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Despite the efficacy of COVID-19 vac-

cines in healthy individuals, multiple

myeloma (MM) patients are immunocom-

promised and mount suboptimal humoral

and cellular responses after two doses of

mRNA vaccine (Addeo et al., 2021; Ale-

man et al., 2021; Van Oekelen et al.,

2021). A broader observation of limited

vaccine responses in cancer patients,

particularly those with hematologic malig-

nancies (Thakkar et al., 2021), has led to

the implementation of additional (i.e.,

third-dose) vaccine administration as a

way to increase protection for patients

with immune suppression. A third dose

of BNT162b2 (Pfizer-BioNTech) COVID-

19 vaccine has shown to be effective in

preventing severe COVID-19 caused by

the SARS-CoV-2 B.1.617.2 (Delta) variant

in the general population (Bar-On et al.,

2021; Barda et al., 2021). Furthermore,

third-dose administration of either the

BNT162b2 (Pfizer-BioNTech) or mRNA-

1273 (Moderna) COVID-19 vaccine was

associated with augmented immune re-

sponses in a diverse cohort of cancer pa-

tients (Shapiro et al., 2022). However, the

real-world effectiveness of additional

dosing in myeloma patients and viral

neutralization have not been reported.

Additionally, the impact of the currently
dominant SARS-CoV-2 B.1.1.529 (Omi-

cron) variant on efficacy of the third dose

is largely unknown in patients with hema-

tologic malignancies (Zeng et al., 2022).

We studied the humoral and cellular im-

mune response to COVID-19 vaccination

longitudinally in a real-world cohort of

476 MM patients and compared it with

data of age-matched vaccinated health-

care workers. Of the full cohort, 354 pa-

tients (74%) had anti-SARS-CoV-2 spike

(S) IgG levels collected at least 6 months

after two doses of mRNA vaccine, and

261 (55%) had anti-S IgG measured

at least 1 week after the third dose admin-

istration. Summarized demographic

characteristics of the cohort are shown

in Table S1. The study cohort was pre-

dominantly male (57%), with a median

age of 67 years (range 38–96 years). Forty

patients (8%) were included with a diag-

nosis of smoldering MM. Patients

included had received a median of two

lines of treatment (range 0–16) at the

time of initial vaccination. Of note, docu-

mented COVID-19 infection occurred in

124 patients (26%) at any time during

the pandemic.

The serologic effect of the third dose is

illustrated in Figure S1A. Patients were

split by COVID-19 infection status (i.e.,
Cancer Ce
whether they developedCOVID-19 before

or at any time after the initial vaccination)

to separate the effect of natural infection.

Anti-S IgG level increased significantly af-

ter administration of the third dose, both

in patients with COVID-19 (median 110

AU/mL after dose 2 to 381 AU/mL after

dose 3, p < 0.001) and in patients without

COVID-19 (median 27 AU/mL after dose 2

to 161 AU/mL after dose 3, p < 0.001). To

better characterize the benefit of the third

vaccine dose, we specifically looked at

the 241 MM patients for whom anti-S

IgG levels were available at time points

both before and after the third dose

(i.e., paired samples). Sixty-eight patients

(28%) were seronegative (i.e., they had no

detectable anti-S IgG) at the last time

point collected prior to the third dose

(median 183 days post dose 2, range

15–336 days). Of these, 60/68 (88%)

developed detectable anti-S IgG after

dose 3 (median 0 AU/mL after dose 2 to

45.5 AU/mL after dose 3) (Figure S1B,

sero-conversion). Of 173 patients who

had measurable anti-S IgG after two

doses, anti-S IgG increased in 158 pa-

tients (91%) after dose 3 (median 43

AU/mL after dose 2 to 300 AU/mL after

dose 3) (Figure S1B, sero-elevation).

Although the third dose provided a robust
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boost to serological status, MM patients

that were in both the sero-conversion

and the sero-elevation group had signifi-

cantly lower serological levels than age-

matched healthy donors (HDs) after three

doses (Figure S1B, p < 0.001).

Initial two-dose vaccination was asso-

ciated with a significantly weaker re-

sponses among MM patients treated

with anti-CD38 monoclonal antibodies

(mAb) or BCMA-targeted therapy (Aleman

et al., 2021; Van Oekelen et al., 2021). In

patients who did not develop COVID-19,

the third dose resulted in significant in-

creases of anti-S IgG across all treatment

groups (Figure S1C), including in patients

receiving an anti-CD38 mAb (p < 0.001) or

a BCMA-targeted therapy (chimeric anti-

gen receptor (CAR) T cell therapy, bispe-

cific antibody therapy, or antibody-drug

conjugate) (p < 0.01), although the level

of anti-S IgG after dose 3 in patients on

anti-CD38 mAb remained significantly

lower in comparison to MM patients that

did not receive active treatment (median

121 versus 312 AU/mL, p < 0.01).

In a subset of 31 patients, we analyzed

cellular and neutralizing responses. We

characterized the cellular responses in a

subset of 14 sero-conversionMMpatients,

17 sero-elevation MM patients, and 13

seropositive HDs, before and after third

mRNA vaccination, using high-dimen-

sionalflowcytometry.The thirdvaccination

dose resulted in a significant increase in

spike-reactive B cells in MM patients in

both the sero-elevation and sero-conver-

sion groups (p < 0.05, Figure S1D). The

presence of spike-reactivememory B cells

alsostronglycorrelatedwith themagnitude

of detectable anti-S IgG antibody titers

(r = 0.6, p < 0.001). Spike-specific T cell re-

sponsesweremeasuredbystimulating pe-

ripheral blood mononuclear cells (PBMC)

with a pool of spike peptides (15-mer se-

quences with an 11 amino acid overlap

spanning the entire spike protein) and

quantifying cytokine-producing cells in

CD4+ T cells expressing CD154 and

CD69. Total cytokine-expressing CD4+

T cells were estimated by aggregating acti-

vated CD4+ T cells producing GM-CSF,

IFN-g, IL-2, IL-4, IL-17, and TNF-a. In

sero-conversion and sero-elevation MM

patients, we observed a significant in-

crease in spike-specific CD4+ T cell-medi-

ated cytokine responses after the third

dose (p < 0.05, Figure S1E). In HD, how-

ever, B and T cell responses were not
442 Cancer Cell 40, May 9, 2022
significantly augmented after the adminis-

tration of the third vaccination.

To better characterize the protection

against infection, we compared the effect

of a third-dose vaccination on the neutral-

izing capacity to WA1, the wild-type virus,

across MM patients and HD (Figure S1F).

The sero-conversion group of MM pa-

tients was most vulnerable, with no sub-

jects having detectable neutralization

capacity prior to third dose. Only half

(7/13, 54%) of the MM patients in the

sero-elevation group had neutralizing ti-

ters, compared to 80% (8/10) of HD prior

to third vaccination. Although the third

vaccination dose increased neutralizing

capacity against WA1, only 40% (2/5)

of sero-conversion MM patients had

neutralizing titers, which was strikingly

lower than the 92% (12/13) of sero-

elevation MM patients and 100% of HD

(n = 10/10) achieving detectable neutral-

izing titers (Figure S1G).

An important outstanding question

remains as to whether the mRNA vac-

cine-induced immune response offers

adequate protection against SARS-CoV-

2 variants. For the Omicron variant specif-

ically, evasion of (humoral) immunity from

vaccination or infection with earlier vari-

ants has been reported due to the accu-

mulation of mutations in the spike protein

gene (McCallum et al., 2022; Zeng et al.,

2022). This is especially relevant for pa-

tientswith pre-existing immunedeficiency

(e.g., hematologicmalignancy),whocould

be at higher risk of severe infection. In our

cohort, we observed a peak with 40 cases

of COVID-19 diagnosed after December

1, 2021 (Figure S1H), coinciding with the

Omicron variant becoming dominant

locally. Seventeen of these patients had

already received a third dose. In these pa-

tients, anti-S IgG levels collected within

90 days prior to developing COVID-19 in

the Omicron-dominant period were highly

variable (median 51 AU/mL; range 0–

2,511 AU/mL) and were non-significantly

(p = 0.3) lower when compared to anti-S

IgG levels collected in the same time

period for subjects after three doses

of vaccine who did not develop COVID-19

(median 201 AU/mL; range 0–4,078

AU/mL) (Figure S1I).

We compared the effect of a third-dose

vaccination on the neutralizing activity

against the Omicron variant using sera

from MM patients and HD collected

before and after the third vaccine dose
(Figure S1J). Neutralizing titers against

the Omicron variant were detectable after

third-dose vaccination in all HDs (100%,

10/10), in contrast to only 54% (7/13) of

sero-elevation MM patients and none of

the sero-conversion MM patients (0%,

0/5, Figure S1K). Omicron-neutralizing

antibody titers correlated with anti-S IgG

antibody levels (r = 0.68, p < 0.001,

Figure S1L) as well as the magnitude of

cellular spike-reactive B cells (r = 0.55,

p < 0.001, Figure S1M).

In our data, a high fraction of MM pa-

tients (28%) had undetectable anti-S IgG

prior to dose 3, suggesting that the initial

humoral response to two vaccine doses

is not only suboptimal (Terpos et al.,

2021; Van Oekelen et al., 2021) but also

decreases and, in some cases, disap-

pears over time. We here show that the

third dose induces sero-conversion in

more than 80% of the MM patients with

undetectable anti-S IgG. However, this

population may remain vulnerable, as

shown by the lack of neutralization capac-

ity of ancestral (e.g., WA1) as well as

emerging viral variants of concern (e.g.,

Omicron). Our findings indicate that a third

mRNA vaccine dose significantly aug-

ments cellular and humoral immune re-

sponses against SARS-CoV-2, including

the antigenically distinct Omicron variant,

in MM patients. Therefore, patients with

MM should be encouraged to receive the

third dose when eligible. Sera from less

than half of the MM patients in our study

were able to neutralize the Omicron

variant, although it should be noted that

prior to the third dose virtually all MM pa-

tients had an undetectable neutralizing

titer. These findings underscore the need

for continued monitoring of immune re-

sponses and further research around

measures such as additional vaccine

doses or passive immunization for individ-

ual MM patients that may remain vulner-

able after third-dose vaccination, espe-

cially as COVID-19 restrictions are being

lifted worldwide and new waves of viral

variants are emerging.
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