
polymers

Review

Supramolecular Nanostructures Based on
Cyclodextrin and Poly(ethylene oxide): Syntheses,
Structural Characterizations and Applications for
Drug Delivery

Yue Zheng 1,* and Ian W. Wyman 2

1 Department of internal medicine, The First Hospital in Qinhuangdao Affiliated to Hebei Medical University,
Qinhuangdao 066004, China

2 Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada; 3iww@queensu.ca
* Correspondence: yuezheng1965@sina.com; Tel.: +86-335-325-8757

Academic Editor: Jianxun Ding
Received: 1 March 2016; Accepted: 10 May 2016; Published: 17 May 2016

Abstract: Cyclodextrins (CDs) have been extensively studied as drug delivery carriers through
host–guest interactions. CD-based poly(pseudo)rotaxanes, which are composed of one or more
CD rings threading on the polymer chain with or without bulky groups (or stoppers), have
attracted great interest in the development of supramolecular biomaterials. Poly(ethylene oxide)
(PEO) is a water-soluble, biocompatible polymer. Depending on the molecular weight, PEO can
be used as a plasticizer or as a toughening agent. Moreover, the hydrogels of PEO are also
extensively studied because of their outstanding characteristics in biological drug delivery systems.
These biomaterials based on CD and PEO for controlled drug delivery have received increasing
attention in recent years. In this review, we summarize the recent progress in supramolecular
architectures, focusing on poly(pseudo)rotaxanes, vesicles and supramolecular hydrogels based on
CDs and PEO for drug delivery. Particular focus will be devoted to the structures and properties of
supramolecular copolymers based on these materials as well as their use for the design and synthesis
of supramolecular hydrogels. Moreover, the various applications of drug delivery techniques such as
drug absorption, controlled release and drug targeting based CD/PEO supramolecular complexes,
are also discussed.

Keywords: supramolecular polymers; cyclodextrins (CDs); poly(ethylene oxide); syntheses; structure;
drug delivery

1. Introduction

Some tissues and biological barriers [1–7] within our bodies prevent foreign materials, such as
drugs, pollutants, and viruses, from accessing the important organs [8,9]. Although these protections
play key roles in allowing the human body to remain healthy, they can also present a significant
challenge with regard to the development of for the drug delivery systems. Supramolecular hosts
particularly those based on macrocycles, have attracted much attention because they provide the
precursors for novel biomedical materials and can help to further our understanding of natural
supramolecular self-assembly.

Cyclodextrins (CDs) are macrocyclic oligosaccharides, containing six, seven and eight glucose
units, which are denoted as α-, β-, and γ-CDs [10,11], respectively. CDs are able to form inclusion
complexes with different molecular weight compounds [12–16], due to their possession of a
hydrophobic central cavity and a hydrophilic outer surface. In order to form inclusion complexes,
it is necessary that the guest molecules will have a compatible size that allows them to fit within
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the cavities of the CDs and that they will have sufficiently strong binding affinities to facilitate
complexation. Furthermore, factors influencing the formation of the inclusion complexes can also
include the conformational energy [17], vander Waals interactions [18], and the formation of hydrogen
bonds. Usually, complex formation results in a dynamic equilibrium of the complex, CDs and the
guest, which is characterized by the association constant, which is expressed as follows [19]:

Ka “
rG{CDs
rGs ˆ rCDs

(1)

where [G], [CD] and [G/CD] represent the concentrations of the guest, CDs and the host–guest
complex, respectively. The Ka will determine the strength of the binding, and in the case of a large
binding affinity, the formation of the host–guest complex is highly favored.

CDs have been extensively used as drug delivery carriers through host–guest interactions, due
to their merits in increasing drug solubility [20,21], controlling drug release profiles [22], alleviating
systemic toxicity [23], and improving the permeability of biological barriers [24]. Poly(ethylene
oxide)(PEO) has been widely applied in biomedical fields due to its solubility in water and its
biocompatibility [25,26]. Among PEO chains, those with low molecular weights exhibit its excellent
chain flexibility, while those with high molecular weights possess high mechanical strength and
toughness. Moreover, the hydrogels of PEO are also extensively researched for their promising
potential as drug delivery vehicles [27]. Recently, CD/PEO-based poly(pseudo)rotaxanes, whose
inclusion complexes were composed of multiple CD rings that were threaded onto a polymer chain
with (or without) bulky end-caps, vesicles, or supramolecular hydrogels, have led to an exciting
interesting developments in the biomaterials field.

While some of the PEO-based polymers described in this review will include homopolymers that
consist solely of a PEO chain, many of the polymers described are block copolymers. Block copolymers
consist of two or more distinct chains (or blocks) that are covalently linked together [28]. Because the
two blocks are often incompatible with one another, block copolymers tend to undergo phase
segregation, thus potentially forming a wide range of nanostructures with intricate morphologies.

In solution, amphiphilic diblock copolymers consisting of a water-soluble and a poorly soluble
hydrophobic block can aggregate to form micelles when their concentration reaches the critical micelle
concentration (CMC). In an aqueous solution, the hydrophobic chains will tend to collapse, while
the hydrophilic chain will be solvated and somewhat stretched, extending into solution. At low
concentrations, the block copolymers bearing collapsed and solvated chains may exist as individual
micelles or unimers. When the CMC is exceeded, these unimers may aggregate to form micelles, which
consist of an insoluble core domain that is surrounded by a soluble “corona” or “shell”, and hence these
micelles are known as core–shell micelles. While spherical core–shell micelles are the most common, a
wide range of micellar morphologies have been observed since Eisenberg and coworker’s discovery of
non-spherical morphologies in the 1990s [29,30]. The most common micellar morphologies exhibited
by diblock copolymers include spherical and cylindrical micelles, as well as vesicles. A number of
factors can influence the micellar morphology, including the volume ratio of the hydrophobic and
hydrophilic blocks, the nature of the solvent, the presence of salt, the rigidity of the individual blocks,
and various other factors [31]. The range and complexity of the micellar morphologies becomes even
more complex among block copolymers containing three or more blocks. In this review, we summarize
the recent progress regarding the drug delivery applications ofsupramolecular architectures based
on CD and PEO from 2008 to present. Particular focus will be devoted toward the structures and
properties, the design and synthesis of poly(pseudo)rotaxanes, vesicles, and supramolecular hydrogels.
Moreover, the various applications of drug delivery techniques such as drug absorption, controlled
release and drug targeting based on CD/PEO supramolecular complexes, are also discussed.
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2. Supramolecular Structure and Properties of CD/PEO-Based Poly(pseudo)rotaxanes

The first report on the synthesis of CD-based poly(pseudo)rotaxanes was described by Harada
which was based on the block of poly(ethyleneoxide) (PEO) and poly(propylene oxide)(PPO) [32,33].
The supramolecule composed of multiple α-CD rings threaded on the PEO chain and trapped by
end-capping the chain with bulky end groups. In the case of polyrotaxanes(PRs), the CDs are fixed
onto certain regions of the polymer chains, typically due to the presence of bulky functionalities that
restrict their migration. However, in the case of poly-pseudorotaxanes(PPRs), CDs can move along
or off the polymer backbone because they lack stoppers [34]. Poly(pseudo)rotaxanes, including the
polymers of PEO, have been employed for the encapsulation and delivery of drugs [35–39], because
their molecular structure and properties can be finely tuned by modulating the length of the PEO
chain [40–42]. In controlling the formation of the inclusion complex, the cross-sectional regions of
the polymer chains and the diameters of the cavities of CDs were considered the important factor.
Recently, size-correlated factors have been given growing attention, because CDs may recognize and
selectively complex with different blocks, which would help with the design and synthesis of novel
biomaterials for potential drug delivery applications.

2.1. CD/PEO-b-PPO-b-PEO

CDs can act as host molecules to linear polymeric guest molecules, because the dimensions
of CDs may vary depending on the number of glucose units within their macrocyclic ring.
In the cases involving γ-CDs either single or double polymer chains may be threaded through
the hydrophobic cavities of the CDs depending on the influence of the solution environment
and the intermolecular interactions involved. Although the self-assembly behavior of CD-based
poly(pseudo)rotaxanes is mostly determined by the cross-sectional area of the incoming polymer
chain and the cavity size of the CDs, for γ-CDs, their inclusion behavior depends on the solution,
guest molecules, and especially the number of glucose units. Feng et al. [43] reported the capping
of a triblock copolymer PPO-b-PEO-b-PPO by poly(2-hydroxyethyl-methacrylate) (PHEMA)-blocks
via atom transfer radical polymerization (ATRP) in DMF to thus yield a pentablock copolymer
PHEMA-b-PPO-b-PEO-b-PPO-b-PHEMA allowed this copolymer to self-assemble with γ-CDs in
aqueous solution [43], whose inclusions showed the single-chain. The synthetic pathway towards
this pentablock copolymer is shown in Figure 1. In this synthesis, Cu(I)Cl/PMDETA was chosen as
the catalyst and DMF as solvent for the ATRP of 2-hydroxyethyl methacrylate (HEMA). BrPEPBr, as
shown in Figure 1, was designated as the macroinitiator and PEP26M was the pentablock copolymer.
The PEP18CD(feed molar ratio of BrPEPBr/γ-CD = 1:18) was self-assembled by BrPEPBr and γ-CDs,
and PEP26MnCD were composed of γ-CDs with PHEMA-b-PPO-b-PEO-b-PPO-b-PHEMA(n represents
the feed molar ratio of γ-CD to PEP26M). The passage of time led to a diverse range of structures, such
as single-chain stranded or loose-fitting (Figure 2) complexes, as was confirmed by 1H NMR, WXRD,
DSC, TGA, 13C CP/MAS NMR and FTIR analysis. Single-chain stranded γ-CD-based PPRs or PRs, in
comparison with the typical double-chain stranded PPRs, such as those reported by Harada et al. [44],
showed no characteristic channel-type crystal structures. In those, the inclusion complexes expressed
a superior ability to undergo deformation and to adapt to the external conditions so that the γ-CDs
could readily move along the polymer chains [45–48].

CD derivatives can also influence the characters, both the inclusions and the
poly(pseudo)rotaxanes. The complexation behavior off our β-CD derivatives, including DIMEB
(heptakis(2,6-di-O-methyl)-β-CD), TRIMEB (heptakis(2,3,6-tri-O-methyl)-β-CD), HEBCD(hydroxyethyl-
β-CD), and HPBCD(hydroxypropyl-β-CD), with micelles of Pluronic F127(PEO100-b-PPO65-b-PEO100),
were investigated and the disassembly behavior between the CDs and the micelles was reported [49].
The interactions involving the CD derivatives and inclusions could lead to the disassembly, which
resulted from the methyl groups in position 6 of the glucopyranose rings of DIMEB and TRIMEB with
the inclusions, such as PPO. Based on this study, their research on the competitive interactions of CDs
and drugs with PEO-PPO-PEO by the assembly and disassembly of micelles was researched [50].
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together via the hydrophobic effect. Therefore, in this three-component competitive system, the 
drug would form complexes with β-CD at the expense of the formation of pseudopolyrotaxanes 
between β-CD and the PPO segment. This research described the changes in the micellar structures 
occurring upon encapsulation of a drug, and proposed opening-up micelles based on 
β-CD/pseudopolyrotaxanes, as a handle to trigger or control the release of a drug. 
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Among the β-CD derivatives, such as heptakis(2,3,6-tri-O-methyl)-β-CD, 2-hydroxyethyl-β-CD
and 2-hydroxypropyl-β-CD, hep2,6-β-CD would lead to the disassembly of the Pluronicmicelles, due to
the quantity of free hydroxyl groups on the β-CD which altered its hydrophobicity. More interestingly,
they discussed the competitive interactions, between β-CD, the Pluronic micelle and the drug. On the
one hand, the presence of hep2,6-β-CD in solution would break-up the micelles. However, on the other
hand, the presence of the drug in the micelles would help to hold them together via the hydrophobic
effect. Therefore, in this three-component competitive system, the drug would form complexes with
β-CD at the expense of the formation of pseudopolyrotaxanes between β-CD and the PPO segment.
This research described the changes in the micellar structures occurring upon encapsulation of a drug,
and proposed opening-up micelles based on β-CD/pseudopolyrotaxanes, as a handle to trigger or
control the release of a drug.

The intermolecular hydrogen bonding, as the driving force for the self-assembly of CDs
with polymer chains between the neighboring CDs, can only be destroyed by a few solvents:
N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and
ionic liquids [51] can disrupt the hydrogen bonding. PRs with tunnel-type or tunnel-like structures
would be in a dispersed-state with the destructive solvents. Feng et al. [51] synthesized a series
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of polyrotaxane-based β-CDs and Pluronic F127 with poly(N-isopropylacrylamide) (NIPAAm)as
end-stoppers via atom transfer radical polymerization (ATRP) in an a queous N-isopropylacrylamide
solution. The as-prepared polyrotaxane exhibited not only solvent-sensitive and thermoresponsive
behavior, but also exhibited fascinating aggregation structures. The polyrotaxane did not have the
characteristic tunnel-type crystal structure, but instead exhibited a dispersed-state structure, after
it had been precipitated from DMF with anhydrous ether. In these copolymers, the distribution of
β-CD along the Pluronic F127 chain was loosened. However, after the system had been subjected
to incubation in water and freeze-drying treatment, the structure of the polyrotaxane-based β-CDs
and Pluronic F127 formed a tunnel-like crystal. Under the treatment of solvent, the interconversion
of two structures would happen. In addition, the movements of the entrapped CDs in the solid state
showed an opposite movement tendency in the dispersed and aggregated states, which rendered
them thermoresponsive. These findings would inspire the preparation of potential thermoresponsive
polymeric materials by the simple solvent treatments.

The structures of CD derivatives influenced the properties of the inclusion complexes (ICs).
For example, this was demonstrated by a physico-chemical study for the copolymer based on
PEO-b-PPO-b-PEO and CDs [48]. The CDs, including native and hydroxypropyl CDs with different
cavity sizes were chosen to investigate the role of the molecular weight in influencing the properties
of the inclusion complexes (ICs). A channel structure was shown when the native was adopted
in the complex; however, necklace-like structures were generated if alkylated-CDs decorated the
copolymer, when the conditions, such the hydrophilic/hydrophobic ratio and the hydrophilicity were
kept constant based on volume, DSC, and FTIR characterization. Lazarra et al. [52] had found that the
inclusion complexes were in anamorphous state and their thermal stability depended on the nature of
both the CD and the copolymer based on volume, DSC, and FTIR investigation.

The formation of supramolecular complexes between CDs and PEO-b-PPO-b-PEO has motivated
many researchers to investigate their fascinating self-assembly behavior. In addition, the
solvent-sensitive or thermoresponsive properties, as well as the PPRs or PRs as inclusions consisting
of either one or two threaded chains characteristic crystal structure, and the influence of CD and their
derivatives, have pushed the applications of this kind of novel biomaterial for drug delivery.

2.2. CD/PEO-b-PDEAEMA

Polymerswith functional properties of coordination with the metal ions have become powerful
tools as the “special medicine” carrier for cancer diagnosis and radiotherapy. When the environment
changes, such as pH, temperature, light and ion concentration, the block copolymers, with the
appropriate structural design, would form the micelles in pure water. The transition metal ions
67Cu (half-life 2.58 days) and 90Y(III) (half-life 2.67 days) can be loaded in the micelles for use in
radiotherapy.Poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) is apt to coordinate with metal
ions and be a pH-responsive block, which is a hydrophilic block at low pH, and becomes a hydrophobic
block at higher pH. Therefore, the diblock copolymer PEO45-b-PDEAEMA45was synthesized as the
carrier of transition metal ions Y(III) and Cu(II)via anionic polymerization [53]. Due to the differences
in the solubility between the different blocks, this copolymer formed unique micelle structures by
self-assembly in neutral and alkaline aqueous media. The soluble corona was formed by the PEO block,
while the insoluble PDEAEMA block formed the micellar core. Furthermore, the cores of these micelles
could be loaded with metal ions, such as Y(III) and Cu(II), due to the PDEAEMA block’s ability to
coordinate with metal ions. More importantly, the Y(III) loaded micelles could form supramolecular
gels in situ, by the simple addition of α-CDs. These materials may have strong potential as an internal
radiotherapy system, replacing traditional chelating ligands as carriers.

2.3. CD/PEO

Because the adsorbed polymers can increase the stabilization of colloidal particles, many groups
have focused on the research of additions [54–56]. Dreiss et al. [57] discussed the interactions between
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grafted polymer layers and CDs via small angle neutron scattering measurements. They found that the
addition of CDs affected the polymer structure. In particular, the PEO chains were extended into the
bulk and this behavior was attributed to the formation of a pseudopolyrotaxane based on CD/PEO.
Among these mixtures that were investigated with different CD homologs, the most significant increase
in the layer thickness was observed in cases involving α-CD constituents. The signal from the layers
was fitted to a double-exponential volume fraction profile, as shown in Figure 3, which was attributed
to the stronger complexation between PEO and α-CD.

Figure 3. Diagram depicting of the effects of adding cyclodextrin on the polymer profile. This image
was adapted with permission from [57]. Copyright (2008) American Chemical Society.

PPRs (α-CD/PEO-based polyrotaxanes) were obtained at low temperature (5 ˝C) at good yield
of the synthesis in water. However, it is difficult to chemically modify the formed physical gel
at this temperature. Schlatter et al. [58] reported a specific behavior at 30 ˝C of α-CD/PEO-based
pseudopolyrotaxanes in water and discussed the kinetics of formation and self-organization. Usually,
for the liquid mixture of α-CD/PEO at 70 ˝C, a white physical gel of PPRs appeared with time at
a lower temperature by quenching. At 30 ˝C, a physical gel of PPRs formed more slowly and the
process could be described as a two-step phenomenon: In the first step, the PPR molecules were
poorly soluble in water, although α-CDs had threaded onto the PEO chains. During the second step,
the system underwent structural reorganization and the amount of precipitated domains increased.
The schematic is shown in Figure 4. Their work on the PPR synthesis at 30 ˝C provides valuable new
insight regarding PPR chemical modification for drug delivery.
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2.4. CD/PEO-b-POO-b-PEO

Luis et al. [59] reported the competitive displacement between the drugs being incorporated,
CD and PEO-b-POO-b-PEO by polypseudorotaxane formation. The studies on the solubility, drug
release and competitive displacement, were one-dimensional experiments using1HNMR and 2D
Rotating-frame Overhauser Effect Spectroscopy (ROESY). They concluded that stability of the drug–CD
complexes and the CD concentration in the bulk solution had significantly influenced the release
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rate and the formation of polypseudorotaxanes. In particular, with regard to the solubilization
capability, the formation of polypseudorotaxanes disrupted the formation of the complexes inclusion
of CD–drug, which reduced the solubilization, but the micellization of PF127 in complexes a queous
solutions compensated the ability of solutions. The ability of PF127 to displace guest molecules from
the CD cavities can effectively modify the release properties of the aqueous drug–CDs complexes,
which would provide valuable opportunities for new drug delivery systems based on the formation
of polypseudorotaxanes.

2.5. CD/PPO-b-PEO-b-PPO

Isasi et al. [60] reported the influence of the different kind of CDs on the nature of the resultant
polypseudorotaxane structures. A series of supramolecular polymers were prepared based on the
Pluronic10R5 (PPO8-b-PEO22-b-PPO8) with β- and α-CD, which had different structures and properties.
When α-CD was combined with Pluronic 10R5, they became localized on the PEO blocks of 10R5,
while the hydrophobic PPO blocks aggregated in aqueous media, due to the hydrophobic effect.
Consequently, the viscosity of the system increased, thus leading to the formation of fluid gels.
The CD/copolymer ratio was the key factor in this kinetics process. Higher CD/copolymer ratios
accelerated the onset of cloudiness and promoted coalescence appeared. In other cases, the entire
process would last several days. By varying the ratio between 10R5 and CD, the viscosity could
be tuned. Meanwhile, when 10R5 was mixed with β-CD, these larger CDs favored the PPO block.
These polypseudorotaxanes formed white precipitates with crystalline structures.

New polyrotaxanes, PPO-polyrotaxane-PPO, were synthesized based on PPO-b-PEO-b-PPO and
α-CD with two 2,4-dinitrophenyl groups as terminal group [61]. During the formation of new polymers,
α-CDs covered the PEO segments of the PPO-b-PEO-b-PPO triblock copolymer after they had slid over
the PPO segments. They also found that the PEO block length determined the numbers of α-CD rings
that would become threaded onto the polymer chain. In addition, the introduction of α-CD enhanced
the thermal stability of the new polyrotaxanes.

Recently, many reports have focused on the stimuli-responsive properties of polyrotaxanes, due
to their reversible changes in response to external conditions, such as the pH or temperature [62–64].
Li et al. [65] investigated a cationic polyrotaxane based on a pentaethylenehexamine(PEHA)-grafted
α-CD and PPO-b-PEO-b-PPO triblock copolymer that exhibited thermoresponsive behavior.
The cationic polyrotaxane was composed of six α-CD rings that were treaded onto one polymeric
chain and an average of 4.8 PEHA chains were grafted onto each α-CD ring. In the synthesis,
the cationic polyrotaxane could form multi-molecular micelles with increasing concentration and
temperature. Among the parameters influencing the micellization, including the standard free energy
(∆G˝), enthalpy (∆H˝), and entropy (∆S˝), entropy was found to be the dominant factor driving
the micellization.

3. Vesicles/Polymersomes of CD/PEO-Based Linear Block Copolymers for Drug Delivery

Polymeric vesicles have attracted significant attention due to their hollow structures and their
strong potential for drug delivery applications [66–70]. Among the block copolymers, amphiphilic
copolymers are the most commonly used [71–75] building blocks of polymersomes. In aqueous
solution, the insoluble hydrophobic block typically collapses from solution to form the polymersome
wall, while the hydrophilic blocks extend into solution. In comparison with spherical cells, the insoluble
block of a vesicle-forming diblock copolymer generally has a larger volume ratio. Although many
groups investigated the building blocks for the preparation of polymeric vesicles with amphiphilic
block copolymers [76–78], there are still many challenges regarding the preparation of these
nanostructures that will need to be addressed if these self-assembly techniques are to become widely
applied in drug delivery, such as their complicated preparation processes [79,80], the need for organic
solvents, and so on.
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3.1. CD/PEO-b-PMPC

Ji et al. [81] prepared biocompatible polymer vesicles based on α-CDs and poly(ethylene
oxide)-b-poly(2-methacryloyloxyethyl phosphorylcholine) (PEO-b-PMPC) in aqueous media. In this
case, the polymer vesicles resulted in the self-assembly of polyrotaxanes based on α-CD and
PEO-b-PMPC. They discussed the delivery and release efficiency of the drug by loading hydrophilic
doxorubicin (DOX¨HCl) into these vesicles. Experimental results showed this complex had a lower
cytotoxicity than drug-loaded vesicles that did not incorporate α-CDs and that it enhanced the delivery
and the release of drug to the targeted site.

3.2. CD/PEO-b-PNIPAAm

Ji et al. [82] investigated the formation of micelles and reverse micelles based on
CD/PEO-b-PNIPAAm polyrotaxanes, with particular emphasis on the effect of α-CD and
the temperature on the micellar structures. They synthesized poly(ethylene oxide)-b-poly(N-
isopropylacrylamide)(PEO-b-PNIPAAm) via atom transfer radical polymerization(ATRP). When the
temperature was 40 ˝C, the copolymer underwent self-assembly to form micelles in which the PEO
block acted as the corona and the PNIPAAm block formed the micellar core. However, when the
temperature was decreased to 25 ˝C, the PNIPAAm-core micelles underwent disassembly. Moreover,
they found that adding the α-CD into the mixture of the PNIPAAm-core micelles and their unimers
led to the formation of reverse micelles, in which the PEO block formed the core and the PNIPAAm
block acted as the corona. This resulted in micelles with the formation of “channel-type” crystallites
induced by the polyrotaxanes of PEO/α-CDs. The construction of micelles and reverse micelles may
provide a facile approach for the delivery of stimuli-responsive drugs.

3.3. CD/HBPO-Star-PEO

Zhou et al. [83] investigated their studies on the aggregation and fusion of vesicles based on
CD/HBPO-star-PEO [HBPO = hyperbranched poly(3-ethyl-3-oxetanemethanol); PEO = poly(ethylene
oxide)] used as a drug carrier, by the interaction between the host and guest (Figure 5). First, they
synthesized three polymers as the building blocks: HBPO-star-PEO, a damantane-functionalized
branched polymersomes (Ada-BPs), and β-CD-functionalized branched polymersomes (CD-BPs).
Second, cell-sized polymer vesicles were prepared by the host–guest recognition interactions between
the adamantine groups and β-CDs on the branched polymersomes by simply mixing the Ada-BPs
and CD-BPs together. In their experiment, large-scale vesicle aggregation and fusion resulted from the
strong intervesicular interaction of Ada-BPs and CD-BPs. These novel hierarchical polymer vesicles
may lead to applications, in the development of tissue materials.
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4. Supramolecular Hydrogels Based on CDs and PEO for Drug Delivery

Hydrogels have attracted much attention as potential drug delivery systems due to their
hydrophilicity, biocompatibility, drug loading capacities and promising release properties [84–88].
Hydrogels are usually divided into two classes based on their network structures, which are formed by
either covalent crosslinking or by various non-covalent interactions (Figure 6). Chemical gels possess
high stability due to their covalent bonds, while the physical gels have relatively low stability due
to their reliance on non-covalent interactions [89–97]. While they may be less stable than chemical
gels, physical gels may have the ability to exhibit stimuli-responsive behavior or to undergo reversible
changes in response to their surrounding environments. The formation mechanisms, characteristics
and biomedical applications of the supramolecular hydrogels, both chemical gels and physical gels,
are listed in Table 1.
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4.1. CD/PPO-b-PEO-b-PPO

Nie et al. [98] reported their research on the hydrogel formation of PPO-b-PEO-b-PPO triblock
copolymers with α-CD in aqueous solutions. In particular, using phase diagrams and DSC analysis,
they investigated the sol-gel phase transitions and attempted to explain the gelation kinetics and the gel
rheological properties of these systems. After the addition of the α-CD, the driving force of the gelation
process came from the combination of α-CD and the PEO blocks of the PPO-b-PEO-b-PPO copolymer.
Furthermore, the gel for their characters of thixotropic and reversible would be a high-efficiency
drug-delivery system if used as an injectable gel.

In comparison with the inclusion complex formation of CD/PPO-b-PEO-b-PPO, Park et al. [99]
developed a buccal-paclitaxel delivery system that was accomplished simply by the addition to PF127
and PEO in the inclusion complex of paclitaxel and (2,6-di-O-methyl)-β-CD(DM-β-CD). In this system,
the paclitaxel was incorporated into DM-β-CD to form the gel to improve its aqueous solubility while
the introduction of PF127 and PEO increased the thermoresponsive and mucoadhesive properties.
More importantly, the paclitaxel gel exhibits a sol-gel transition property, and it thus has potential
a pplications for a delivery system of anticancer drugs. In particular, this sol-gel transition could
be employed to achieve triggered release in response to the external conditions encountered at a
tumor site.

Schlatter et al. [100] reported the kinetics of the gelation and relative contributions of α-CD and
PEO to the cohesion of CD/PEO physical gels. They found that this gel exhibited the non-monotonous
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evolution behavior by differential scanning calorimetry measurements in concentrated DMSO. In their
data, two distinct endothermic peaks, at 29.4 and 32.0 ˝C, were found in the measurements of these
physical gels, which were attributed to the crystals of naked PEO segments and the aggregation of
α-CD, respectively.

4.2. Poly-α-CD/PEO

As has been described previously, α-CDs have the ability to thread along PEO chains to form PPRs
or PRs [84–87]. However, the complexes formed by poly-α-CD and PEO remain relatively unexplored.
Alvarez-Lorenzo et al. [101] prepared an injectable supramolecular gel of poly-α-CD and PEO-based
copolymers for controlled drug release. The content of α-CD in the composition of the poly-α-CD
polymers was greater than 53%, characterized by NMR and the molecular weight evaluated using static
light scattering (SLS) was found to be about 455,000 ˘ 12,000 g¨mol´1. Supramolecular assemblies
occurred by mixing poly-α-CD (20%–40% w/v) with a PEO-based polymer (i.e., PEG, Pluronic®

F127 or Tetronic® 908) (10%–15% w/v). The gel was formed in less than 24 h if the concentration
of poly-α-CD solution and PEO-based copolymer dispersion reached 40% and 10%, respectively.
The drugs were easy to load onto any of the polymer dispersions, by only pouring with a syringe that
was fitted with an 18G needle, because of their dynamic assembly character of poly-α-CD with the
PEO-based copolymers. CD-polymers, in comparison with pristine CDs, have many unique properties,
such as the greater aqueous solubility and higher stability [102,103]. In particular, the CD-polymers
would form gel or nanocrystal [104,105] in the presence of hydrophilic polymers with complementary
substituents [106,107].The 3D-supramolecular gels were formed by the packing of α-CD units of
poly-α-CD threading along the PEO blocks, in which water-soluble poly-α-CDs were synthesized by
crosslinking α-CD with epichlorohydrin in alkaline medium [101]. The 3D-poly(pseudo)rotaxane gels
with excellent cytocompatibility, stability and their sustained drug release would be the novel systems
capable of using syringes for the treatment of various diseases.

4.3. CD/PEO-b-PVA/PBA

Li et al. [108] presented a glucose-responsive hydrogel system. These hydrogels are formed by
three components:a poly(ethylene oxide)-b-poly (vinyl alcohol) (PEO-b-PVA) diblock polymer, α-CD
and a phenylboronic acid (PBA)-terminated PEO crosslinker. The hydrogel network was formed via the
cooperative interaction forces of the dynamic covalent bonds and inclusion occurred, between PVA and
PBA, as well as between PEO and α-CD. Upon the addition of the glucose and other competing polyols,
the poly vinyl alcohol (PVA) segment was replaced from the hydrogel system. This glucose-responsive
system may be designed as a biosensor to detect or quantify the presence of glucose or fructose and
may be used for insulin delivery applications.

4.4. CD/PEO

Gaining a firm understanding of the mechanism of drug release is a key requirement for the
development of effective drug carriers. Loh et al. [109] prepared α-CD/PEO pseudorotaxane hydrogels
and loaded them with proteins having different molecular weights. They discussed the influence
of various factors on the release, such as the diffusion, erosion or possibly a combination of these
two factors as well as the duration of protein release to investigate the drug release mechanism of
α-CD-PEO hydrogels. Among various factors such as the PEO concentration, protein concentration,
exposed surface area of the gels and so on, they concluded that the surface erosion was the main factor
influencing the release of the proteins.

In their investigation of delivery systems based on hydrophilic polymers, Quaglia et al. [110]
discovered that CDs could affect drug-release behavior in aqueous media and transport properties
through lipophilic barriers. In their experiment, hydroxypropyl-β-cyclodextrin (HP-β-CD) was
incorporated in a hydrated gel matrix as an aid-excipient. As a result of the introduction of HP-β-CD
in erodible hydrophilic tablets, the release rate of two forms increased; whether HP-β-CD was present
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or absent, Diclofenac was incorporated in PEO matrices in different conditions, such as acid (DicH)
or free sodium salt (DicNa). At the same time, the release rate through silicon membranes and
porcine buccalmucosa was increased for DicH and decreased for DicNa in the presence of CD, which
modified the transport resistance inside the gel matrix. Thus, CDs may serve as release and permeation
modulators in hydrophilic matrices and thus may be potentially used to optimize the dissolution and
release profile of an oral drug.

Schlatter et al. [111] investigated the kinetics and multiblock copolymer assembly behavior of
α-CD/PEO-based polyrotaxanes in dimethyl sulfoxide (DMSO) and they found that the structure of
PRs based on CDs were temperature-dependent. At 43 ˝C, the PEO and PR solutions all remained
as liquids, although the PRs presented the multiblock behavior for two types of blocks in DMSO.
One type of block was rigid forthe rod like tubes of α-CD, while the other was flexible for the naked
PEO segments. When the temperature was cooled down to 21 ˝C, the PR mixtures gradually formed
transparent physical gels. In the PEO/DMSO system, gelation proceeded by the gathering of small
nanoscale crystallites and their multiblock copolymer behavior leed to the formation of their regular
bundled structures, as shown in Figure 7.
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4.5. CD/PEO-b-PPO

Hydrogels based on PEO-b-PPO block copolymers have great potential as drug delivery systems
due to their high solubilization capacity and biocompatibility. Isasi et al. [112] investigated two types of
hydrogel matrices to evaluate and compare the dissolution profiles of drug. The gels were synthesized
by the complexation of Tetronic 90R4 with α-CD in aqueous solution. Meanwhile tablets with similar
components as the gels were prepared by freeze-drying. They discovered that the matrix composition,
stirring speed, and the nature of the molecule influenced the release profiles of the drugs.

4.6. CD/PEO-b-PCL

Li et al. [113] prepared novel supramolecular hydrogels based on the diblock copolymer
poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) and α-CD. They improved the sustained
release properties by adjusting the α-CD contents and by substituting part of the PEO with PCL.
By investigating the release kinetics of the hydrogels in vitro, they found the sustained release character
of this supramolecular hydrogel was increased significantly due to the strong hydrophobic interaction
of the uncovered PCL blocks in the supramolecular hydrogels. In other words, when the α-CD content
was decreased, the release rate was increased.

4.7. CD/PEO-PPO Octablock Star Copolymers

Tetronics or poloxamines are four armed copolymers that contain both a PEO block and a PPO
block in one arm. When the PEO blocks are on the outside, the Tetronics are named “normal” or
“direct”, whereas when the PEO blocks are on the inside, they are referred to as reverse Tetronics.
Isasi et al. [114] discussed the dissolution profiles of reverse poloxamine/α-CD matrices in vitro.
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They prepared two types of gels based on octablock star polyethylene oxide/polypropylene oxide
copolymers (Tetronic 90R4) along with α-CD for use as matrices for drug release. The erosion kinetics
of the two different types of matrices, as gels and tablets, were investigated in aqueous media using
L-tryptophan (Trp)and bovine serum albumin (BSA) as the release molecules. In addition, by varying
the poloxamine/α-CD ratios, the physical properties of poloxamine/α-CD gels could be tailored, such
as the viscosity and gel-to-sol transition temperatures, and the erosion kinetics of the gel could also
be tuned.

5. Conclusions and Future Prospects

In this review, we have described the recent advances in supramolecular architectures
based on CDs and poly(ethylene oxide) (PEO) for drug delivery. The introduction of CDs into
these supramolecular structures can optimize their performance as drug carriers, such as their
biocompatibility, flexibility, and stability. As described in this review, a diverse range of assemblies
based on CD/PEO materials have been synthesized and investigated, such as poly(pseudo)rotaxanes,
vesicles and supramolecular hydrogels. In future studies on supramolecular architectures based
on CD/PEO-materials for drug delivery, there are still many questions and challenges that remain,
such as those relating to the physicochemical characteristics, clinical translational performance, the
pharmacokinetic profiles, and toxicity of these materials. We believe that significant progress will
be made in the construction of nanostructures in the near future and new generations of CD/PEO
supramolecules for drug delivery vehicles will play an important role in the treatment of diseases.

Table 1. Supramolecular hydrogels based on CDs and PEO formation mechanisms, structures and
their characteristics and biomedical applications.

Hydrogel
(Cross-Linking Method) Formation Mechanisms System Characteristics or Applications

Physical (reversible)gels

(1) Intermolecular forces hydrogen bonding
(2) Hydrophobic injectable effect

(3) Electrostatic ionic force or
intermolecular assemblies
(4) Stereo-complexation

(5) Complementary binding

(a) CD/PEO-PPO–PEO Injectable. Buccal-paclitaxel
delivery system [98–100]

(b) Poly-α-CD/PEO Injectable supramolecular gels [101]

(c) CD/PEO

CD/PRs with rigid block and
flexible block type in DMSO;
structure is regular bundles
structure at 21 ˝C [109–111]

(d) CD/PEO-PPO Sustained delivery [112]

(e) CD/PEO-PCL Sustained release, lower
molecular weight [113]

(f) CD/PEO-PPO octablock
star copolymers Biocompatible, sustained [114]

Chemical (permanent)gels

(1) Redox reactions
(2) Photo-polymerization

(3) Click chemistry
(4) Michael reactions

(5) Schiff’s base reactions, enzymatic
reactions(disulfide-forming reactions)

CD/PEO-PVA/PBA Pharmaceutical fields (e.g.,
treatment of diabetes) [107]
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