convolutional network (FCN) that is compatible with images
of any size and uses fully supervised learning for image
semantic segmentation.

FCN is improved based on VGGNet-16 [8] network. It
uses the convolution layer to replace the full connection
layer in the traditional CNN and uses the skip layer method
to combine the feature map generated by the intermediate
convolution layer. Then, the bilinear interpolation algorithm
is used to upsampling to convert the rough segmentation
results into fine segmentation results. The proposal of FCN
provided many scholars with research ideas. Since then,
many excellent image segmentation networks have been
continuously proposed and widely applied in various fields
such as unmanned driving, remote sensing, and medicine.

Tongue diagnosis is one of the distinctive diagnostic
methods in traditional Chinese medicine for doctors to
understand the physiological functions of the body and
cause changes by observing the changes of the tongue and
tongue coating of patients. It plays an important role in the
clinical diagnosis of traditional Chinese medicine (TCM).
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However, the traditional tongue diagnosis is often based
on the personal knowledge and experience of doctors, lacking
objective evaluation standards. In addition, the valuable ex-
perience and tongue image data accumulated in the process of
traditional tongue diagnosis cannot be retained scientifically
and quantitatively, and the examination results of traditional
tongue diagnosis cannot be described scientifically and
quantitatively [9], which seriously hinders the application and
development of tongue diagnosis. To solve this situation, it is
necessary to realize the quantification and standardization of
tongue diagnosis. Therefore, TCM tongue diagnosis needs to
establish a modern medical system with leading science and
technology, objectification, quantification, automation, and
exhibition.

At present, more and more medical universities and
pharmaceutical enterprises have begun to explore the de-
velopment route of combining TCM tongue diagnosis with
computer science and technology and have achieved a series
of scientific research results [10-14]. However, the main
research focuses on tongue coating and tongue color, and the
research on tongue crack is relatively few.

According to the description in Discrimination of
Tongue Image in Traditional Chinese Medicine [15], fissured
tongue refers to crisscrossing furrows and cracks on the
surface, back of the tongue, or both sides of the tongue,
which are called fissured tongue in traditional Chinese
medicine. On the one hand, the fissured tongue is caused by
Yang deficiency and dampness of the spleen, and on the
other hand, it is caused by qi deficiency of the spleen. Be-
cause yin deficiency of the spleen and stomach affects the
absorption of nutrients in the body, it results in the inability
of nutrients to be transmitted to the tongue. Fissured tongue
is one of the manifestations of physical malnutrition. The
information on tongue crack can not only objectively and
accurately reflect the changes of some typical diseases and
TCM syndromes but also can be combined with other
tongue features to further diagnose diseases. It is very im-
portant to study the fissured tongue images.

In this paper, we propose an improved fissured tongue
image segmentation model based on the U-Net [16] model.
Experiments show that there are some problems in the
segmentation of fissured tongue images by the U-Net model.
Firstly, in the part of the U-Net encoder, the convolutional
neural network with fewer network layers and simpler
structure is used. Such a simple network is not very effective
in the classification task; it is difficult to extract some abstract
high-level features in the image and cannot make full use of
the information of the whole image. Therefore, the lack of a
coding network makes the final segmentation result not
accurate enough. Second, there is less medical image data,
the deeper network is difficult to train, and the more
complex network is easy to overfitting. Finally, it is easy to
lose data during pooling operation, resulting in the unsat-
isfactory segmentation effect of U-Net.

To solve the above problems, we propose a method based
on the combination of U-Net, GCN (Global Convolutional
Network) module, and BR (Boundary Refinement) module
[17]. During the experiment, the fissured tongue image
database is constructed. By comparing different pretraining



Journal of Healthcare Engineering

networks as the encoder and whether to add GCN module
and BR module, the comparative experiment is carried out,
and the improved U-Net model is proposed. The improved
U-Net is tested on the test dataset, and compared with FCN-
8s [7], SegNet [18], VGGNet_Unet, and other image seg-
mentation network models, the average intersection union
ratio (MIoU) of the improved model is increased by about
15.1%, 30.5%, and 5.3%, respectively.

In summary, the main contribution of this study can be
summarized as follows:

(1) We have made improvements based on the U-Net
network. This method adds GCN and BR modules to
the U-Net model. Because large kernels are vital to
relieving the contradiction between classification
and localization, the improved U-Net structure
enables better classification and hence grants the
possibility of building a deeper network with higher
accuracy.

(2) We constructed a database of this study, which was
confirmed by consistency assessment by two spe-
cialist physicians. We have enhanced the data (eight
in the 2D case for the combination of flipping and
rotation) to make it available for experiments.

(3) We demonstrate the performance of the proposed
deep learning architecture by comparing it with the
state-of-the-art segmentation methods. Our method
outperformed most of the top-ranked methods in
terms of segmentation accuracy.

This article is organized as follows. In Section 2, we
provide a short review of related work on the topic of typical
convolution neural networks and semantic segmentation. In
Section 3, we detail the model architecture and the modeling
framework. Section 4 describes the data set we used for
training our algorithm. We provide a series of experimental
analyses that justifies the design choices for our modeling
framework. Last but not least, we present the performance
evaluation of our algorithm and comparison with other
published results. Finally, Section 5 summarizes the ex-
periment and puts forward the shortcomings of the model
and the future development direction.

2. Related Work

2.1. Common Deep Network Architectures. As we previously
stated, a convolutional neural network has made great
contributions to the field of image segmentation. It has
become a well-known standard to apply convolutional
neural networks to segmentation models to realize feature
extraction. For that reason, we will focus on these excellent
image classification networks in this section.

In 2012, Alex Krizhevsky proposed a very important
convolutional neural network model called AlexNet [6]. It
won the champion of ILSVRC image classification and
attracted wide attention from academia and industry.
AlexNet consists of an input layer, five convolution layers,
and three full connection layers. Among them, three con-
volution layers are also maximized.

Inspired by AlexNet, Visual Geometry Group (VGG) isa
CNN model introduced by the Visual Geometry Group
(VGQ) from the University of Oxford. VGGNet [8] explored
the relationship between the depth of a convolutional neural
network and its performance. By repeatedly stacking 3x3
small convolutional kernels and 2x2 maximum pooling
layer, VGGNet successfully constructed a 16- to 19-layer
deep convolutional neural network. Compared to the pre-
vious state-of-the-art network structure, VGGNet has sig-
nificantly reduced the error rate and achieved 2nd place in
the ILSVRC 2014 Competition classification project and 1st
place in the positioning project. At the same time, VGGNet
is very extensible, and migration to other picture data on the
generalization is very good.

While VGGNet demonstrated that deepening model
structures can help improve network performance, Goo-
gleNet [19] focused on how to build deeper network
structures and introduced a new basic structure, the In-
ception module (see Figure 1), to increase the width of the
network. GoogLeNet V1 is deeper than AlexNet or VGGNet,
but its calculation is less than AlexNet and the accuracy is far
better than AlexNet, which is a very practical model. The
reasons for GoogLeNet V1 to reduce fewer parameters but
have a good effect are as follows: one is to remove the final
tull connection layer and replace it with the global average
pooling layer, to make model training faster and reduce
overfitting. Moreover, the Inception module improves the
utilization of parameters.

As the number of layers increases, deep networks will
generally be more difficult to train. When some networks
start to converge, they may also have degeneration problems,
resulting in saturation of accuracy quickly. The deeper the
level, the higher the error rate. Even more surprisingly, the
higher error rate caused by this degradation is not overfitting
but more layers have been added. In order to solve the
degradation problem, a deep residual learning framework
was proposed where hundreds of residual networks could be
successfully trained. In contrast to a normal neural network,
the residual network introduces a cross-layer connection, or
shortcut connection, which constructs the residual module
(see Figure 2).

ResNet [20] structure can effectively eliminate the in-
crease of error on the training set caused by the layers in-
crease. In addition, the ResNet structure can be well
migrated to other network models. GoogLeNet has learned
the characteristics of ResNet and proposed Inception V4 and
Inception-ResNet-V2 [21]. By integrating these two models,
it has achieved excellent results in the ILSVRC dataset.
Finally, a series of variant models are generated based on
ResNet, such as ResNeXt [22], SEResNet [23], and Feature
Pyramid Network (FPN) [24].

2.2. Encoder-Decoder. The encoder-decoder networks have
been successfully applied to many computers vision tasks,
including human pose estimation, object detection, and
semantic segmentation [25]. Typically, the encoder-decoder
networks consist of two parts: encoder and decoder, in
which the encoder gradually reduces the size of the feature
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FiGure 2: Residual block from the ResNet architecture.

map and captures higher-level semantic information, and
the decoder gradually recovers the object details and spatial
dimensions. The whole structure uses the multiscale features
from the encoder module and recovers the spatial resolution
from the decoder module.

The U-Net network which is a simple and effective
network used in this paper is based on the full convolution
network (FCN) network architecture. Its encoder-decoder
structure and skip-connection are very classic design
methods. The encoder part is responsible for feature ex-
traction, and the decoder part restores the original graphics
and gives the prediction of each pixel. Then, the deep in-
formation and shallow information are fused by corre-
sponding pixel stitching.

2.3. Global Convolutional Network and Boundary Refinement.
Semantic segmentation can be considered a per-pixel clas-
sification problem. There are two challenges in this task: (1)
classification: an object associated with a specific semantic
concept should be marked correctly; (2) localization: the
classification label for a pixel must be aligned to the

appropriate coordinates in the output score map. A well-
designed segmentation model should deal with the two is-
sues simultaneously [17].

From the above two aspects, two design principles can be
followed: (1) from the point of view of localization, a full
convolution structure should be used rather than the full
connection layer or global pooling layer; (2) from the point
of view of classification, a larger convolution kernel should
be used to make the pixel and feature map more closely
combined and to enhance the ability to process different
transformations. Moreover, too small a convolution kernel
will cause a small receptive field. The network cannot cover
large targets, which is not conducive to classification.

In order to solve the problem mentioned above, Chao
et al. [17] proposed the Global Convolutional Network
(GCN) module and Boundary Refinement block (BR) in
2017 (see Figure 3(b)) to replace the postprocessing CRF
module. In this paper, the author believes that the network
structure should adopt a larger kernel size, so that feature
maps and per-pixel classifiers can be closely connected to
enhance the ability to cope with transformations. However, a
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FIGURE 3: The 3D U-Net architecture. Blue boxes represent feature maps. The number of channels is denoted above each feature map.
(a) U-Net network structure, (b) GCR module and BR module, and (c) improved U-Net network structure.

large convolution kernel will lead to a sharp increase in the
number of parameters. The paper uses symmetric separated
convolution to reduce the model parameters and compu-
tation. In this paper, we add the GCN module and BR
module on the basis of U-Net. Experimental results show
that the addition of this module can effectively improve the
segmentation accuracy.

3. Methods

As is well known, the diagnosis of the fissured tongue is one
of the important diagnostic methods in traditional Chinese
medicine. After the recognition of fissured tongue, it is
necessary to extract and analyze the characteristics of cracks
in the tongue, which can assist doctors to judge the fissured
tongue image and to diagnose people’s health status through
the fissured tongue image in order to achieve more effective
treatment and disease prevention.

Because the fissured tongue is an obvious crack groove on
the tongue surface, the crack features are usually extracted by
setting a threshold for gray and gradient. Wang et al. [26]
proposed a fissure extraction method based on Otsu and bot-
hat, obtained crack area by the Otsu and extracted fissure by
bot-hot, and deleted fake fissures by postprocessing. Yang
et al. [27] proposed detection of tongue crack based on distant
gradient and prior knowledge. This algorithm uses infor-
mation of pixel color and gray change fully. Zhang et al. [28]
proposed a water flow method suitable for detecting tongue
cracks with different widths. This method uses the charac-
teristics of water flow to simulate the flow of water in the
terrain to obtain the topographic map, and the tongue crack is
detected by calculating the water molecules gathered in the
map. It can not only detect the existence of fissures but also

quantify the severity from different aspects such as the
number of fissures, width, length, and depth.

Furthermore, Chang et al. [29] applied Gradient-
Weighted Class Activation Mapping [30] training to test
tongue image on ResNet50 network structure to detect and
locate cracks. However, some cracks on the face or other parts
are also located at the same time; it is needed to improve the
accuracy of localization in the future. Liu et al. [31] con-
structed the model by the fine-tuning method in Faster-RNN
deep learning technology and transfer learning technology
and evaluated the model effect by using accuracy rate, ac-
curacy rate, and recall rate. The results of image recognition
show that the model is not affected by the location of
pathological changes in tongue image and has strong
adaptability to local feature extraction of tongue image.

Up to now, there is a litter of literature that introduces
the extraction and analysis of some features of the fissured
tongue [32, 33], but it is far from being systematic and in-
depth. Compared with the previous methods, this paper
proposes a U-Net [16] network with GCN [17] module to
extract cracks features and identify cracks features on the
tongue from the perspective of image semantic segmenta-
tion. The major difference between the semantic segmen-
tation method based on a convolutional neural network and
the traditional semantic segmentation method is that the
network can automatically learn the image features and
carry out end-to-end classification learning, which greatly
improves the accuracy and efficiency of image semantic
segmentation.

U-Net [16] network (see Figure 3(a)) has good perfor-
mance in medical image segmentation and is superior to
other coding-decoding structure networks in small target
segmentation performance. Therefore, the U-Net network is
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selected as the main model to segment the fissured tongue
images in traditional Chinese medicine. Due to the influence
of light intensity, diet, and drugs, the tongue image is
characterized by a large amount of information and many
features. FCN [7] and SegNet [18] networks are not fine
enough for crack segmentation in traditional Chinese
medicine tongue image, and it is easy to lose detailed in-
formation. Compared with them, the U-Net network can
obtain a better segmentation effect. Therefore, this study
proposes improving the U-Net network structure to solve
the problem that small targets are difficult to be accurately
segmented.

Compared with U-Net, the improved U-Net model uses
pretrained GoogLeNet as the feature extraction network for
image feature extraction. After feature extraction, feature
information is added through the GCN module and BR
module. Through this operation, the decoder can recover the
image details and spatial dimension better by an upsampling
operation. The improved U-Net network increases the size of
the receptive domain by effectively increasing the size of the
convolution kernel and improves the segmentation accuracy
of small targets.

The improved U-Net model still retains the encoder-
decoder structure, as shown in Figure 3(c). The improved
U-Net model encoder adopts GoogLeNet as the pretraining
network. The left half of Figure 3(c) is the encoder part
composed of the GoogLeNet network. This part is mainly
composed of four submodules. The submodule contains the
Inception module, which extracts the features of the input
image through pooling operation. The final output of the
GoogLeNet encoder enters the GCN module. Then, while
the output of the GCN module is upsampled, the channel
number is added to the output of its previous submodule.
The output result enters the BR module as the input of the
next upsampling, and so on. Finally, the model outputs the
semantic segmentation prediction graph.

On balance, according to Chao’s analysis on classifi-
cation and segmentation in images, we have known that
large kernels are vital to relieving the contradiction be-
tween classification and localization. Following the prin-
ciple of large-size kernels, we add the Global Convolutional
Network (GCN) module in the U-Net structure. In addi-
tion, to further refine the object boundaries, we also add a
Boundary Refinement (BR) block. Qualitatively, the GCN
module mainly optimizes the internal structure of the
network while the BR block increases performance near
boundaries which can precisely capture the edge infor-
mation of the image. The experiments in Section 4 show
that our proposed improved U-Net structure achieves good
performance, which realizes the fissure extraction and
meets a good trade-off between valid receptive filed and the
number of parameters.

4. Experimental Evaluation and Discussion

4.1. Datasets. At present, there is no fully public dataset of
tongue images. Therefore, a new dataset is proposed as a
reference for fissured tongue images segmentation in this
study. The fissured tongue was judged by strictly referring to

the 12th Five-Year Plan textbooks for the higher education
of Chinese medicine industry in China, such as The Tongue
Image Discrimination of Traditional Chinese Medicine [15]
and the tongue Diagnosis Chapter of Diagnostics of Tra-
ditional Chinese Medicine [34]. The images were also
evaluated and confirmed by TCM physicians for consis-
tency. In this study, a total of 316 clinical tongue images
conforming to fissured tongue images were collected and
screened in JPG format. Unified coding was carried out for
the selected tongue image data. Meanwhile, Photoshop CC
2019 was used to quickly further crop the selected tongue
images and retain the regions containing the tongue images
for preprocessing. After cutting, the tongue image is shown
in Figure 4.

Labelme_3.16.7 image annotation software based on
Python was used to annotate the crack area of the tongue
image. Each tongue image generates the corresponding
annotated JSON file and then transforms the JSON file
through the program to generate the corresponding se-
mantic label image of the tongue image. In order to ensure
the accuracy of data annotation, we also check and confirm
the annotation. All the annotated data were randomly di-
vided into training verification set and test set according to
the ratio of 7: 3, in which there were 223 training verification
datasets and 93 test datasets. During the experiment, in
order to avoid the overfitting problem, we amplified the data
of the training verification data set through the geometric
transformation of the image, including the data enhance-
ment operations such as flipping transformation and ran-
dom pruning. We balanced the number of sampled images
and randomly divided them into training sets and verifi-
cation sets according to the ratio of 7: 3, among which there
were 1413 training sets and 596 training sets. The data
preprocessing results during the experiment are shown in
Figure 4.

The experimental system including the pretraining
network is based on the Pytorch framework, and all the
experiments are completed on NVIDIA-GP 1060 (6G)
graphics card, CUDA_verision 10.1, and Python version 3.6.
During the training time, we train Adam with momentum.
We use a minibatch size of 4 images and fixed initial learning
rates of 1 x 107>, We use momentum 0.9, and the learning
rate is set to gradually decrease with the increase of epoch to
achieve a better training effect. We set the size of the input
image to 256 x 256. The performance is measured by stan-
dard mean intersection over union (MIoU) [35].

4.2. Comparison with Different Classification Models without
Pretraining. U-Net Network model is mainly composed of
Encoder Network and Decoder Network. The encoder
network converts the high-dimensional vector into the low-
dimensional vector to realize the low-dimensional extraction
of high-dimensional features. The encoder network captures
more translation-invariant features through multiple max-
imum pooling operations, but it also loses more important
segmentation bases such as the boundary information of the
feature map. Therefore, different pretraining networks are
used for feature extraction in the encoder part of the U-Net
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FIGURE 4: Six cases of fissured tongue images and data preprocessing results: (a) the cracks in the picture are evenly distributed and obvious;
(b) the cracks in the picture are scattered and obvious; (¢, d) the crack distribution in the picture is scattered and not obvious; (e) the cracks
in the picture are widely distributed and obvious, which is difficult to segment; (f) the crack distribution in the picture is single and easy to

segment.

model, and the algorithm accuracy of the model in the
process of training and verification is compared, as well as
the segmentation effect in the test process. During the ex-
periment, the hyperparameter settings of the network, such
as the learning rate, are guaranteed to be the same. The
comparative experimental results are shown in Figure 5, and
the segmentation prediction results are shown in Figure 6.
As can be seen from the prediction results of different
pretraining networks, compared with ResNet, VGGNet,
DenseNet [36], ShuffleNet [37], and SEResNet networks, the
GoogLeNet network is more suitable for U-Net encoder in
this study and has a better segmentation effect.

4.3. Model Comparison with or without GCN Module. In
Section 2.3, we demonstrate that the GCN module im-
proves the classification capability of the segmentation
model by introducing dense connections into the feature
map to help cope with a large number of transformations.
To further prove this point, we carry out experiments to
verify the effectiveness of integrating the GCN module
and BR module in the network. In this study, we add
fusion GCN module and BR module to VGGNet_Unet,
GoogLeNet_Unet, and SEResNet_Unet, respectively.
Before feature fusion, the output results of each feature
extraction submodule of the encoder are first put into the

GCN module and then added with the upsampling results
of the decoder. Finally, the added results are put into a BR
module, and so on. The experimental comparison was
conducted in the test dataset, and the experimental results
are shown in Table 1. As can be seen from Table 1,
compared with the model without GCN and BR modules,
the tongue image crack segmentation accuracy of the
model with GCN and BR modules is improved, and the
MIoU of the GoogLeNet_Unet model with GCN and BR
modules in tongue image crack segmentation is increased
by 5.3%. This shows that the GCN module and BR module
applied to the semantic segmentation of tongue image
crack can better fuse the multiscale image context in-
formation, to effectively utilize the feature information of
the image and obtain higher accuracy of network
prediction.

4.4. Comparison of Different Convolutions in GCN Module.
In this section, we mainly discuss the experiments using
deep separable convolution instead of ordinary convolution
in the GCN module (labeled GCN_D). Since Sifre et al. [38]
proposed in 2013 that interchannel and spatial correlations
of the convolutional layer are recoupable coupled, deeply
separable convolution has been a key building block for
many efficient neural network frameworks to achieve model
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TaBLE 1: Model comparison with or without the GCN module and BR module.
Model PA (pixel accuracy) Loss (%) MIoU (mean intersection over union)
SEResNet_Unet 98.5 4.96 38.0
SEResNet_ GCN_Unet 98.5 5.10 431
VGGNet_Unet 98.6 4.32 42.0
VGGNet_GCN_Unet 98.6 4.84 46.2
GoogLeNet_Unet 98.6 411 45.5
GoogLeNet_GCN_Unet 98.7 448 47.3

TaBLE 2: Model comparison of different convolutions in GCN module.

Model PA (pixel accuracy) Loss (%) MIoU (mean intersection over union)
SEResNet_ GCN_Unet 98.5 5.10 43.1
SEResNet_ GCND_Unet 98.5 5.19 39.6
VGGNet_GCN_Unet 98.6 4.84 46.2
VGGNet_GCND_Unet 98.6 4.46 46.2
GoogLeNet_ GCN_Unet 98.7 4.48 47.3
GoogLeNet_GCND_Unet 98.6 4.02 47.5
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FiGure 7: Comparison of MIoU between classical segmentation model and improved U-Net model in the test dataset.

lightweight. The difference between ordinary convolution
and deeply separable convolution mainly lies in that ordi-
nary convolution considers all channels in the corre-
sponding region at the same time, deep separable
convolution uses different convolutions to check different
channels for convolution, and ordinary convolution is di-
vided into two independent parallel convolution processes,
Depthwise [39] convolution and Pointwise [39] convolution.
Based on the previous chapter, we adopt the same experi-
mental environment and add the GCN_D module and BR
module, respectively, for VGGNet_Unet, GoogLeNet_Unet,
and SEResNet_Unet. The experimental comparison was
conducted in the same test dataset, and the experimental
results are shown in Table 2. As can be seen from Table 2, the
tongue image crack segmentation accuracy of the model
with the GCN_D module is not significantly different from
that of the model with the GCN module. This indicates that
whether deep separable convolution is used for semantic
segmentation of tongue image crack in the GCN module has
little influence.

4.5. Experimental Results on Test Datasets. In this study, we
conducted experiments on some outstanding models, such
as FCN, DeepLab v3_plus [23], FRN [24], SegNet [18], and
so on [40-42], VGGNet_Unet, and the improved U-Net in
the test dataset with the weights obtained in the training
process. The experimental results are shown in Figure 7, and
the prediction results are shown in Figure 8. It can be seen
that neither Deeplab3_plus nor FCN model can extract
tongue image cracks well, especially in the case of small and
not obvious crack features in tongue image; the prediction
effect is poor and even cannot predict accurately. Goo-
gleNet_Unet and the improved U-Net can better distin-
guish the tongue image cracks from the background in the
area where the tongue image cracks are sparse. Compared
with the classical U-Net model, the improved U-Net net-
work not only reduces the error rate but also improves the
predicted MIoU. To better display the experimental results,
we randomly selected three pieces of data from the dataset,
used the improved U-Net network to predict these pictures
through the weight obtained in the training process, and
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superimposed the prediction results on the original imageto ~ 4.6. Model Validation. In this section, an experiment was
better illustrate the segmentation effect of the network, as  described to validate the improved model and other
shown in Figure 9. models. The overall flow of the experiment is shown in
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Figure 10. The first step is to collect tongue images.
Generally, tongue images need to be taken by mobile
phones, digital cameras, and other pieces of equipment in
a closed, stable, and fixed acquisition environment. Sec-
ondly, we will give the collected tongue images to pro-
fessional doctors for identification to judge whether the
collected image data can be used in the experiment. Be-
cause the collected tongue images usually contain

GoogLeNet_Unet_predict

DenseNet_Unet predict ~ SEResNet_Unet predict

(b) (o)

Improved Unet predict

(e) ()

redundant backgrounds such as teeth, lips, and face, it has
a great impact on the later experimental analysis. We need
to remove the interference background from the collected
tongue image to segment the analyzable tongue image.
This is the most critical step in the experiment. Finally, we
send the processed tongue image into the pretrained
model in Section 4.5 for feature extraction of fissured
tongue images.
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In this experiment, the crack tongue image we selected is
neither in the training dataset nor in the test dataset, which
ensures the effectiveness of the verification experiment. In
Figure 11, we show the prediction results of a fissured tongue
picture. The experimental results show that FCN, Dense-
Net_Unet, VGGNet_Unet, GoogLeNet Unet, and the im-
proved U-Net model can accurately extract crack features.

5. Conclusions

Tongue crack is an important feature of tongue states. Not
only does change of tongue crack states reflect objectively
and accurately changed circumstances of some typical
diseases and TCM syndrome but also semantic segmenta-
tion of the fissured tongue can combine the other features of
tongue states to further improve tongue diagnosis systems
identification accuracy. Although computer tongue diag-
nosis technology has made great progress, there are few
studies on the fissured tongue, and most of them focus on
the analysis of tongue coating and body. Moreover, research
fruits of semantic segmentation of fissured tongue would
accelerate practical research on tongue crack in comput-
erized tongue diagnosis and also possess potential appli-
cation in medical clinic practice simultaneously.

Furthermore, deep learning has had a tremendous impact
on various fields in science [43]. The focus of the current study
is on one of the most critical areas of computer vision: medical
computer vision, particularly deep learning-based approaches
for medical image segmentation. In the field of medical image
segmentation, deep correlation technology has been mature
and has broad application prospects. It has been applied to
lung image segmentation [44], brain tumor and other tissues
segmentation [45], cell and membrane structure segmenta-
tion [46, 47], bone tissue segmentation [48], and tibia cartilage
segmentation [49]. At present, some frameworks for specific
segmentation tasks have been formed, and good results have
been obtained, but further optimization is needed to improve
the segmentation accuracy. Therefore, compared with the
traditional image recognition method, deep learning tech-
nology can more accurately complete fissured tongue seg-
mentation and be conducive to the automatic recognition of
TCM tongue images.

In this study, we propose an image semantic segmentation
model based on the U-Net model to detect fissured tongue
images and compare the different pretraining networks for the
encoder part and whether to add the GCN module and BR
module. The improved U-Net model achieves 47.5% semantic
segmentation accuracy of fissured tongue images, which is
151% higher than the FCN model, 30.5% higher than the
SegNet model, 5.3% higher than the VGGNet_Unet model, and
1.8% higher than GoogLeNet_Unet model. At the same time,
the improved U-Net model can capture the multiscale context
information of the image under the multisampling rate, with
high computational efficiency, and it can effectively complete
the crack detection on the tongue image dataset. Although the
improved U-Net model has been greatly improved to a certain
extent, the experiment also has some limitations. It can be seen
from the performance of the model on the test dataset that the
model still needs to be improved. At the same time, the
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mapping from input to output in the learning process of a
neural network is discontinuous [50]. This discontinuity makes
the picture can deceive the model and produce wrong judgment
after appropriate modification [51]. In the follow-up work, we
need to conduct adversarial example attack experiments on the
model and modify the training samples [52]. By adding more
adversarial samples to the training set, we can effectively avoid
some attacks. We can test the model by adding a small amount
of noise that cannot be detected by human eyes on the basis of
clean data. In the encoder design part, we can add additional
networks on the basis of the GoogLeNet network to keep the
original network unchanged.

In the future, the research on computerized fissured
tongue diagnosis can be further improved and studied from
the following aspects. (1) Feature extraction: defining and
extracting more crack features is the top priority of com-
puterized fissured tongue diagnosis in the future. In the future
computer tongue diagnosis system, TCM tongue diagnosis
can be assisted by using only the mapping relationship be-
tween the shape characteristics of tongue cracks and clinical
diseases, which further simplifies the steps of computer
tongue crack diagnosis. (2) Feature fusion: computer tongue
diagnosis and computerized tongue crack diagnosis are
combined with other diagnostic methods to promote the
objective research of four diagnoses in traditional Chinese
medicine. (3) System integration and testing: integrating the
research results of computer fissured tongue diagnosis into
the system and conducting large-scale clinical tests in some
hospitals is a key step for computer tongue diagnosis tech-
nology to go to the market. Among them, the “AI Open
Platform for Traditional Chinese Medicine Tongue Diagno-
sis” jointly developed by Anhui University of Chinese
medicine and a company in Hefei is a typical case. The system
integrates tongue image acquisition, tongue image diagnosis,
operation interface, and system advantages. Compared with
other traditional tongue diagnosis instruments, it is a rela-
tively complete computer-aided tongue diagnosis system.
Moreover, the application of computer tongue diagnostics to
mobile is also the mainstream trend. In this process [53], we
analyze the concepts of security, privacy, and resilience, along
with their relationships in detail, and formulate a set of
principles for designing a mobile application linking resilience
and security in privacy protection.
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