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Abstract: Despite significant progress in treating ischemic cardiac disease and succeeding heart
failure, there is still an unmet need to develop effective therapeutic strategies given the persistent
high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine,
particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical
studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an
autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or
resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection
and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between
genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’
“panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting
in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem
cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as
“cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the
huge amount of publicly available omics data.
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1. Introduction

Morbidity and mortality caused by ischemic heart disease (IHD) and subsequent heart failure
(HF) are still high, despite modern treatments. Standard-of-care therapy improves the outcome of
patients, but it does not completely block myocytes loss or adverse cardiac remodeling. The need for
effective therapeutic options has driven the quest to develop alternative approaches addressing the
critical issue of cell loss. Stem cell-based therapy (SCT) aims to restore cardiac function by delivering
exogenous cells, which will eventually generate both contractile cells and blood vessels. In addition,
transplanted stem cells (SCs) are known to secrete a large array of molecular mediators, including
soluble cytokines and growth factors, thereby enhancing myocyte survival and enabling the migration
of remote and/or resident cardiac SCs to the site of injury.

Various types of stem/progenitor cells, manufacturing methods and delivery routes tested in
preclinical and clinical settings have been extensively discussed since the inception of the “regenerative
era” [1–4]. Furthermore, “cell-free” therapies comprising the delivery of SCs paracrine factors and/or
stem cell-derived extracellular vesicles were also under investigation. Major breakthroughs have been
accomplished since the first in-human bone marrow SC transplantation performed in 2001 in IHD [5],

Cells 2018, 7, 255; doi:10.3390/cells7120255 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
http://dx.doi.org/10.3390/cells7120255
http://www.mdpi.com/journal/cells
http://www.mdpi.com/2073-4409/7/12/255?type=check_update&version=2


Cells 2018, 7, 255 2 of 25

but drawbacks and limitations have also been identified [3]. Clinical trials and meta-analyses have
revealed a high heterogeneity both in terms of study design and results, raising key issues which are
yet to be explored and answered. For example, poor engraftment and survival of the transplanted
cells within the ischemic myocardium remains an important shortcoming that impedes long-term
cardiac recovery. Prior studies have provided valuable insights in terms of molecular mechanisms
and factors that govern these fundamental cell processes. As a result, a number of strategies to
overcome the low cell survival rates have been tested, such as priming with pro-survival molecules,
preconditioning with hypoxia, and the use of genetic engineering to overexpress antideath or adhesion
signals. Hence, a better understanding of the molecular mechanisms of SC-mediated protection and
cardiac regeneration is critically needed in order to achieve efficient and safe SCT. In-depth exploration
of stem cells’ “panomic” data (i.e., integration of genomics, epigenomics, transcriptomics, proteomics,
and metabolomics information) would provide valuable insights into SC biology, eventually achieving
the goal of patient-tailored therapy (Figure 1).
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Figure 1. Integrating panomic data in stem cell therapy. Discoveries and limitations have been
identified for each category of omic data. Findings that stem cell (SC) fate can be regulated by various
factors (such as DNMT inhibitors, ncRNAs, pro-survival or angiogenic factors, and metabolites)
provided useful tools to improve cardiac regeneration and achieve patient-tailored therapy. Conversely,
there are shortcomings of their use into clinics. Cultured SCs are prone to genomic alterations that
affect their differentiation potential and tumorigenicity. The use of DNMT inhibitors is limited by
nonspecific transcriptional activation and side effects. Also, ncRNAs as therapeutic agents/targets are
hindered by off-target effect due to their ability to regulate genetic networks and not a single pathway.
Priming SCs with pro-survival or angiogenic factors and genetic engineering of SCs to overexpress
beneficial signals require synergistic action for a significant effect. The use of metabolites to direct SC
fate is subjected to sample-to-sample variability in culture condition that hampers the reproducibility
of cell culture and differentiation. DNMT = DNA methyltransferase; ncRNAs = non-coding RNAs;
SCT = stem cell therapy.

2. Genomics

While the first trials assessing SCT in IHD employed minimally manipulated heterogeneous
cell populations (i.e., bone marrow mononuclear cells), the later trials tested more specific cell
subpopulations, or even different cell types (such as mesenchymal stem cells and cardiac stem cells,
respectively). One of the downsides of using such cells is the necessity of ex vivo expansion by serial
cell culture and passages in order to reach the effective cell dosage. Due to strong selection pressures,
long-term cultured SCs are prone to genomic alterations such as point mutations, copy number
variations (CNVs) or even large chromosomal aberrations. In time, the aforementioned anomalies are
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acquired in a large fraction of the cultured cells, tampering their behavior in terms of differentiation
capacity and tumorigenicity [6]. The most common genomic abnormalities in cultured human are
summarized in Table 1.

Table 1. Genomic abnormalities in cultured human SCs and affected genes related to pluripotency, cell
cycle, growth and apoptosis.

SC Type Abnormality
Type

% of Abnormal Cell
Lines

Passage
Number

Affected
Gene Encoded Protein Protein Role Ref.

ESCs, iPSCs

Trisomy 12 12–20 14 NANOG Homeobox protein
NANOG Pluripotency [7–10]

GDF3
Growth

differentiation
factor-3

Pluripotency

Trisomy 8 9–20 19–26 PTP4A3
Protein tyrosine

phosphatase type
IVA, member 3

Cell
proliferation

[7,8,11]

NDRG1 N-myc downstream
regulated 1 Cell growth

Trisomy X 1–5 5–8 FAM58A
Family with

sequence similarity
58, member A

Cell
proliferation [7,8,11]

CNVs
(20q11.21) 24–80 24–76 ID1 Inhibitor of DNA

binding 1 Cell growth

[7,11–14]

BCL2L1
B-cell

lymphoma-extra
large

Anti-apoptotic

PDRG1
p53 and DNA

damage-regulated
protein 1

Cell survival

TPX2 Targeting protein for
Xklp2 Cell cycle

KIF3B Kinesin Family
Member 3B Cell cycle

MSCs Trisomy 8 4 7 PTP4A3
Protein tyrosine

phosphatase type
IVA, member 3

Cell
proliferation [10,15]

CSCs
Trisomy 8

(normoxia vs
hypoxia)

31 vs 0 1 vs 6 PTP4A3
Protein tyrosine

phosphatase type
IVA, member 3

Cell
proliferation [16,17]

ADSCs Trisomy 8 8–12 2 PTP4A3
Protein tyrosine

phosphatase type
IVA, member 3

Cell
proliferation [18]

Ref. = references.

From a chronological perspective, the first human SCs analyzed were embryonic stem cells (ESCs),
followed by induced pluripotent stem cells (iPSCs). Starting in the early 2000s, a plethora of articles
reported a variety of culture-acquired genomic abnormalities, which have been comprehensively
discussed in recent reviews [6,7]. The most frequently chromosomal aberration identified in both cell
types was trisomy 12, but trisomy 8 and X have also been observed [8]. Of note, these anomalies have
functional implications. Enrichment in cell cycle-related and pluripotency-associated genes (such as
NANOG and GDF3), due to amplification of chromosome 12, results in selective growth advantage
and takeover of cultures by abnormal cells [9]. Single nucleotide variants (SNVs) and CNVs have
also been observed in cultured ESCs and iPSCs, 20q11.21 being reported as the most prevalent CNV
hotspot. Cells with gain in this region show high-level expression of pluripotency and anti-apoptosis
genes harbored in this region, such as DNA methyltransferase 3B, inhibitor of DNA binding, and
BCL2-like1 [7,19].

Beside pluripotent SCs, multipotent and progenitor SCs that are expanded in culture are also
susceptible to acquiring genomic anomalies. Mesenchymal stem cells (MSCs) are one of the most
commonly exploited cell types for treating a variety of medical conditions, so their genome integrity in
culture settings has been widely assessed. Existing data suggest that genome stability of human MSCs
is preserved in the early stages of culture, but is affected after extended culture.
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Although early studies stated that human MSCs retained chromosomal stability following
long-term culture, later studies have shown that MSCs are prone to acquiring large chromosomal
aberrations, outgrowing the normal cell population within 7 passages. Ben-David and colleagues
examined the genetic integrity of 135 human MSC samples from different sources (such as bone
marrow, adipose tissue and umbilical cord), reporting a frequency of aberrations of ~4% [15]. Their
conclusions are particularly important, since the number of passages of culture-expanded human
MSCs that are used in clinical trials is around 5 to 13.

The rate and level of genetic alterations in bone marrow MSCs along serial culture passages
were studied by Cai and colleagues by using whole-genome sequencing. There were no substantial
alterations in CNV and only low levels of SNVs (0.01%–1%) until the passage 8, but their frequency
significantly increased with the number of passages (up to 10% in passage 8 and 17%–36% in
passage 13) [20]. These data were confirmed by subsequent work assessing cultured peripheral
blood-derived MSCs from passage 1 to 9 [21]. A dramatic growth in SNVs occurrence was detected in
later passages, with a frequency of over 70% after passage 7. In addition, the indel incidence displayed
a similar pattern, with a steep increase after passage 7, allowing the authors to advocate that similar
mutational forces steered the addition of both SNVs and indels. As for CNVs, in line with previous
evidence [22], MSCs were proved to basically lack copy number alterations in early passages [21].

Specific attention should be paid to culturing conditions, since they may influence both the type
and the prevalence of the acquired aberrations. Oxygen concentration is a key determinant of SCs’
fate, but conflicting results have been reported by studies addressing the effect of hypoxic versus
normoxic conditions. In cultured MSCs, hypoxic preconditioning has been revealed to diminish or
prevent chromosomal aberrations, but also to enhance structural instability and aneuploidy even at
early passages [18].

Although cardiac stem cells (CSCs) are considered to be particularly promising for myocardial
regeneration, little data is publicly available about their genomic integrity in ex vivo culture. The
evidence is provided by the investigators of the CADUCEUS trial (ClinicalTrials.gov. Identifier
NCT00893360), who identified chromosome aberrations (such as trisomy 8 and Y chromosome loss)
in about one-third of cells resulting from CSCs grown under normoxic conditions (20% O2) [16].
When expanded under physiological low-oxygen conditions (5% O2), the frequency of chromosomal
abnormalities was significantly reduced [17].

Other types of adult SCs that were analyzed were adipose-derived SCs (ADSCs) and CD34+ SCs,
respectively. The anomalies (i.e., aneuploidies) were reported starting with passage 2 in the case of
ADSCs, while for CD34+ cells the karyotype abnormalities mainly appeared by day 14 [18].

So, when dealing with cultured SCs in the clinical arena, the genomic instability is a phenomenon
that should not be overlooked, but must be routinely evaluated.

3. Epigenomics

Epigenetics denotes changes in gene expression regulation, but not due to alterations in the DNA
sequence. These changes are usually a consequence of gene–environment interactions leading to
amplified/diminished expression—or even silencing—of specific genes. Although ESCs are not used
into clinics as such, but as ESC-derived differentiated cells (ClinicalTrials.gov NCT02057900) [23],
they have been extensively exploited as a model to decipher the key factors and mechanisms
underlying cell fate decisions [24]. Decoding ESCs epigenome marks resulted in improved strategies
for cellular reprogramming and differentiation, which could eventually be translated into clinical
settings. Reprogramming of adult somatic cells to a pluripotent state is a typical example of epigenetic
modifications, uncovering new approaches to heart regeneration. Since the regenerative potential of
adult SCs is often impaired due to modifiers such as age and associated cardiovascular risk factors and
comorbidities, there is an unmet need to obtain patient-derived cells with superior clinical performance.
Obtained iPSCs can differentiate into various types of cells, including cardiomyocytes and vascular
cells, and thus providing unlimited supplies of autologous cells lacking the risk of immune rejection.

ClinicalTrials.gov
ClinicalTrials.gov
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There are three main types of epigenetic modifications: DNA methylation, histone modification,
and microRNAs-mediated gene regulation [25]. Since microRNAs fit in both EPIGENOMICS and
TRANSCRIPTOMICS; they will be discussed in a later chapter.

3.1. DNA Methylation

DNA methylation is one of the key mechanisms that regulates gene expression, being
indispensable for both cell differentiation and reprogramming. DNA methyltransferases (DNMTs) are
a family of enzymes responsible for maintaining and/or introducing DNA methylation marks. DNA
methylation patterns are maintained during cell division by DNA methyltransferase 1 (DNMT1), while
de novo DNA methylation is mediated by DNMT3A and DNMT3B. Removal of DNA methylation
involves oxidation of 5-methyl-cytosine; the key enzymes for this initial step are the recently discovered
ten-eleven translocation enzymes (TET1-3) [26].

Methylation in the promoter of genes causes chromatin condensation and consequently gene
silencing [25]. In mammals, it usually consists of methylation of CpG islands, but non-CpG methylation
has also been reported, primarily in pluripotent cells. Different populations of SCs have different
signatures in terms of DNA methylation. Comprehensive studies of human pluripotent and somatic
cell methylomes have provided substantial data related to the epigenetic profile of various cell
lines. In this respect, Meissner and colleagues analyzed a panel of 20 ESC lines, 12 iPSC lines and
10 somatic cells [27,28]. Whereas both ESCs and iPSCs exhibited high levels of non-CpG methylation,
as opposed to somatic cells, there were also differences in DNA methylation patterns within those
specific pluripotent cell lines. When comparing ESCs and iPSCs in terms of DNA methylation and
gene expression levels, they proved to form two partially overlapping clusters with variability among
both ESCs and iPSCs lines. This finding emphasizes the need to identify the most suitable cell line
specifically for each application [27].

Various DNA-demethylating agents have been tested, aiming to prompt the expression of
hypermethylated silenced genes. One of the most utilized DNMT inhibitors is 5-azacytidine (5-aza),
but its effect on SCs remains contradictory. Although a number of in vitro studies have shown
that treatment with 5-aza promoted differentiation of adult MSCs into cardiac muscle-like cells
and increased the expression of cardiac-specific proteins [29–32], others have failed to induce a
cardiomyogenic phenotype in treated cells [33,34]. Bearing in mind the mechanisms of action, 5-aza
is more likely to induce a general transcriptional activation, instead of differentiation into a specific
cell type. Thus, 5-aza-treated rat adult MSCs displayed an increased expression of muscle-specific
genes (GATA-4, myoD, desmin, and α-actinin), but also activation of endothelial and neural specific
genes [35].

However, beside inconsistency in promoting the differentiation of treated SCs to cardiomyocytes,
5-aza also has side effects (e.g., myeloid suppression) which limit its use in clinical settings. So, other
inhibitors have been proposed. Zebularine, with similar effects of promoting differentiation of MSCs
into cardiomyocytes with increased expression of cardiac-specific genes, has less toxic effects, making
it a more suitable candidate for future studies [36,37].

The maintenance of the pluripotency state is conferred by a range of development-associated
transcription factors (such as OCT4, NANOG, SOX2) that reside in promoters of active genes associated
with self-renewal [38]. The expression of these transcription regulators is typically controlled
by CpG promoter methylation; SC differentiation is obtained by full or partial methylation of
pluripotency-associated genes, leading to their downregulation [39]. Upregulation of these factors has
been observed in the case of reprogramming of iPSCs from differentiated cells [38].

When it comes to epigenetic control of genes associated with self-renewal or differentiation, there
are some dissimilarities between the SCs of embryonic and adult origin (Table 2). So, in ESCs, both
Oct4 and Nanog genes are typically hypomethylated when activated and became hypermethylated
during differentiation [40,41], whereas in MSCs of diverse origin, OCT4 is silenced by promoter
hypermethylation, but Nanog and Sox2 are unmethylated despite the repressed state of the genes [42].
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Table 2. DNA-methylation of transcription factors associated with pluripotency in embryonic stem
cells (ESCs) and mesenchymal stem cells (MSCs).

SC Transcription Factor Active State Repressed State Ref.

ESCs OCT4 Hypomethylated Hypermethylated [40,41]
NANOG Hypomethylated Hypermethylated

MSCs OCT4 Hypermethylated [42]
NANOG Hypomethylated

SOX4 Hypomethylated

OCT4 = octamer-binding transcription factor 4; NANOG = homeobox protein Nanog; Ref. = references;
SOX4 = SRY-Box 4.

3.2. Histones Modification

Histones modification—such as acetylation/deacetylation—represents fundamental mechanisms
that modulate gene expression by altering the chromatin structure. The balance between
the acetylated/deacetylated states of histones is mediated by two sets of enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs), having opposite effects on gene
expression. Histone acetylation decreases the histone–DNA interactions, activating transcription, while
deacetylation tightens histone–DNA interactions, leading to chromatin condensation and subsequent
transcription inhibition [25].

Existing data advocate a critical role of HDAC in determining SCs’ fate. For example, it has been
shown that over-expression of HDAC3 stimulated Sca-1+ cells to endothelial-lineage commitment [43].
Moreover, when exposed to laminar shear stress, differentiation of ESC-derived progenitor cells into
functional endothelial cells has been promoted in an HDAC-dependent manner through activation of
the Flk-1–PI3K–Akt pathway [44]. As for the influence of HDAC1 on the differentiation of various SC
types, conflicting data have been reported. While some studies indicated a suppressive role of HDAC1
as regards differentiation into cardiomyocyte lineage [45–48], others stated that HDAC1 favors SC
differentiation by down-regulation of pluripotency genes [49,50].

4. Transcriptomics

The transcriptome is represented by the total set of RNA transcripts (mRNAs, rRNAs, tRNAs,
non-coding RNAs) produced in a cell. It reflects the genes that are actively expressed at a certain time;
therefore, the abundance of a specific RNA transcript in a sample is a reflection of the corresponding
gene expression level. Unlike the genome, the transcriptome can vary depending on external
environmental conditions [51].

In this section, we provide a brief summary of the current knowledge on the SC transcriptome,
with a specific focus on non-coding RNAs, emphasizing data with potential application for expediting
cardiac regeneration.

A comprehensive paper on the transcriptome profiles of MSCs revealed source-specific markers.
When comparing bone marrow-derived MSCs (BM-MSCs) with embryonic stem cell-derived MSCs
(ESC-MSCs), 2500 differently expressed genes were identified. Specifically, 71 transcripts enriched in
extracellular vesicle proteins were found exclusively in BM-MSC, endorsing once again the essential
role of extracellular processes in MSC biology. As for the 19 ESC-MSC-specific transcripts, these include
transcription factors or regulators involved in developmental processes (such as HOXD1, NKX2–5,
LHX2 and FGF12), reflecting the superior differentiation potential [52]. It is of note that the rest of the
ESC-MSC-specific transcripts are unknown, corresponding to neither genes nor noncoding RNAs.

Valuable information regarding endothelial progenitor cell (EPC) subtypes has been uncovered
by the analysis of their transcriptome. It is widely acknowledged that the term “EPC” encompasses
various subpopulations of progenitor cells, hence the conflicting results and misunderstanding
concerning the role of these cells in health and disease [53]. The study conducted by Medina and
colleagues provides a broad molecular fingerprint of two EPCs subtypes categorized according
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to the time at which they appear in culture: early EPCs and outgrowth endothelial cells (OECs),
emphasizing once again the differences between them. As the authors stated, these cells have strikingly
different gene expression signatures: early EPCs proved to be enriched in haematopoietic-specific
transcripts (such as RUNX1, WAS, LYN), while OECs highly expressed transcripts involved in vascular
development and angiogenesis (such as Tie2, eNOS, Ephrins) [54]. These data are of particular
importance when in pursuit of possible candidates for prompting therapeutic angiogenesis; thus,
OECs could be a suitable choice for cardiac protection and regeneration, as opposed to early EPCs.

A novel and promising method for directing the progenitor cell fate and homing and also for
cellular reprogramming is based on in vitro-transcribed mRNAs. Compared to genome-integrating
vectors, the main advantage of this method is that the mRNA molecules are not incorporated into the
host genome, and therefore no mutations are triggered. These synthetic mRNAs can be used to prompt
SC differentiation into a particular cell type, to promote the expression of receptors involved in SC
migration and homing, or even to stimulate the production of desired human growth factors [55]. For
example, intramyocardial injection of synthetic modified RNA encoding human vascular endothelial
growth factor A (VEGF-A) markedly improved heart function and enhanced survival in a myocardial
infarction model in mice [56].

4.1. MicroRNAs

MicroRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional
level by translational repression and/or messenger RNA (mRNA) degradation, thus affecting a variety
of cell processes.

There is a growing body of evidence supporting the key role of microRNAs in controlling SCs’
pluripotency, self-renewal and differentiation, as illustrated by detailed reviews [57–60].

Moreover, microRNAs are discussed as potential specific biomarkers that modulate various
signaling pathways and cellular processes, and are involved in cell-to-cell communication both in
physiological and pathological cardiovascular conditions [61,62].

As an example, miR-126 improves MSCs migration, survival and is also involved in angiogenic
signaling in endothelial cells. Therefore, miR-126 overexpression in SCs increases angiogenesis and
myocardial recovery in cardiac ischemia [63–65]. The implicated mechanism is related to the activation
of the pro-survival Akt signaling pathway due to the suppression of PI3K inhibitors, resulting in
enhanced cell survival and the amplified release of paracrine factors. On the contrary, mice deficient in
miR-126 showed an impaired postnatal neovascularization after myocardial ischemia [66].

Other microRNAs involved in cell survival are miR-21, miR-24, and miR-221 which target the
apoptotic protein Bim and consequently boost the survival and function of transplanted CSCs [67].
Furthermore, the overexpression of miR-210, miR-99, miR-21 and miR-214 reduces cell apoptosis and
protects heart function after AMI. The protective function of these microRNAs is realized through
positive regulation of angiogenesis and anti-apoptosis by targeting an anti-angiogenic factor that
induces apoptosis (miR-210), by enhancing autophagy (miR-99) and by downregulating fibronectin
and collagen expression to reduce fibrosis in infarcted heart (miR-21) [68]. Notably, conflicting
evidence exists regarding the regulatory role of miR-21 on cardiac fibrosis. It has been showed
that overexpression of miR-21 reduced collagen scar formation following AMI by decreasing the
expressions of collagen I and fibronectin, and also by lowering the number of α-SMA-positive cells [69].
As opposed to the aforementioned finding, Gupta and colleagues demonstrated that miR-21 promoted
monocyte to fibrocyte transition, while genetic and pharmacological inhibition of miR-21 successfully
reduced fibrosis and fibrocyte accumulation in a murine model of heart transplantation [70]. Further
studies are warranted in order to determine the exact roles of miR-21 in cardiovascular diseases
in humans.

MicroRNAs also regulate SC differentiation. Intensification in cardiac lineage commitment has
been reported after overexpression of various microRNAs (e.g., miR-1, miR-133, miR-208 and miR-499)
in cultured or transplanted ESCs [61,71–74]. For example, miR-1 prompts differentiation of ESCs into
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cardiac phenotype by targeting HDAC4, resulting in activation of myocyte enhancer factor 2 (MEF2)
transcription factor.

It is noteworthy that some of the microRNAs that control SC proliferation and differentiation
are also associated with extracellular matrix turnover and therefore play a strategic role in cardiac
regeneration in IHD. Such is the case of miR-1; a list of all 12 microRNAs with the aforesaid dual role
is provided in the paper by Prathipati and colleagues [61].

Developmental studies using mouse models have revealed that a number of miRNAs are involved
in cardiac regeneration by stimulating cardiomyocytes proliferation. For example, overexpression of
miR-590 and miR-199a promotes cardiomyocyte proliferation both in neonatal and adult mice and has
conserved long-term cardiac function after AMI [75].

MiRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes.
A mixture of four microRNAs (i.e., miR-499, miR-1, miR-133 and miR-208) has demonstrated
the capacity to directly reprogram fibroblasts into cells that express cardiomyocyte-specific genes
and proteins in vivo and in vitro [76]. The same effect has been observed using an alternative
technique—delivery of lentivirus expressing the same miR cocktail into the injured heart, with
significantly improved cardiac function and reduced infarct size [76].

4.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are transcripts greater than 200 nucleotides localized mainly
in the nucleus, as opposed to mRNAs which are abundant in the cytoplasm. Although lncRNAs do
not encode proteins, they have emerged as key regulators of gene expression, with critical functions in
the proliferation and differentiation of SCs of embryonic and adult origin [68,77,78].

In recent years, a variety of cardiovascular-associated lncRNAs have been identified, both in
humans, as well as in animals. The first one described was Braveheart (Bvht). By means of various
strategies for ESC differentiation, it has been demonstrated that Bvht is indispensable for cardiovascular
lineage commitment; in this respect, it works as an epigenetic modulator, activating a core of the
cardiovascular gene network [79].

In their endeavor to decipher the transcriptome in human cardiac progenitor cell (CPC)
differentiation, Ounzain and colleagues identified 570 lncRNAs that were modulated during cardiac
commitment. As expected, many of these were associated with active cardiac enhancers or super
enhancers. Among the studied lncRNAs, CARMEN (Cardiac Mesoderm Enhancer-Associated
Noncoding RNA) is essential for cardiac specification and differentiation of human CPCs. This
was evidenced by the fact that knockdown of CARMEN inhibits the differentiation of CPCs [80].

However, lncRNAs are also regulators of pluripotency. In a recent study, Loewer et al. identified
a variety of lncRNAs whose expression is linked to pluripotency. Amongst these, 10 lncRNAs have
been found to be upregulated in iPSCs, independent of the cell-of-origin, compared with ESCs,
suggesting that their activation may promote reprogramming. Additional loss- and gain-of-function
experiments confirmed the critical role of lncRNAs—such as LincRNA-Regulator of Reprogramming
(LincRNA-RoR)—in the derivation of iPSCs [81].

Lnc RNAs may serve as potential therapeutic targets in the future, but there are a few downsides
to their use, one of the most important being the fact that lncRNAs regulate a genetic network and not
a single pathway (as summarized in Table 3); therefore, inhibition of lncRNAs might lead to severe,
unforeseen complications [68].
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Table 3. Main non-coding RNAs expressed by SCs that regulate SC fate and cardioprotection.

Transcript Source Effect Target Molecule/Pathway Ref.

miR-21 MSC-Exos ↓ apoptosis ↓ inhibitors of pro-survival
PI3K/Akt pathway [60,67,82,83]

CSCs, CSC-Exos ↓ apoptosis
↓ CASP3, CASP8AP2, BAX,

PDCD4, FASL, BCL2L11,
FOXO3, AK2

↑ proliferation and migration of
CSCs ↓ PTEN, PDCD4

iPSC-Exos ↓ apoptosis ↓ CASP3/7

miR-22 MSCs, MSC-Exos ↓ apoptosis; reduces cardiac
fibrosis ↓MECP2 [60,84]

CSCs ↑ commitment to SMCs ↓ EVI1

miR-24 CPCs ↓ apoptosis
↓ CASP3, CASP8AP2, BAX,

PDCD4, FASL, BCL2L11,
FOXO3, AK2

[67]

miR-30b MSC-Exos ↑ angiogenesis ↓ endothelial Dll4 [85]
miR-30c MSCs-Exos ↑ angiogenesis ↓ endothelial Dll4 [85]

miR-126
MSCs,
EPCs

EPC-Exos

↑migration and survival of
MSCs and EPCs; ↑ angiogenesis

↓ inhibitors of pro-survival
PI3K/Akt pathway; ↑ Dll4

expression
[57,64–66,86]

CDCs, CDC-Exos ↑ cardioprotection ↓ PKCδ expression

miR-146a CDC-Exos
CPC-Exos ↑ cardioprotection, ↓ fibrosis ↓ IRAK1 and TRAF6 [87,88]

miR-181b CDC-Exos ↑ cardioprotection ↓ PKCδ and MAP4K4 [86]

miR-199a CSCs ↑ cardiomyocyte proliferation; ↓
apoptosis ↓ P53 activity [75,89]

miR-208 MSCs ↑cell proliferation and
clonogenicity

↓ AIMP3/p18 and senescence
markers [90]

miR-210 MSCs ↓ apoptosis ↓ CASP8AP2 [68,91]
CDCs, CDC-Exos ↑ angiogenesis ↓ EFNA3

iPSCs-Exos ↓ apoptosis ↓ CASP3/7

miR-221 CPCs ↓ apoptosis
↓ CASP3, CASP8AP2, BAX,

PDCD4, FASL, BCL2L11,
FOXO3, AK2

[67]

miR-291 ESC-Exos ↑ CPC survival and proliferation ↓ P53 activity [92]
miR-294 ESC-Exos ↑ CPC survival and proliferation ↓ P53 activity [92]
miR-295 ESC-Exos ↑ CPC survival and proliferation ↓ P53 activity [92]

let-7f MSC-Exos ↑ angiogenesis ↓ endothelial THBS1 [85,93]

Braveheart ESCs
MSCs

↑ commitment toward the
cardiovascular lineage

Activates MESP1, GATA4,
HAND1, HAND2, NKX2.5,

TBX5, SNAI, TWIST
[79,94]

↑ epigenetic activation of
cardiac genes Binds SUZ12

CARMEN CPCs ↑ cardiac specification and
differentiation of CPCs

Interacts with chromatin
remodeling complexes (PRC2) [80]

LincRNA-RoR iPSCs ↑ reprogramming Suppresses P53 pathways [81,95]

ESCs ↑ self-renewal of human ESCs Captures miRNAs targeting
OCT4, SOX2, NANOG

↓ = suppresses; ↑ = increases; AIMP3/p18 = eukaryotic translation elongation factor 1 epsilon 1; AK2 = Adenylate
kinase 2; BAX = BCL2 associated X; BCL2L11 = Bcl-2 protein family; CASP3 = caspase 3; CASP8AP2 = CASP8-associated
protein 2; Dll4 = Notch ligand Delta-like-4; EFNA3 = endothelial Ephrin-A3; EVI1 = ecotropic viral integration site
1; FASL = Fas ligand; FOXO3 = forkhead box O3; HAND1/2 = heart and neural crest derivatives-expressed protein
1/2; IRAK1 = interleukin-1 receptor-associated kinase 1; MAP4K4 = Mitogen-activated protein kinase kinase kinase
kinase 4; MECP2 = methyl CpG binding protein 2; MESP1 = mesoderm posterior 1; NANOG = homeobox protein
Nanog; NKX2.5 = NK2 homeobox 5; OCT4 = octamer-binding transcription factor 4; P53 = tumor protein; PI3K/Akt
= phosphatidylinositol 3-kinase/ protein kinase B; PDCD4 = programmed cell death; PKCδ = protein kinase C δ;
PRC2 = polycomb repressive complex 2; PTEN = phosphatase and tensin homolog; Ref. = references; SMCs = smooth
muscle cells; SNAI = snail; SOX4 = SRY-Box 4; SUZ12 = SUZ12; TBX5 = T-Box 5; THBS1 = thrombospondin 1;
TRAF6 = tumor necrosis factor receptor associated factor 6; TWIST = twist-related protein 1.

5. Proteomics

5.1. Secreted Factors

Proteomics, defined as the study of protein abundance and its variations at a certain time,
can provide new valuable information about cell signaling mechanisms, considering the fact that
proteins are the actual mediators of most cell processes [51,96]. Various extracellular factors, such as
cytokine and matrix factors, influence SC self-renewal and differentiation via intracellular signaling
pathways. More than one factor may be capable of triggering similar cell responses such as proliferation,
differentiation, migration, and cell death [97]. Analyzing and comparing different SC proteomes
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can uncover vital biological processes related to SC behavior. Cutting-edge technologies of protein
identification and quantification, along with tailor-made bioinformatics tools, enabled in-depth
characterization of the SC proteome [98].

Billing and colleagues performed a comprehensive characterization of human MSCS, revealing
source-specific cellular markers. By using high-resolution nano-liquid chromatography–mass
spectrometry based on stable isotope labeling with amino acid in cell culture (SILAC) techniques,
they conducted a thorough analysis of BM-MSCs, ESC-MSCs, and ESCs respectively [52]. While
over 3000 proteins were differentially expressed between MSCs (regardless of origin) and ESCs, only
34 proteins were differentially expressed between BM-MSCs and ESC-MSCs. Furthermore, the authors
compared their data to the most wide-ranging human proteome maps available, encompassing nearly
20,000 proteins of adult and fetal origin [99,100]. As expected, some of the up-regulated proteins in
all three types of studied cells were related to transcription-related proteins. Bioinformatics analysis
yielded similarities between the two types of MSCs, but also discrepancies; of note for our topic, as
opposed to ESC-MSCs which displayed higher enrichment for proteins involved in neuron and axon
development, BM-MSCs were more enriched for proteins regulating vasculature development [52].

Although in vitro systems are a very powerful tool capable of studying cell populations under
controlled conditions, in vivo studies are the most reliable. One of the mechanisms by which SCs
modulate the repair process is secretion of paracrine factors having various protective roles (e.g.,
angiogenic, mitogenic, anti-apoptotic, anti-inflammatory, and anti-oxidative) (Table 4).

Table 4. Effects and signaling pathways of SC secreted factors mediating cardiac repair.

Factor Source Effect Signaling Pathway Ref.

FGF-2 MSCs ↑MSC proliferation; ↑
angiogenesis; ↓ apoptosis ERK1/2, PI3K-Akt pathways [101–103]

TGF-β MSCs ↑MSC proliferation; angiogenesis;
↓ apoptosis

SMAD, PI3K/Akt, MAPK
pathways [101–103]

VEGF MSCs, EPCs ↑ angiogenesis; ↓ apoptosis PI3K/Akt, MAPK pathways [101–106]

HGF MSCs, CSCs ↑ angiogenesis; ↓ apoptosis ERK1/2, p38 MAPKs, PI3K/Akt,
NOTCH pathways [101–103]

IGF-1 MSCs, EPCs, CSCs ↑ angiogenesis; ↓ apoptosis ERK1/2, PI3K-Akt pathways [101–103,105]
Ang-1 MSCs ↑ angiogenesis Tie-2 pathway [101–103]

SDF-1 MSCs, EPCs

↑mobilization and homing of
BM-MSCs and EPCs;

↑ angiogenesis; ↑migration and
differentiation of CSCs;

↓ apoptosis

ERK1/2, PI3K-Akt pathways [101–103,105]

IL-6 MSCs

↑MSC proliferation and
“stemness”; ↑ endothelial

differentiation of CSCs;
↑ angiogenesis

ERK1/2, JAK-STAT pathway [101–103]

↓ = reduces; ↑ = increases; Ang-1 = angiopoietin-1; ERK1/2 = extracellular signal-regulated kinase 1/2;
FGF = fibroblast growth factor; HGF = hepatocyte growth factor; IGF = insulin growth factor-1; IL-6 = interleukin-6;
JAK-STAT = Janus kinase/signal transducer and activator of transcription; MAPK = mitogen-activated protein
kinase; PI3K/Akt = phosphatidylinositol 3-kinase/ protein kinase B; Ref. = references; SDF-1 = stem cell-derived
factor-1; Tie-2 = tyrosine-protein kinase receptor; TGF-β = transforming growth factorβ, VEGF = vascular endothelial
growth factor.

The most intensely studied types of SC in terms of secretome are MSCs. Existing data advocate
that these cells are capable—both in vitro and in vivo—of expressing and releasing powerful regulatory
molecules such as VEGF, basic fibroblast growth factor (FGF-2), angiopoetin-1 (Ang-1), insulin-like
growth factor-1 (IGF-I), hepatocyte growth factor (HGF), transforming growth factor β (TGF-β),
interleukin-6 (IL-6) and stromal cell-derived factor-1 (SDF-1) [101–104]. Through these factors, MSCs
not only promote the angiogenesis, but also support SC recruitment from bone marrow and improve
the survival of resident cardiomyocytes. For instance, SDF-1α is an important chemoattractant for
various progenitor cells with an essential role in endogenous SC migration and homing (through
activation of CXCR4), adhesion, and recruitment of circulating MSCs and EPCs to the injured region
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of the myocardium. Furthermore, SDF-1 pretreatment can protect the resident cardiomyocytes from
apoptosis, and improve their survival by paracrine secretion of FGF2 and VEGF [102,103].

As for the secretome of other SCs types, evidence suggests that EPCs also exhibit a high expression
of angiogenic growth factors such as VEGF, SDF-1 and IGF-1 [105]. In a study conducted by Urbich
and colleagues, it was demonstrated that conditioned media from EPCs prompted a robust migratory
response of mature endothelial cells, and also of resident cardiac c-kit+ progenitor cells, supporting the
assertion that the efficiency of EPC-induced cardiac regeneration may not only be determined by the
incorporation of EPC into newly formed vessels, but may also be influenced by the release of secreted
factors having synergistic effects [107].

Some of the findings discovered in preclinical studies have already been translated into clinical
trials. Specifically, lineage specification by means of a cardiogenic growth factors cocktail was used
by Bartunek and collegues to drive patient-derived BM-MSCs toward a cardiopoietic phenotype.
Cardiopoietic SCT was found feasible and safe; moreover, compared to standard-of-care alone,
reduction in left ventricular end-systolic volume, associated with improvements in 6-min walk distance
and quality of life have been observed in patients with severe cardiac dilatation [108,109].

The impact of SDF-1 short-term overexpression on patients with ischemic HF has been addressed
by STOP-HF trial (ClinicalTrials.gov Identifier NCT01643590). Although the composite primary end
point was not achieved (improvement in 6-min walking distance and quality of life from baseline to 4
months), the investigators detected a significant improvement of left ventricular systolic function and a
trend toward diminished negative remodeling in patients with more severe cardiac dysfunction [110].

5.2. Genetic Modification of SCs

However, after many trials, the outcome of SCT is not as revolutionary as expected [111] and one of
the problems seems to be the low survival rate of transplanted cells due to the hostile microenvironment
of an ischemic heart. As a result, various strategies have been developed to enhance the survival and
regenerative potential of transplanted cells [112–114]. Particularly, the administration of genetically
modified SCs has emerged as a more advantageous method compared to direct gene transfer or therapy
with non-modified SCs.

MSCs are the foremost type of SCs to be manipulated in this respect. For example, MSCs can
be genetically modified to express VEGF in order to enhance their cardioprotective and angiogenetic
properties when transplanted in acute or chronic ischemic settings [115,116].

Similarly, Akt-engineered MSCs have been demonstrated to improve cardiac function, by enhancing
the left ventricular ejection fraction and diminishing scar size and fibrosis. The main mechanisms
revealed to contribute to cardiac protection and functional improvement are better resistance to apoptosis
and increased secretion of paracrine mediators such as VEGF, FGF-2, HGF, IGF-I, and thymosin beta-4
(TB4) [117–119]. Moreover, in a study conducted by Jiang and colleagues, it has been showed that the
co-overexpression of Akt and angiopoietin-1 in transplanted MSCs led to better results in terms of cell
survival, angiomyogenesis, and consequently improved cardiac function [120].

Another promising target for the genetic modification of SCs is the human tissue kallikrein
(KLK1) gene with a proven protective role in cardiovascular disease both in vitro and in vivo [121].
KLK1 exerts significant cardioprotective effects by various underlying mechanisms, such as reducing
myocardial inflammation and fibrosis, decreasing infarct size, increasing NO synthesis, restoring
coronary blood flow, stopping cardiomyocyte apoptosis and promoting neo-vascularization [122–127].
Additionally, in a mouse model of myocardial infarction (MI), KLK1 gene delivery has been revealed
to increase the number of resident CPCs and boost the regional blood flow and neo-vascularization
in the peri-infarcted myocardium [128]. Therefore, genetically modified SCs seem to be a very
appealing therapeutic option to deliver KLK1 to injured hearts. Indeed, genetic modification of
MSCs with KLK1 led to superior neo-vascularization of the infarct myocardium due to increased
VEGF secretion [125,129]. Moreover, KLK1-MSCs appear to be more resistant to hypoxia-induced

ClinicalTrials.gov
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apoptosis compared to MSCs, and they also seem to decrease myocardial apoptosis after MI by
reducing capsase-3 activity [122].

Transfection of MSCs with genes encoding other pro-survival proteins or angiogenic factors
has also been tested in preclinical studies, with encouraging results. Among the most exploited
genes promoting the cell survival and function of infarcted myocardium are those coding for heme
oxygenase-1 (HO-1), tumor necrosis factor receptor (TNFR), integrin-linked kinase (ILK), SDF-1, IGF,
FGF and HGF [130–136].

However, MSCs are not the sole type of SC to have been genetically engineered in order to
improve their regenerative potential. EPCs have also been modified in this respect. KLK1-transfected
EPCs displayed enhanced functional capacity in vitro, as well as in vivo. When cultured, KLK1-EPCs
exhibit superior abilities in terms of differentiation, migration, and vascular tube formation as compared to
non-modified EPCs. More importantly, in vitro results have been supported by in vivo data. Subsequent
assessments of functional capacity in a mouse model of AMI revealed significantly reduced cardiomyocyte
apoptosis, increased retention of transplanted EPCs, and increased angiogenesis in the infarct border
zone [137,138]. These beneficial effects were also observed after transplantation of EPCs genetically
modified by the adeno-associated viral vector delivering the IGF-1 gene after myocardial infarction [139].

It has been widely acknowledged that the adult heart is endowed with a regenerative capacity
due to the presence of the resident CSCs and their progenitors [140–143]. However, the endogenous
system is not sufficient to efficiently repair the failing myocardium, especially since CSCs’ function
further decreases with age and cardiovascular factors [144–146]. So, substantial efforts have been
made to boost their regenerative potential. Indeed, engineering of human CSCs to overexpress IGF-1
improved cell-mediated healing by enhancing the long-term survival and engraftment of transplanted
cells within the surrounding myocardium [147].

An additional appealing strategy to prime transplanted cells is to transfect them with the
Pim1 gene. Pim1 is a highly conserved serine-threonine kinase which regulates cardiomyocyte
survival downstream of Akt [148]. Studies conducted by Mohsin and colleagues revealed that
Pim1-modified human CPCs display phenotypic characteristics consistent with increased survival,
reversal of senescent characteristics, enhanced mitochondrial activity and cardiac commitment.
Furthermore, when injected into a mouse model of AMI, Pim1-CPCs led to better cellular engraftment
and differentiation with improved neovascularization and reduced infarct size [149,150].

6. Metabolomics

Integrating metabolomics (the study of the complete set of small molecules or metabolites in a
cell) with the other omics approaches might provide a better understanding of the complex regulatory
mechanisms of SCs [151]. The metabolite levels reflect metabolic function, with perturbation of
these levels often being indicative of disease [51]. Therefore, metabolism, being directly or indirectly
involved with every aspect of cell function, plays a crucial role in SC survival, differentiation and
proliferation [151] (Table 5).

Table 5. Regulation of SC fate by metabolites/ metabolic pathways.

Metabolite/ Metabolic Pathway Effect Ref.

SAM Promotes pluripotency of ESCs and iPSCs [151]
Hypoxia Promotes pluripotency of ESCs and iPSCs;

Promotes undifferentiated state of MSCs and
expression of anti-apoptotic and angiogenic factors

[96,152,153]

Glycolysis Promotes pluripotency of ESCs and iPSCs
Promotes undifferentiated state of MSCs

[96,154–156]

Oxidative phosphorylation Promotes cardiac differentiation of ESCs Promotes
differentiation of MSCs

[96,156]

Ref. = references; SAM = S-adenosyl methionine.
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It has been demonstrated that bioengineered SCs undergo a conversion from oxidative metabolism
to glycolysis, essential for their maintenance and self-renewal [157]. This suggests a potential role
of glycolysis in SC self-renewal. On the other hand, during cardiogenesis, there is a switch from
glycolysis to oxidative phosphorylation that drives ESC cardiac differentiation [96].

ESCs also rely on glycolytic energy generation [154,155], with pluripotency maintenance sustained
under hypoxic conditions [152]. Nuclear reprogramming sets in motion dedifferentiation processes,
leading to the acquisition of pluripotency. Mohyeldin and colleagues attested that hypoxia-mediated
activation of glycolytic metabolism increased the efficiency of nuclear reprogramming, and maintained
the pluripotent state [96,153].

By altering the epigenome, metabolites can control the fate of SCs [151]. A recent study showed
that let-7 is the most highly up-regulated microRNA family during in vitro human cardiac maturation.
Maturation of ESC-derived cardiomyocytes has been enhanced by the overexpression of let-7g and
let-7i which promoted the metabolic switch to fatty acid oxidation [158].

Another epigenetic mechanism by which metabolites can control SCs’ fate is S-adenosyl
methionine (SAM). SAM donates methyl groups for histone and DNA methylation; the levels of
intracellular SAM can regulate methylation potential. Several metabolites, such as methionine and
threonine, have been shown to affect SAM levels. Deprivation of methionine or threonine in culture
medium (in mice) led to a rapid decrease in SAM, and triggered histone and DNA demethylation,
thereby increasing SC differentiation. Conversely, SC culture in methionine-deprived medium resulted
in increased apoptosis [151].

7. Exosomics

At the present time, the role of various extracellular vesicles in intercellular communication
is widely acknowledged. The term “extracellular vesicles” denotes spherical membrane fragments
originating from different subcellular compartments and generally discriminated by their size range.
Explicitly, the terminology includes exosomes (40–150 nm diameter), microvesicles (100−1000 nm) and
apoptotic bodies (1000−5000 nm). While exosomes are derived from the endosomal cell compartment
by exocytosis, the larger vesicles are shed from the cell surface by budding and blebbing of the
cell membrane [159,160]. Although all the abovementioned types of vesicles are carriers of omic
information by harboring a wide array of macromolecules, we will focus only on exosomes since these
have been studied the most as regards the potential to regenerate the heart.

Previous studies have shown that exosome cargo consists of proteins, lipids and, most importantly,
various forms of RNAs that enable cell-to-cell communication and signaling [161,162]. What is more,
under appropriate stimuli, exosomes migrate to specific tissues—such as ischemic myocardium—and
deliver their cargo where needed [163]. As a result, in-depth analyses have been performed in the latest
reviews exploring the strategic role of SC-derived exosomes in cardioprotection [164–166]. Existing
data support the assertion that SC-derived exosomes (SC-Exos) exert similar biological effects, in
terms of anti-apoptotic and pro-regenerative properties, to their releasing cells, endorsing them as
surrogates of SCT. Indeed, in animal models of myocardial infarction, exosomes derived from MSCs
had beneficial effects on blood flow recovery, infarct size, cardiac apoptosis and fibrosis, resulting in
improved cardiac function [167–169]. The underlying mechanism through which MSC-Exos exercise
their cardioprotective abilities seems to be activation of pro-survival signals—such as PI3K/Akt and
Wnt/β-catenin pathways; moreover, in the hearts of MSC-Exos-treated animals, increased levels of
ATP and NADH and decreased oxidative stress were detected [163,170].

MSC-Exos have also been used to prime other types of SCs. In vitro experiments evidenced an
enhanced proliferation, migration, and angiogenic potency of CSCs preconditioned with MSC-Exo in a
dose-dependent manner. In rats with myocardial infarction, injection of treated CSCs led to augmented
engraftment and capillary density, reduced fibrosis, and notably a better cardiac outcome compared
with CSCs only or the control [171].
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Recently, the cardioprotective effect of SC-Exos has been tested in large animal models. In this
respect, exosomes secreted by human cardiosphere-derived cells have been delivered in acute and
chronic porcine myocardial infarction, either intracoronary or by the percutaneous intramyocardial
route. Of note, solely exosomes with intramyocardial delivery reduced infarct size and preserved
cardiac function [172].

In attempting to determine the mechanism by which SC-Exos stimulate cardiac regeneration,
many researchers have focused on deciphering their content. Besides highly conserved proteins
enclosed by most exosomes (such as tetraspanins and heat-shock proteins), there are also distinctive
proteins that reveal their origin [173]. As mentioned in the “PROTEOMICS” section, SCs are able to
secrete numerous cytokines, chemokines and growth factors which mediate their paracrine effects.
So, in recent years, efforts have been made to decode the proteome of SC-Exos. Over 700 proteins
have been identified in exosomes released by MSCs [174,175]. Among the proteins identified during
proteomics analysis, LAMP2 and CD90 have been shown to be enriched in exosomes as compared with
originating cells, while the metallopeptidase inhibitors TIMP-1 and TIMP-2 have been detected only in
MSC-Exos [176]. Enrichment in the above-mentioned proteins explains the improved anti-remodeling
potency of MSC-Exos.

One of the key constituents by which exosomes transfer functional information is represented
by microRNAs. SC-Exos, enriched in specific miRNAs, promote cardiac regeneration by various
mechanisms. When selecting the source of exosomes, one should keep in mind that exosomes are
characterized by a distinctive miRNA signature, as are their parent cells. Therefore, ESCs have
been considered an attractive source of exosomes aiming to stimulate endogenous progenitor cell
proliferation and differentiation. Khan and colleagues reported significant enrichment of ESC-specific
miRs—particularly that of the miR-290 family (namely miR-291, miR-294 and miR-295) in exosomes
released by ESCs. Importantly, these miRs were further detected both in cultured CPCs and the
hearts of animals treated with ESC-Exos. In vitro ESC-Exos administration led to increased survival
and proliferation of CPCs, while in vivo data revealed improved cardiac function in treated animals
compared to the control group [92].

However, not only have ESC-Exos been proven to have cardioprotective effects mediated by
miRNAs, but also adult SC-Exos have been successfully tested in this regard. MiR-22 loaded exosomes
secreted by MSCs-ameliorated fibrosis, reduced ischemia-induced apoptosis and improved cardiac
function post-myocardial infarction [84].

The pro-angiogenic capacity of MSC-Exos was also investigated by in vitro as well as in vivo tests.
After detailed quantification of 26 pro-angiomiRs in MSC-Exos, Gong et al. concluded that four of
them (miR-30b, miR-30c, miR-424 and let-7f) were implicated in MSC-mediated angiogenesis. What is
more, by using loss- and gain-of-function experiments, they demonstrated that miR-30b was important
for in vitro stimulation of endothelial proliferation [85].

As for exosomes originating from cardiosphere-derived cardiac cells, studies have shown
enrichment in several miRNAs (including miR-146a, miR-181b, and miR-126), with miR-146a and
miR-181b being of particular interest for cardioprotection [86,87].

Similarly, exosomes derived from CD34+ cells are enriched in miR-126, known to have
proangiogenic activity, therefore improving neovascularization after ischemia [177]. A low level
of circulating miR 126 was observed in patients with diabetes or coronary artery disease, explaining
the known impaired neovascularization capacity in these patients [178].

Additional data confirmed that SC-Exos miRNA secretome is modified in response to various
pathological conditions, with either positive or negative outcome. Accordingly, exosomes generated
by SCs grown under hypoxic conditions have reduced levels of miR-320 (shown to be anti-angiogenic),
miR-222 (pro-apoptotic and anti-migration), and miR-185 (pro-fibrotic) as compared with exosomes
produced by normoxic SCs. Additionally, a number of pro-angiogenic and anti-fibrotic miRNAs
are upregulated in hypoxic exosomes, leading to diminished cardiac fibrosis and improved cardiac
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function. It also appears that exosomal miRNA content is regulated based on the length of time of
parent SCs’ exposure to hypoxia [179,180].

As for complex cardiovascular comorbidities, metabolic syndrome has been proven to severely
alter the miRNA cargo within SC-Exos. Of a total of 326 miRNAs identified in exosomes released
by porcine adipose-derived MSC, eight were enriched in exosomes from animals having metabolic
syndrome. Unsurprisingly, amongst upregulated miRNAs were those associated with decreased
insulin sensitivity and ROS-induced tissue injury [181]. These findings are of a particular interest
since most patients with IHD or HF have a number of comorbidities, and hence impaired function of
SCs and SC-Exos. Therefore, even though current data endorse SC-Exos as promising candidates for
cell-free therapy, effective strategies to boost their cardioprotective effect are required, especially in
older patients with multiple comorbidities.

8. Challenges in Omics Data Management

First, one of the challenges faced when dealing with omics data is related to information retrieval,
integration and analysis. The latest advances in the omics arena, as well as associated technologies,
have yielded a huge amount of data which need to be wisely organized and rapidly disseminated to
the scientific community. A large array of data is publicly available through various online database
resources, so finding the right piece of information is not an easy task. There is a stringent need for
developing dedicated informatics tools to assist researchers not only to analyze their own data, but to
promptly retrieve information existing in the literature. In order to address this gap, in 2013 the first
manually curated metadatabase was launched, encompassing over 4400 web-accessible tools related
to genomics, transcriptomics, proteomics and metabolomics [182]. OMICtools was designed to cover
all high-throughput technologies, and also to serve as a handy tool for bioinformaticians, researchers
and clinicians.

However, when results of bioinformatics analyses need to be pinpointed in a findable, accessible,
interoperable and reusable manner, one might use Datasets2Tools. Datasets2Tools is a repository
comprising over 30,000 bioinformatics analyses, over 6000 biological datasets and over 4000
computational tools. This freely available platform was aimed at expediting the dissemination of
digital resources and retrieval of information from biomedical research data [183].

Secondly, omics data should be seen as a whole, with each type of data being a piece of the puzzle
which needs to be integrated with the other pieces in order to fully elucidate the intrinsic mechanisms
underlying SC-mediated cardiac protection and regeneration [51,184,185].

What is more, specifically when facing heterogeneous SC populations, studies based on bulk
tissue sampling do not accurately reflect biological processes carried out at the individual cellular level.
Hence, integrated single-cell genome, epigenome, transcriptome and metabolome analysis is a more
appropriate approach, but it does not come without challenges (i.e., the efficient isolation of individual
cells and the low quantity of starting materials) [186].

9. Conclusions

Integrated omics (by systems biology) is a new innovative approach that could offer a better
understanding of the intertwined cellular networks by creating a physiological and pathological
cardiac blueprint. This might be a stepping stone to gaining the ability to regenerate the heart in vitro,
and finally in vivo. Moreover, deciphering one’s ‘panomic’ data could trigger patient-tailored therapy,
and change the face of cardiovascular medicine as we know it.
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