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fabrication of high-performance 
dual carbon Li-ion hybrid capacitor: 
mass balancing approach to 
improve the energy-power density 
and cycle life
tandra panja1,2, Jon Ajuria1, Noel Díez3, Dhrubajyoti Bhattacharjya1, Eider Goikolea2 & 
Daniel carriazo1,4 ✉

Most lithium-ion capacitor (Lic) devices include graphite or non-porous hard carbon as negative 
electrode often failing when demanding high energy at high power densities. Herein, we introduce a 
new Lic formed by the assembly of polymer derived hollow carbon spheres (HcS) and a superactivated 
carbon (AC), as negative and positive electrodes, respectively. The hollow microstructure of HCS and 
the ultra large specific surface area of AC maximize lithium insertion/diffusion and ions adsorption in 
each of the electrodes, leading to individual remarkable capacity values and rate performances. To 
optimize the performance of the Lic not only in terms of energy and power densities but also from 
a stability point of view, a rigorous mass balance study is also performed. Optimized LIC, using a 2:1 
negative to positive electrode mass ratio, shows very good reversibility within the operative voltage 
region of 1.5–4.2 V and it is able to deliver a specific cell capacity of 28 mA h−1 even at a high current 
density of 10 A g−1. This leads to an energy density of 68 W h kg−1 at an extreme power density of 
30 kW kg−1. Moreover, this LIC device shows an outstanding cyclability, retaining more than 92% of the 
initial capacity after 35,000 charge–discharge cycles.

The search for more powerful energy storage devices has been intensified in recent years due to the increasing 
energy demand from modern human activity. Thus, both the research and the industrial communities are facing 
the challenges to develop high power/energy sources for the fast-growing market of electric vehicles, aerospace 
and next generation portable electronics. Amongst the different energy storage systems, lithium-ion batteries 
(LIBs) and supercapacitors (SCs) are the preferred energy sources for high energy or high-power applications, 
respectively. The main advantages of LIBs over SCs are their broad operating potential window, their higher 
energy density (∼200 W h kg−1 vs. < 10 W h kg−1 for SCs)1–4. On the other hand, SCs are able to supply much 
higher power densities and have an extended cycle life (over 106 cycles). Industrially manufactured LIBs and SCs 
still show their limitations in certain areas of application demanding both high-power and high-energy.

Hybrid electrochemical capacitors (HECs), which combine a battery-type negative electrode with a capaci-
tive positive electrode, have recently attracted huge scientific and industrial interest since they can provide high 
energy densities at high power. HECs based on different metal-ions such as Li+, Na+ or K+ have been proposed 
until date5–12. In particular, in lithium-ion capacitors (LICs) the intercalation/deintercalation of Li+ occurs in 
the anode side as in a LIB, whilst the adsorption/desorption of the counter ion (typically PF6

−) takes place at the 
surface of the positive electrode as in an electrical double layer capacitor (EDLC)5,6. Different LIC systems (“Dual 
carbon LICs”) combining a high surface area activated carbon as the positive electrode with a Li-ion intercalating 
carbon (graphite, hard carbons or soft carbons) as the negative electrode have been described in the literature 
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showing an energy storage capacity almost five times higher than that of EDLCs, maintaining good response 
at high power demand and stability upon long cycling.6,9,10-12. Another advantage with respect to conventional 
EDLC capacitors is that, due to the asymmetric combination of anode and cathode, the LIC devices suffer from a 
much lower self-discharge, similarly to Li-ion batteries7,11.

Regarding the negative electrode, hard carbons have shown promising results even doubling the theoretical 
capacity of graphite. Their disordered structure containing graphite-like domains with a low degree of crystal-
linity enables the use of more space for the Li+ ion storage in the cavities and micropores along with intercala-
tion10,12. Different nanostructured carbon materials, namely carbon nanosheets, nanospheres, carbon nanopipes 
or carbon nanofibers among others have been recently investigated as anodes for LICs. Tuning the microstructure 
of the carbons at the nanoscale brought about significant improvements in terms of structural stability, transport 
kinetics, cyclability, and coulombic efficiency9,12–14. The morphology of the hollow carbon spheres results particu-
larly convenient since they provide electrolyte reservoirs and fasten Li+ intercalation/deintercalation processes 
through the thin carbon walls15,16. Additionally, their ample inner space can buffer the volume changes undergone 
during the charge/discharge processes, thus improving the mechanical stability of the electrode16,17.

As the positive electrode, activated carbons are preferentially chosen due to their large specific surface areas 
and open porosity, which allows fast ionic transport to the whole surface of the electrode6,18. In a previous work, 
we have introduced a novel and straightforward synthetic route for the preparation of ultra-high specific surface 
area activated carbons. This synthesis strategy, consisting on a facile one-step process in which polymerization, 
carbonization and chemical activation of the carbon precursors occur all at once and yields carbons with spe-
cific surface areas slightly above 3000 m2 g−1 and a hierarchical micro-mesoporous structure. Both their suitable 
porous structure and easy preparation make them a suitable choice for the positive electrode material in LIC 
systems19.

The performance of hybrid supercapacitors can be improved through the optimization of the mass balance 
between the positive and negative electrodes20. Thus, different mass balances translate into different working 
potential spans and, therefore, a different degree of utilization of each electrode, which can be used to maximize 
the energy density of the device. Indeed, most of the scientific reports focus on the best-obtained energy/power 
results, not paying much attention to safety and stability.

In this report, we present a facile synthetic route towards hollow carbon spheres by the pyrolysis of nitrogen 
containing monomers. This material was coupled in a full cell with our home-made superactivated carbon as 
the positive electrode. Optimization of the electrodes mass balance, within an operative potential window of 
1.5–4.2 V, was also investigated.

Results and Discussions
physicochemical characterization. The schematic diagram included in Fig. 1 summarizes the approach 
followed for the preparation of the hollow carbon spheres that will serve as negative electrode in this study. First, 
polymeric hollow microspheres were prepared by a simple strategy that involves the interfacial co-polymerization 
of aniline and pyrrole in the presence of Triton X-10017,21. Due to their different hydrophobicity, the molecules of 
aniline mainly sit at the outer layer of the micelle-water interface, whereas the more hydrophobic pyrrole mole-
cules tend to diffuse towards the inner wall of the micellar core.

Polymerization leads to the formation of hollow polymeric spheres (HPS) and its subsequent carbonization 
under inert atmosphere yields hollow carbon spheres (HCS). The HCS maintain the pristine microstructure of 
the HPS but undergo a slight shrinkage of their size (Fig. 2a,b).

The thickness of the carbon walls was of ca. 110 nm (Fig. 2d). The XRD pattern of the carbonized sample 
(Fig. 2c) shows two low intensity and broad X-ray diffraction peaks at ~26° and ~50°, which correspond to the 
(002) and (100) planes characteristic of disordered carbons with a low degree of graphitization. The Raman spec-
trum (Fig. 2c, inset) shows two predominant bands at ~1356 cm−1 and ~1594 cm−1, which reflect the defects 
in the carbon lattice (D-band) and the stretching vibration in C-C bonds (G-band), respectively. Additionally, 
two broad and very low intense peaks can be identified in the 2500–3000 cm−1 region, that are ascribed to the 
G´ stretching mode. Defects in the forms of edges and surface imperfections like defects, cracks, cavities, and 
active sites act as catalytic sites, which can be active for formation of solid-electrolyte interface (SEI) layer as 
well as lithiation-delithiation process in the negative electrode of LIC cell22. The high-resolution TEM images 
(Fig. 2e) evidenced the presence of micropores in the carbon shells. To get additional information about the tex-
tural features of these carbon spheres, nitrogen gas adsorption-desorption measurements were carried out. The 
N2 adsorption-desorption isotherm registered for HCS (Fig. 2f) shows a profile in between types I and IV accord-
ing to IUPAC classification, with a H4 hysteresis loop23. The large adsorption of nitrogen at low relative pressures 
confirmed the microporous nature of the material. Due to the presence of a large amount of micropores, the BET 

Figure 1. Schematic diagram of the synthesis process of hollow polymer spheres (HPS) and hollow carbon 
spheres (HCS).
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specific surface area calculated for this material was 282 m2 g−1. Since the monomers used for the preparation of 
the HCS contain nitrogen we have also performed the elemental analysis of the HCS carbon using Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS) to determine the nitrogen content in this anode material. The 
analysis showed that HCS has a high nitrogen content of 9.1 wt.% in its carbon framework. It is well-known that 
the incorporation of nitrogen-containing groups in the carbon network not only improves the electronic and 
ionic conductivities but also provides active sites that enhance ion adsorption leading to an increase in capacity 
and rate capability17,24.

Physicochemical characterization of the superactivated carbon prepared by the in-situ polymerization, car-
bonization, and activation of melamine and terephthalaldehyde is included in Fig. 3. SEM images (Fig. 3a) show 
irregular-shaped carbon utricles with a size of ~50 nm and a very rough surface. High magnification TEM investi-
gation (Fig. 3b) reveals the nanopores randomly distributed along with the sample. The N2 adsorption-desorption 
isotherm registered for this activated carbon exhibits a profile in between type I and IV with a distinguishable 
capillary condensation step in the relative pressure range of 0.3–0.619. The abrupt increase of N2 absorption at 
low relative pressures is indicative of its highly microporous structure. Indeed, the specific surface area and pore 
volume calculated for this material are as high as 3180 m2 g−1 and 2.8 cm3 g−1, respectively. The pore size distri-
bution calculated from the isotherm data (inset in Fig. 3c) shows the contribution of two pore systems with in 
the micro- and mesopore range, centered at ca. 1.0 nm and 2.3 nm, respectively. The ultra-large specific surface 
area combined with its hierarchical distribution of pore sizes is convenient for the physical adsorption of a large 
number of ions with a low resistance to diffusion, resulting ideal for its use as an EDLC electrode. The Raman 
spectrum in Fig. 3d displays the typical D and G bands at ~1350 cm−1 and ~1590 cm−1, respectively, pointing out 
that a significant amount of graphitic carbon is still present in the carbonaceous network despite the large con-
centration of defects and/or pores in sample24.

electrochemical characterization
Both carbonaceous materials were electrochemically characterized individually. First, the performance of HCS 
as anode material was investigated in a half-cell configuration (T-type Swagelok) using Li foil as both the counter 
and the reference electrode. The cell was cycled within the potential range of 0.002–2.0 V vs. Li+/Li. Figure 4a 
illustrates the 1st, 5th and the 10th cyclic voltammograms (CVs) recorded at 1 mV s−1. It can be observed that most 
of the capacity is stored below 1.0 V. In the first CV, a broad reduction peak can be distinguished between ~1.0 to 
0.3 V, which resembles the formation of a SEI layer due to the carbonate solvent decomposition25. The intercala-
tion of Li+ into the HCS takes place between 0.3 and 0.01 V, while the deintercalation process shows a maximum 
current peak at 0.23 V. The Galvanostatic charge-discharge curves (GCD) performed between 2.0 V and 0.002 V 
at different current rates are shown in Fig. 4b. The first discharge at 0.1 C (C = 372 mA h g−1) from its open circuit 

Figure 2. (a) SEM images of HPS and (b) HCS obtained after the pyrolysis of HPS, (c) XRD pattern recorded 
for HCS (inset: Raman spectrum registered for HCS), (d) low magnification TEM image of HCS and (e) high 
magnification TEM image of HCS outer surface, (f) N2 adsorption-desorption isotherms registered for HCS.
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potential shows two distinct plateaus at ~1.0 V and ~0.25 V corresponding to SEI formation and Li+ intercalation, 
which are in good agreement with the CV. The first discharge shows a very large specific capacity of ca. 910 mA h 
g−1, whereas the first charge shows a specific capacity of 523 mA h g−1 corresponding to an irreversible capacity 
loss of ~43%. Such high irreversible capacity loss measured in the first cycle is attributed not only to the formation 
of the SEI layer caused by the decomposition of carbonate electrolyte but also due to the irreversible reaction 
of Li+ with oxygen-containing functional groups present in the HCS26. It can be observed in the second and 
fourth charge-discharge curves that an additional charge storage occurs between 1.5 and 0.25 V in addition to 
the Li+ intercalation between 0.25 and 0.01 V. This explains the high specific discharge capacity values of 500 and 
430 mA h g−1, respectively. This additional specific capacity values are attributed to the highly disordered nature 
of HCS carbon that promotes Li+ storage through other mechanisms such as excess bulk storage, storage in cav-
ities and nanopores, interfacial/surface storage and the effect of heteroatoms, which gradually decreases during 
the subsequent cycles stabilizing after the fifth cycle27. The HCS anode showed excellent capacity retention at 
increased current rates (Fig. 4d). Thus, 173 mA h g−1 and 100 mA h g−1 were achieved at 10 C and 30 C (measured 
in the 5th cycle registered at each current rate), which corresponds to a retention of the initial capacity of ~40% 
and ~24%, respectively. Even after testing at the very high current rate of 100 C, 87% of the initial capacity was 
retrieved when the current rate was set again to 0.1 C. The SEM images registered for an anode containing HCS 
and the binder show that the carbon spheres are well dispersed, which ensures that lithium ions can easily access 
all the available microporous carbon surfaces (Fig. 4c). Additionally, the microstructure of the HCS is undoubt-
edly responsible for such advanced rate performance. Both the interparticle space and the spherical voids in the 
core of the HCSs act as ion-buffering reservoirs, which shorten the diffusion path towards the thin microporous 
carbon shell16,17. It is also noteworthy that although the CE in the first cycle was merely 57%, it quickly raised up 
to 95% in the second cycle and stabilized at a value of 98% in the subsequent cycles even at high current rates. 
Such high CE indicates that this carbon architecture is very capable of enduring the mechanical stress induced at 
harsh current rates.

Figure 3. (a) SEM image, (b) TEM image, (c) N2 adsorption-desorption isotherms (inset: pore size distribution 
curve) and (d) Raman spectrum registered for the activated carbon (AC).
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The capacitive performance of the superactivated carbon was evaluated in the potential range of 1.5–4.2 V vs. 
Li+/Li using LiPF6 in 1:1 (EC:DMC) as the electrolyte. Figure 5a,b include the CV curves registered at 5 and 
100 mV s−1. At the lowest scan rate, the plot is square-shaped and very symmetric, evidencing the capacitive 
behavior of the material. Generally, the open circuit potential of activated carbon cathodes falls in between the 
potential range of 3.0–3.1 V vs. Li+/Li in a Li-ion electrolyte. Therefore, the electrical double layer stores ions of 
opposite charge depending on the potential range, i.e. it adsorbs −PF6  anions from 3 V to 4.2 V and Li+ cations 
from 3 V to 1.5 V. Even at the high sweep rate of 100 mV s−1 the plot shows the characteristic rectangular-shaped 
profile, pointing out the fast and effective polarization undergone due to the charge separation at the electrode/
electrolyte interface. Figure 5c shows the GC-GD profiles of the AC cathode at different current densities. The 
symmetric triangular-shaped GC-GD curves showing almost 100% of CE confirm the purely capacitive behavior 
of the superactivated carbon. Interestingly, this AC achieved a specific capacitance of 208 F g−1 at 1 A g−1, and 
retained 203 F g−1 at a high discharge rate of 10 A g−1 (Fig. 5d). Such good capacitance retention is favored by the 
extremely high specific surface area of the AC combined with its hierarchical and interconnected porous network, 
which allows the unimpeded diffusion of electrolyte ions onto the active carbon surface19,20. The excellent rate 
capability observed together with the absence of ohmic drop at the beginning of the discharge branches point out 
this activated carbon as a promising positive electrode material for LIC systems.

In view of the good performances exhibited by both carbonaceous materials, LIC full cells were assembled 
using HCS and AC as anode and cathode electrodes, respectively. As a rule of thumb, in asymmetric capacitor 
configuration there should be charge balance between anode and cathode based on the specific capacity and 
potential window28. However, this rule does not always result in optimum performance in the case of a Li-ion 
capacitor. This is because there is stark difference between the kinetics of faradaic lithiation in anode and 
non-faradaic −PF6  adsorption on cathode. This difference results in contrasting specific capacity performance of 
anode and cathode at low and high current density (Figure S3 of Supplementary information), which make it 
almost impossible to estimate the charge balance effectively only by considering the specific capacity at low cur-
rent. Therefore, to evaluate and optimize the electrochemical performance of the full cell as well as to achieve best 
performance in terms of specific capacity, cycling stability and safety, a variation of the electrode mass ratio was 
investigated. Thus, four LIC cells were assembled using anode/cathode electrode mass ratios of 1.1, 1.3, 1.7 and 
2.0. In Fig. 6a,b have compared the GC-GD curves recorded for these four LIC cells at 0.1 and 10 A g−1, respec-
tively, in the 1.5–4.2 V potential range. At the lowest current density, a progressive decrease of the discharge time 
was observed when the mass ratio was increased from 1.1:1 to 2:1. This trend is inverted when the current density 
is increased to 10 A g−1. At this current rate, a prominent decrease in the ohmic drop combined with an increase 
in the discharge time (almost two-fold higher) is observed when the mass ratio is increased from 1.1 to 2. This 

Figure 4. Electrochemical characterization of hollow carbon spheres as an anode in half-cell configuration 
tested between 0.002 and 2.0 V; (a) CVs vs. Li/Li+, (b) GC-GD vs. Li/Li+, (c) SEM image of HCS electrode 
surface and (d) rate capability and coulombic efficiency.
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difference in mass variation performance is also clearly exhibited from Ohmic drop vs. current density plots of all 
LIC cells is shown in Figure S1 of the Supplementary Information. The better electrochemical performance of the 
high mass ratio LIC cell seems to be the deeper utilization (larger operating voltage) of the EDLC electrode during 
the fast anionic adsorption-desorption process. Figure 6c shows the evolution of the specific capacity with the 
current density for the LIC cells using different electrode mass ratios. It can be observed that at current densities 
below 1 A g−1 the LIC cell with the lower mass ratio (1.1:1) shows the highest specific capacity, whereas the LIC 
cell assembled using the 2:1 electrode mass ratio shows the best rate capability and the largest value of specific 
capacity at high current rates, achieving 28 mA h g−1 at a current density of 10 A g−1. The same trend with respect 
to the mass variation is also noticed in case of specific cell capacitance (F g−1) values, which are included in the 
Figure S2 (Supplementary Information). Figure 6d represents the comparative Ragone plots calculated for the 
LICs with different electrode mass ratios. At the lowest current density, the 1.1:1 cell achieved an energy density 
of 141 Wh kg−1, and this value slightly decreased with the increase of the mass ratio down to the 117 Wh kg−1 
reached by the 2:1 cell. With the increase of the applied current, the differences between the different cells become 
more noticeable. Indeed, at the highest current density (8 seconds of discharge) the LIC with the highest loading 
in the negative electrode obtained an energy density as high as 68 Wh kg−1 at a power density of 30 kW kg−1.

In order to get deeper insights into the electrochemical performance of the LICs, the performance of each 
electrode was monitored. The GC-GD profiles registered for the AC cathodes and the HCS anodes (plotted vs. Li/
Li+) at a current density of 1 A g−1 are shown in Fig. 7a–d. In the 1.1:1 LIC cell (Fig. 7a) the anode potential swing 
is significantly high (~1.85 V), which evidences a high utilization of the anode for the Li+ 
intercalation-deintercalation process. Therefore, this configuration allows extraction of the highest amount of 
charge stored thus delivering the highest specific capacity. However, since the anodic process is kinetically much 
slower than the adsorption-desorption of −PF6  occurring in the positive electrode, this configuration limits the 
charge extraction at high current densities. This anode potential swing is gradually decreased from ~1.38 to 
~0.34 V, as it can be observed from Fig. 7b–d, with an increase in anode/cathode mass ratio. This decrease results 
in a less utilization of the anode but results in less particle volume expansion, electrolyte decomposition and lith-
ium consumption. On its behalf, with the increase in anode/cathode mass ratio, the potential swing in the cathode 
increased significantly from 1.0 V (1.1:1 cell) to 2.38 V (2:1 cell) thus gradually enhancing the cathode capacity. 
Therefore, the 2:1 electrode mass ratio guarantees the best rate capability of the cell taking advantage of a higher 
utilization of the porous electrode surface. On the other hand, the lower polarization registered in the anode 
limits the operative capacity of the anode thus results in less specific capacity of full cell. However, concurrently 
this lower anode polarization avoids the chances of lithium plating, which is beneficial in terms of safety as well 
as durability.

Figure 8a and Figure S4 in supplementary information show the GC-GD plots of each electrode as well as 
the corresponding LIC for all cell combinations at a current density of 10 A g−1. These figures almost mirror the 

Figure 5. Electrochemical characterization of AC cathode in half-cell configuration tested between 1.5 to 4.2 V; 
(a) & (b) CVs at low and high scan rate of 5 mV s−1 and 100 mV s−1 (vs. Li/Li+), (c) GC-GDs vs. Li/Li+, and (d) 
capacity vs. current density (rate performance).
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observation revealed from Fig. 7a–d with additional evidence. Figure 8a reveals that the 2:1 LIC cell is still fully 
operative within the 1.5–4.2 V potential range even at such a high current rate. Moreover, the anode potential 
swing is still limited to ~0.38 V. However, the 1.1:1 LIC cell (Figure S4a) shows a significant increase in anode 
potential swing up to ~2.26 V. This results in severe Li+ plating on the anode (yellow color marked area in 
Figure S4), which not only degrades the cell performance but also aggravates safety issues. The other two mass 
ratio LIC cells show a gradual decrease in the anode potential swing, thus enhancing the power performance. 
From all these GC-GD results, it was found that the 2:1 LIC cell shows the best performance in terms of both spe-
cific capacity and rate capability. This is due to a steady cathode potential window combined with the contended 
use of the anode (its CE is very close to 100%), which allows the stable performance of the full cell. So, this 2:1 LIC 
cell is selected to investigate the long-term stability by performing GC-CD cycles at a current density of 10 A g−1. 
The resultant cyclic stability plot in Fig. 8b shows that this LIC cell exhibited an outstanding cycling performance, 
retaining 98.7% of its initial capacity after 10,000 cycles, and 92% after 35,000 cycles. The potential swing of each 
electrode during the cycling test is plotted in Fig. 8c. As can be seen, the cathodic potential window shows a small 
upward shifting, but remains steady during the whole test, which validates the stable performance of the full cell.

For the sake of comparison, Fig. 8d collects the Ragone plot of our optimized LIC as well as those of other 
representative LIC systems recently reported. It is worth to highlight the excellent energy density measured for 
our selected LIC, especially in the high-power region in which most of the previously reported LICs suffer from 
an abrupt decay of their energy densities5,10,13,14,18,29,30.

conclusions
Micro-sized hollow carbon spheres have been synthesized by an easy procedure. This material exhibits improved 
performance in the lithium insertion-extraction process especially at very high current rates, which point it as 
a promising candidate for its use as the negative electrode in lithium-ion capacitors. LICs were assembled by 
coupling this micro-structured hollow carbon spheres versus a superactivated micro-mesoporous carbon using 
different electrode mass ratios. The hollow carbon spheres are able to resist the volume changes during repetitive 
lithiation-delithiation cycles, while the hierarchical porosity of the superactivated carbon offering very low resist-
ance to ion diffusion assured a good response at high current rates. It was found that the best negative/positive 
electrode mass ratio in this LIC system is 2:1, at which the cell delivers a maximum gravimetric energy density 
of 117 Wh kg−1 at 0.34 kW kg−1 and still 68 Wh kg−1 at an extreme power density of 30 kW kg−1. The robustness 
of the LIC was confirmed by its remarkable long-term stability over 35000 cycles with only 8% of capacity decay 
registered. This outstanding performance makes our proposed LIC a promising energy storage system standing 
out among its peers.

Figure 6. Comparative electrochemical characterization of HCS//AC full cells with different electrode mass 
ratios: GC/GDs at a current density of (a) 0.1 A g−1 and (b) 10 A g−1, (c) rate capability and (d) Ragone plot.
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Experimental Section
Synthesis. The hollow carbon spheres (HCS) were synthesized by the carbonization of polymeric hollow 
spheres under a dynamic inert atmosphere. For the synthesis of the co-polymeric hollow nanospheres, 0.08 g of 
Triton-X-100 was dispersed in 50 ml deionized water, and then 0.456 ml of aniline and 0.346 ml of pyrrole were 
added to the mixture under continuous stirring that was kept until complete dissolution. Then, the solution was 
kept under continuous stirring in an ice bath to maintain a temperature of 3–5 °C. For the oxidative polymeriza-
tion, aqueous ammonium persulfate (0.8 g was dissolved in 1 ml DI water) was precooled at 3–5 °C and added to 
the above solution. The mixture was stirred for a few minutes and the resulting solution was kept in the refriger-
ator for 24 h at 4 °C. Finally, the obtained dark greenish polymer precipitate was collected by centrifugation and 
washed with DI water several times. The product was freeze-dried to maintain the microscopic structure of the 
polymeric hollow spheres and then carbonized at 800 °C in Ar atmosphere for 2 h using a heating rate of 3 °C 
min−1.

The superactivated carbon (AC) was synthesized following the synthetic route described in detail in our pre-
vious report19. Briefly, 1.24 g of melamine, 1.36 g of terephthaladehyde and 5.0 g of KOH were grounded using an 
agate mortar and the mixture was carbonized under Ar atmosphere. The temperature was first raised up to 250 °C 
for 3 h and then increased to 800 °C for 1 h using heating ramps of 1 °C min−1. (CAUTION: certain amount of 
potassium cyanide may be formed during the carbonization process, so carbon should be carefully manipulated, 
and the wastes treated accordingly). Then the final product was washed several times with 3 M HCl and DI water 
followed by drying at 120 °C in an oven.

physicochemical characterizations. X-ray diffraction (XRD) patterns of the synthesized powdered sam-
ples were recorded on a Bruker D8 X-ray diffractometer and the data were attained at 40 kV and 30 mA using 
CuKα radiation over 2θ within the range from 5 to 90° at steps of 0.02° with a residence time of 5 seconds. 
Raman spectra data were collected using a Renishaw spectrometer (Nanonics Multiview 2000) which was oper-
ated with an excitation wavelength of 532 nm under an Ar ion laser with an exposition time of 10 seconds. The 
nanostructure of the synthesized samples was investigated on a Scanning electron microscope (SEM) in a field 
emission Quanta 200 FEG microscope. Tecnai G2 transmission electron microscope (TEM, FEI) was used for 
the microstructural characterization. For TEM analysis, samples were homogeneously dispersed in 1 ml ethanol 
for 10–15 min by ultrasonication. After that, a few drops of the solution were cast on a Cu grid decorated with 
holey carbon films. N2 adsorption-desorption experiments were carried out at −196 °C using an ASAP 2020 
instrument from Micromeritics. The values of specific surface area were calculated using the Brunauer, Emmett, 
and Teller (BET) equation within a relative pressure range of 0.05–0.2. The total pore volume (VT) was calculated 
by the amount of nitrogen adsorbed at р/po = 0.95. Pore size distributions (PSD) were evaluated based on the 

Figure 7. Comparative galvanostatic charge-discharge profiles of each electrode in LICs with different 
electrode mass ratios at a current density of 1 A g−1. The cells were run in the 1.5–4.2 V potential range.
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N2 adsorption branch data by using the two-dimensional nonlocal density functional theory (2D-NLDFT). The 
nitrogen content in the HCS carbon was determined by inductively coupled plasma mass spectrometry (ICP-MS).

Electrode preparation, cell assembly, and electrochemical characterization techniques. The 
negative electrode slurry was prepared by mixing 90 wt% of hollow spherical carbon (HCS) with 5 wt% Super-C 
C65 carbon black (Imerys Graphite & Carbon, Willebroek, Belgium) and 5% polyvinylidene fluoride (PVdF) 
in N-methyl-2-pyrrolidone (NMP). The components were mixed under vigorous stirring for at least 1 h using 
a magnetic stirrer. The obtained HCS-based slurry was coated onto a copper foil current collector. For the pos-
itive electrode slurry, the activated carbon, Super-C C65, and PVdF were mixed in a weight mass ratio of 90:5:5 
in NMP solution under continuous stirring for 1 h and then the AC-based slurry was laminated onto an alu-
minum foil. Laminates were placed immediately into a vacuum oven for drying at 80 °C for 12 h under con-
stant vacuum. The mass loading of the positive electrode was of 1–1.3 mg cm−2 while the loading in the negative 
electrode ranged from 1.4 to 2.6 mg cm−2. The electrochemical characterization of the anode was evaluated in a 
three-electrode configuration using an airtight Swagelok T-cell. Metallic Li was used as both the counter and the 
reference electrode, and the anode was cycled within the potential range of 0.002 V to 2 V. The same cell assembly 
procedure was followed to perform the electrochemical characterization of the cathode within the 1.5–4.2 V 
potential range.

Lithium hybrid supercapacitor full cells (HCS//AC) were assembled using four different negative-to-positive 
electrode mass ratios: (1.1:1), (1.3:1), (1.7:1) and (2:1). A three-electrode configuration (Swagelok T-cell) with 
a metallic Li reference was chosen in order to record the individual electrode potential changes. Stainless steel 
current collectors and a porous glass fiber separator (Whatman GFB) were used and the electrolyte used was 1 M 
LiPF6 in EC:DMC (1:1). Before testing, the negative and positive electrodes were preconditioned to maximize 
the output voltage. Thus, the HCS electrode was cycled at least five times between 0.002 and 2 V vs. Li/Li+ at 
0.1 C rate to form a solid electrolyte interphase (SEI) and supply enough lithium to compensate the initial irre-
versible cycles. After that, a cut-off potential of 0.2 V vs. Li/Li+ was set to evade any chances of lithium plating. 
The AC electrode was also charged up to a cut-off potential of 4.2 V vs. Li/Li+. After this pre-lithiation process, 
the LICs full cells were built for their extensive electrochemical characterization. Cyclic voltammetry (CV), and 
Galvanostatic charge-discharge (GC-GD) measurements were performed using a multichannel VMP3 generator 
(Biologic, France).

Figure 8. Electrochemical performance of the 2:1 LIC: (a) GD-GC profile of each electrode and the full cell 
potential window at a current density of 10 A g−1; (b) cycling stability; (c) potential swings of each electrode 
during the cycling test; (d) comparative Ragone plots of our 2:1 LIC and other representative LICs reported in 
the literature.
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calculations. The gravimetric specific capacitance CD (F g−1) of LIC was calculated from the discharge curve 
in GC-GD measurements using the following equation:

=C It
m U (1)D

D

el D

where I is the constant current applied, tD is the time spent during discharge, mel is the active mass of both elec-
trodes and UD is the voltage difference during discharge.

The discharge specific capacity QD (mA h g−1) of the cell was calculated according to the following equation:

=
.

Q It
m 3 6 (2)D

D

el

where I is the constant current (A); tD is the time spent during discharge (s) and mel the mass (g) of both electrodes.
The coulombic efficiency (ηt) was calculated by the ratio between the discharge and charge times.

η =
t
t (3)

t
int D

int C

,

,

Since the hybrid system exhibits battery-like non-linear GC/GD curves, the discharge specific energy density 
(ED, W h kg−1) was determined by integrating the area under the GD curve31.

∫= .ED J U t dt0 277 ( )
(4)t U

t U

( )

( )

max

min

where t(Umin) and t(Umax) the time corresponding to the minimum and maximum voltage in the discharge por-
tion of a galvanostatic cycle (s); U(t) the instant voltage (V) and J is the current density.

The power density PD (W kg−1) was calculated according to:

= × −PD ED t U t U3600/[ ( ) ( )] (5)D max D min

The values of energy and power density obtained at different specific currents were used to draw Ragone 
Plot31.
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