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Abstract: Multiple myeloma (MM) is a blood cell neoplasm characterized by excessive production of
malignant monoclonal plasma cells (activated B lymphocytes) by the bone marrow, which end up
synthesizing antibodies or antibody fragments, called M proteins, in excess. The accumulation of
this production, both cells themselves and of the immunoglobulins, causes a series of problems for
the patient, of a systemic and local nature, such as blood hyperviscosity, renal failure, anemia, bone
lesions, and infections due to compromised immunity. MM is the third most common hematological
neoplasm, constituting 1% of all cancer cases, and is a disease that is difficult to treat, still being
considered an incurable disease. The treatments currently available cannot cure the patient, but only
extend their lifespan, and the main and most effective alternative is autologous hematopoietic stem
cell transplantation, but not every patient is eligible, often due to age and pre-existing comorbidities.
In this context, the search for new therapies that can bring better results to patients is of utmost
importance. Protein tyrosine kinases (PTKs) are involved in several biological processes, such as cell
growth regulation and proliferation, thus, mutations that affect their functionality can have a great
impact on crucial molecular pathways in the cells, leading to tumorigenesis. In the past couple of
decades, the use of small-molecule inhibitors, which include tyrosine kinase inhibitors (TKIs), has
been a hallmark in the treatment of hematological malignancies, and MM patients may also benefit
from TKI-based treatment strategies. In this review, we seek to understand the applicability of TKIs
used in MM clinical trials in the last 10 years.
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1. Introduction

Multiple myeloma (MM) is a systemic hematological neoplasm in which there is an
abnormal proliferation of malignant monoclonal plasmocytes that release antibodies or
antibody fragments, called M proteins, in excess [1–5]. This feature is responsible for a
range of symptoms of MM such as blood hyperviscosity and damage to the renal tubules.
Along with this accumulation, the interaction of malignant plasma cells with other cells in
the bone marrow (BM) causes several problems for patients such as anemia, destructive
bone lesions, and infections due to compromised immunity [5–7].

MM is the third most reported neoplasm representing approximately 1% of all cancers
and approximately 10% of all hematological malignancies, with risk factors for MM devel-
opment involving gender, age, family history of malignancies, and ethnicity [1,8,9]. MM is
more commonly reported in men than in women with a ratio of 1.5 to 1 and being twice
as common in African Americans compared to Caucasians [2,10,11]. The median age at
diagnosis tends to be around 65 years [2,12].

MM emerges from molecular changes caused by DNA damage and failures in DNA
repair mechanisms [13]. As a genetically complex disease, MM development is a process
composed of several stages, with initial mutations appearing in hematopoietic stem cells
(HSC) of the bone marrow (BM), the site most affected by the disease [14]. With the onset
of malignant transformations, patients enter a pre-malignant stage called smoldering
multiple myeloma (SMM) or monoclonal gammopathy of undetermined significance
(MGUS) that occurs due to genetic events such as chromosomal translocations involv-
ing immunoglobulin heavy chain (IgH) genes and aneuploidy [15]. Secondary genetic
events, such as copy number abnormalities and acquired mutations, are linked to tumor
progression [16–19]. With the accumulation of mutations that guarantee competitive
advantages, HSCs evolve into malignant cells and begin to proliferate causing accu-
mulation of malignant plasma cells in the BM [19]. This proliferation is sustained also
due to the release of cytokines, such as interleukin 6 (IL-6), carried out by BM stromal
cells [5,20,21]. The genetic alterations found in the MGUS stage are involved in tumor
development, while the events present in the MM stages that were not found in MGUS
are responsible for tumor progression [12,17].

MGUS is an asymptomatic pre-malignant phase, preceding most cases of MM and
being present in approximately 3–4% of the population over 50 years of age. Of the total
number of MGUS cases, only 1% per year has a chance of progression to MM [22–25].
Patients with translocation t(4;14), del(17p), gain(1q), and trisomies have a higher risk of
progression from the SMM stage to MM, reaching 10% per year. This being also a risk factor
for progression from MGUS to MM [26–28].

Regarding genetic alterations, MM is known to present a great heterogeneity; how-
ever, mutations that could be considered precursors of the disease are now well known,
and these genetic alterations can be used as a prognostic factor. An example of this
would be mutations in the IgH gene locus, responsible for producing the heavy chains
of immunoglobulins, which are considered to be early precursor mutations [3,29,30].
Chromosomal translocations involving IgH and other genes such as Nuclear Receptor
Binding SET Domain Protein (NSD2), Fibroblast Growth Factor Receptor 3 (FGFR3), Cyclin
D3 (CCND3), Cyclin D1 (CCND1), MAF bZIP Transcription Factor (MAF), and MAF bZIP
Transcription Factor B (MAFB), resulting in the translocations t(4;14), t(6;14), t(11;14),
t(14;16), and t(14;20), respectively, are also an important clinical finding, as they deregu-
late checkpoints of the cell cycle due to increased gene transcription under the activity
of IgH transcription enhancer (Figure 1) [14,31–34].
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Figure 1. Cytogenetic alterations associated with multiple myeloma (MM). In pre-malignant settings,
driver alterations correlate with deregulation of oncogene activity and carcinogenesis onset. At later
disease stages, secondary alterations emerge due to genomic instability in malignant clones, and MM
cells from the same patient may even harbor different secondary alterations, following the concepts
of linear and branching evolution. Created with BioRender.com.

2. Current Clinical MM Treatment Options

Overall survival of MM cases has more than doubled in recent decades due to the
introduction of new combinations of chemotherapy, small molecule inhibitors, and the use
of monoclonal antibodies [35–38].

Hematopoietic stem cell transplantation (HSCT) is still the most recommended treat-
ment for MM, being the first choice in most cases, although not all patients are eligible.
Non-eligibility can happen for a variety of reasons, including age, which is an important
cut-off point for inclusion criteria, pre-existing comorbidities, and performance score, which
is used to predict poor outcomes in patients with MM [39–41].

When eligible for HSCT, patients are submitted to one of two induction regimens: VTD,
which includes bortezomib, thalidomide, and dexamethasone, or VRD, which includes
bortezomib, lenalidomide, and dexamethasone, being the most adopted pre-transplant
induction regimens available [42]. The role of induction chemotherapy is to reduce the
neoplastic burden at the patient’s BM in order to increase response rates and effectiveness
of an autologous transplantation graft [43–46]. Satisfactory response rates can be seen in
young, transplant-eligible patients receiving high-dose melphalan therapy with autologous
stem cell transplantation achieving a >60% effective response [47].

Most patients afflicted with MM end up relapsing and those who relapse and are
not eligible for a new HSCT require a triple therapy regimen that varies from case to case.
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Although highly cytotoxic, triple therapy regimens should be continued until the toxicity
outweighs the benefits or until patients are eligible for autologous HSCT [35,38]

On the other hand, the use of proteasome inhibitors revolutionized the management of
hematological malignancies emerging as one of the most important agents for the treatment
of MM [48]. Tumor cells are proteasome-dependent to eliminate excess proteins that arise
due to the continuous production of monoclonal immunoglobulin chains. Proteasome
hyperactivity in MM results in the degradation of important proteins such as the nuclear
factor kappa B (NFκB), the enzymatic complex of inhibitors of nuclear factor kappa B (IκB),
tumor protein p53 (TP53) suppressor proteins, among other proteins responsible for the
cell cycle [49,50]. Its inhibition leads to cellular stress induced by high protein load in the
endoplasmic reticulum due to the accumulation of intracellular proteins, leading to cell
death in MM cells [51,52]. Three agents in this class are approved by the Food and Drug
Administration (FDA) for use, bortezomib, carfilzomib, and ixazomib [53–57].

Approved in 2003, bortezomib was the first proteasome inhibitor to be used for the
treatment of relapsed and refractory multiple myeloma. Reversibly binding with high
affinity to the 20S proteolytic core withing the 26S proteasome without inhibiting other
types of proteases commonly present in the human body, bortezomib inhibits the ubiquitin–
proteasome pathway, triggering a series of events such as induction of apoptosis, cell
cycle inhibition, angiogenesis and adhesion, and cell proliferation. Despite being highly
potent and effective, bortezomib has a limitation during treatment: the dose that will
be used is limited by the toxicity of the drug that is often associated with peripheral
neuropathy [52,55,56,58,59].

Carfilzomib is a second-generation proteasome inhibitor approved in 2012 for use
in monotherapy or doublet or triplet combination regimens, especially for patients with
relapsed or refractory multiple myeloma. Unlike bortezomib, which binds reversibly,
carfilzomib binds irreversibly and highly selectively to the 20S proteasome, precisely
in the chymotrypsin-like β5 subunit. The inhibition of this subunit is enough to cause
apoptosis due to the accumulation of proteasome substrates inside the cell, which could
explain the high sensitivity of MM cells to this drug, use of carfilzomib being possible in
a monotherapy regimen aiming to reduce adverse effects. In this context, the drug has
lower neurotoxicity compared to bortezomib, but there is a higher possibility of causing
hypertension, congestive heart failure, and coronary artery disease, not being recommended
for patients with heart diseases [54–56].

Ixazomib was approved in 2015 for use in combination with lenalidomide and dex-
amethasone (Rd) in patients who have received at least one therapy regimen previously.
It is the first proteasome inhibitor that can be administered orally. Ixazomib is a potent
and selective inhibitor of 20S proteasome, also binding in the chymotrypsin-like β5 sub-
unit, as carfilzomib, but reversibly, as bortezomib. In addition, at high concentrations,
the drug can also bind in two other subunits of this proteasome: β1 caspase-like and β2
trypsin-like, increasing the selectivity of ixazomib by proteasome 20S. Ixazomib has no
cardiotoxic effects, but neurotoxicity is present, although at a lower level when compared
to bortezomib. The most reported adverse effects are thrombocytopenia, skin rash, and GI
symptoms—diarrhea, nausea, and vomiting [54,55,60–62].

Another important therapy in the treatment of MM is the use of immunomodulators
(IMiDs), such as thalidomide, pomalidomide, and lenalidomide. In general, immunomod-
ulators act by inhibiting cell growth by inducing apoptosis in MM cells through the in-
hibition of interferon regulatory factor 4 (IRF4), thus, affecting expression of the MYC
proto-oncogene (MYC). The overexpression of these two factors is linked to oncogenesis in
several types of cancer, including MM, as they are involved in the processes of regulation of
cell growth and metabolism, differentiation, apoptosis, angiogenesis, DNA repair, protein
translation, and hematopoietic cell formation. In MM, they act by regulating the immune
response and the development of immune cells [63–66].

In addition, IMiDs act favoring the production of interleukin-2 (IL-2) and interferon-
gamma (IFN-γ), activating T lymphocytes and natural-killer (NK) cells, on the other hand
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also inhibiting the production of the tumor necrosis (TNF)-α. The discovery of the inhibitory
effects of thalidomide on tumor progression led to the development of two other analogues,
lenalidomide and pomalidomide, which were authorized and released for use in MM after
clinical trials in 2006 and 2013 [64,67–69].

Daratumumab is a new kind of drug that has been used since 2015 for the treatment
of MM and it has been promoting an incredible improvement in the efficiency of the treat-
ment [70]. Daratumumab is an anti-CD38 monoclonal antibody, which is a pleiotropic
glycoprotein highly expressed on plasma cells and MM cells, acting as a transmembrane
receptor on these cells [70,71]. The role of CD38 as a receptor involves signaling for cell
activation and proliferation and inducing cell adhesion processes [72], which may ex-
plain its high expression in MM tumor cells. Therefore, the daratumumab’s monoclonal
antibodies directly target and destroy tumor cells due to several mechanisms, includ-
ing antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity,
antibody-dependent phagocytosis, and immune cell depletion or inhibition of immuno-
suppressive cells, constituting a specific type of immunotherapy for patients with multiple
myeloma [46,73–76]. Initially, it was only used as a monotherapy regimen for patients with
relapsed or refractory MM, but its low toxicity allowed it to be added to other drugs in
several different combinations, both in triple and quadruple therapies [70,71].

Emerging therapies with better outcomes involve immunotherapy and personalized
medicine based on the molecular characteristics of the patient’s tumor [33,71,77]. Specific
antibodies against B-cell maturation antigen (BCMA) have shown promise in the treatment
of MM, since it is an antigen whose expression is higher in myeloma cells than in healthy
plasma cells, having an essential role in the process of maturation and differentiation of
B-cells, being only expressed on antibody-producing B lymphocytes [78,79]. Antibodies
with dual specificity are also under development, the central idea of which is to bind a
T cell to a tumor cell, with the antibody acting as a binding bridge, and thus induce the
destruction of the tumor cell by the T lymphocyte connected to it [71,77].

Due to the evolution of molecular profiling techniques, it is possible to identify several
genetic and molecular abnormalities that constitute the neoplastic clones of a specific patient.
The knowledge of the existing mutations helps guide the best available treatment based on
the genetic characteristics of each patient, in addition to assessing the patient’s prognosis,
thus, determining whether a more aggressive drug therapy is necessary or if the patient is
in a situation of good prognosis and may be eligible for autologous HSCT [31,33,80].

With the understanding that MM is a disease still treated with a non-curative approach,
the constant development of new therapeutic strategies is one of the main goals in oncologic
investigations and routine clinical practice. In the past couple of decades, the use of small-
molecule inhibitors, which include tyrosine kinase inhibitors (TKI), has been a hallmark
in the treatment of hematological malignancies, and MM patients may also benefit from
TKI-based treatment strategies [31,32].

3. Tyrosine Kinase Inhibitors in MM

Protein tyrosine kinases (PTKs) are part of a large, multigene family and their main
functions are to coordinate cellular behavior, regulate mitosis, differentiation, apoptosis,
and a series of physiological and biochemical processes [81–83]. Structurally, PTKs can be
divided into receptor PTKs (RTK), acting as receptors for external signals of growth and
survival factors and phosphorylating other protein residues in the intracellular compart-
ment, and non-receptor PTKs (NRTK), which are cytoplasmic or nuclear proteins that act as
second messengers. Examples of both classes include insulin-like growth factor 1 receptor
(IGFR), mast/stem cell growth factor receptor Kit (KIT), hepatocyte growth factor receptor
(MET), fibroblast growth factor receptor (FGFR3), vascular endothelial growth factor recep-
tor (VEGFR), and platelet derived growth factor receptor (PDGFR), as RKTs, and Bruton’s
tyrosine kinase (BTK), Janus kinase (JAK), SRC proto-oncogene (SRC), ABL proto-oncogene
(ABL), and FA complementation group (FAC), as NRTKs [81,84–87].



Pharmaceutics 2022, 14, 1784 6 of 16

Several groups of diseases present alterations linked to PTK, as their abnormal expres-
sion is linked to disorders in the regulation of cell proliferation, leading to the process of
tumorigenesis, and their overexpression is also related to invasion and metastasis, tumor
neovascularization, and resistance to chemotherapy [81,85,86,88,89].

There are currently 71 TKIs approved by the FDA for the treatment of neoplasms
(http://www.brimr.org/PKI/PKIs.htm, accessed on 21 July 2022). Acquired resistance
remains a problem in cancer-targeted therapies as a variety of resistance mechanisms are
described in TKI treatment protocols, such as amplification of target receptor expression,
mutations in tyrosine kinase inhibitor binding receptors, overactivation of alternative
cell survival pathways, and activation of downstream signaling effectors linked to cell
proliferation [82,90]

Table 1 is composed of a series of clinical trials over the last 10 years using TKIs as
monotherapy or in combination with other cytotoxic agents to treat patients afflicted with
refractory multiple myeloma and their results with degrees of efficacy.

Table 1. TKIs used in clinical trials to treat refractory multiple myeloma in the last 10 years.

Clinical Study
Phase

Targeted
Kinase

Kinase
Inhibitor Associated Treatment Clinical Outcome Adverse Events References

I BTK Ibrutinib Carfilzomib/Dex-
methasone

ORR of 67% and a PFS of
7.2 months.

Hypertension, anemia,
pneumonia, fatigue,

diarrhea, and
thrombocytopenia.

[91]

I/IIb BTK Ibrutinib Carfilzomib/Dexamethasone

Acceptable safety profiles
with PFS and ORR of
7.7 months and 71%,

respectively. The average
one-year OS rate was 77%.

Thrombocytopenia,
anemia, diarrhea, fatigue,
nausea, and hypertension.

[92]

II BTK Ibrutinib Bortezomib/Dexamethasone

The drug combination
initially increased the levels

of infections and risk
minimization measures were
necessary. Clinical response

was observed in 57% of
patients with a duration of

9.5 months.

Thrombocytopenia,
diarrhea, anemia, asthenia,

and pneumonia.
[93]

II BTK Ibrutinib Dexamethasone

The highest CBR was
achieved in the combination

of ibrutinib 840 mg with
dexamethasone 40 mg. With

CBR of 28%, ORR of 5%,
sustained SD of 23%, and

median PFS of 4.6 months.

Diarrhea, fatigue, nausea,
anemia, and

thrombocytopenia.
[94]

I JAK Ruxolitinib Lenalidomide and
metilprednisolone

The drug showed the ability
to abrogate resistance to

lenalidomide. Featuring CBR
of 46% and ORR of 38%.

Anemia,
thrombocytopenia and

lymphopenia, sepsis, and
pneumonia.

[95]

Ib HGF and MET Cabozantinib NR

The drug alone has no
significant activity in patients

with refractory MM. The
study was interrupted, and

the rates were not calculated.

Grade 2 congestive heart
failure and grade 3 APN.
The remaining AEs were

related to intestinal events.

[96]

Ib JAK1 INCB052793 NR
No significant responses

were observed. ORR of 24%
and OS of 6.7 months.

Thrombocytopenia,
anemia, fatigue, nausea,

and vomiting.
[97]

II c-MET Tivantinib NR

In isolation, the drug did not
present a satisfactory
response in refractory

patients. SD of 36% and PD
of 63% were obtained.

Neutropenia, hypertension,
syncope, infection,

and pain.
[98]

II MEK and AKT Trametinib and
Afuresertib NR

MTDs were found, being
concentrations that are below

the monotherapy
concentration of each drug.
However, these doses were
considered subtherapeutic.

Diarrhea, acneiform
dermatitis, maculopapular

rash, fatigue, dry skin,
nausea, dyspnea,

and vomiting.

[99]

http://www.brimr.org/PKI/PKIs.htm
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Table 1. Cont.

Clinical Study
Phase

Targeted
Kinase

Kinase
Inhibitor Associated Treatment Clinical Outcome Adverse Events References

II VEGF Sorafenib NR

Only one patient completed
the 13 cycles of treatment and

achieved PR, another
7 patients remained in PD.

Fatigue, nausea,
hypertension, dermal
toxicity, hematologic

toxicity, and heart attack.

[100]

II FGFR3 Dovitinib NR

The SD rate in t(4;14)-positive
patients was higher, being

61.5%, compared with 34.6%
rates for those

translocation-negative

Diarrhea, nausea,
vomiting, and fatigue. [101]

Legend: NR: not reported; SD: stable disease; PR: partial response; ORR: overall response rate; PD: patients
showed progression; OS: median overall survival; PFS: progression-free survival; CBR: clinical benefit rate; MTD:
maximum tolerated dose.

Of the 11 articles described in Table 1, 36.4% (4) addressed the treatment with ibruti-
nib as a major option for MM. The other studies addressed treatments with other kinase
inhibitors, such as Ruxolitinib, Cabozantinib, INCB052793, Tivantinib, Trametinib, Afure-
sertibe, Sorafenib, and Dovitinib. In total, 36.4% (4) of the articles described in the table are
phase I clinical trials, while the other 63.6% (7) are phase II clinical trials [92–101].

4. Ibrutinib: A BTK Inhibition Approach

BTK inhibitors (BTKi) are one of the most popular and advanced approaches to
targeting the BCR pathway. In addition to having revolutionized the treatment of B-
lymphocyte malignancy, they also have a high level of efficacy in relation to chronic
lymphocytic leukemia (CLL) patients, especially those with high-risk mutations [102,103].
Among these inhibitors, Ibrutinib stands out, already showing robust and durable efficacy
in the treatment of refractory CLL and being one of the first inhibitors of the pathway to be
approved by the FDA [104,105].

Ibrutinib is an FDA-approved drug for the treatment of B-cell malignancies [106], it
works by irreversibly binding BTK through a covalent bond with a cysteine residue at position
481 (C481) [107]. It has demonstrated clinical responses mainly related to refractory CLL and
mantle cell lymphoma (MCL), but it also has approval for use in cases of Waldenström’s
macroglobulinemia, small lymphocytic lymphoma, and marginal zone lymphoma. Chronic
inhibition of BTK has been shown to be so effective in terms of its anticancer activity that its
drugs are being widely tested in hematologic malignancies and solid malignancies [108,109].
Since overexpression of BTK is present in 85% of MM cases, ibrutinib appears as a promising
therapy for MM patients, and the roles of BTK in the development of bone resorption by
osteoclasts, as well as in cell migration, are characteristics that support BTK’s research in the
context of MM development [108,110–113].

BTK belongs to the Tec tyrosine kinase family that is involved in the B-cell antigen re-
ceptor (BCR) signaling pathway, being related to the survival, proliferation, and progression
of malignancies in these cells. In MM, BTK is related to drug resistance, bone disease, and
increased cell proliferation [114]. BTK activity, together with tyrosine phosphorylation, trig-
gers the action of protein kinase B (AKT) which in turn will mediate transcription factors for
proliferation, differentiation, and signaling cascades for survival—RAS/RAF/MEK/ERK
and PI3K/AKT/mTOR (Figure 2) [110,114–117].

In the four studies presented in Table 1 in which ibrutinib was used, satisfactory results
were reported, reaching conclusions where the clinical response to the use of ibrutinib
encourages its use. This can also be seen in the statistical data of these articles, such as
ORR above 60% [91,92], clinical response of 57% [93], and CBR of 28% [94]. The number
of patients presented in the studies totaled 268, with an average age above 60 years. The
preferred dose of ibrutinib was 840 mg, which is the limit dose for patients with MM, in
addition to being a higher dose than that used in the treatment of other diseases such as
lymphoma and chronic lymphocytic leukemia (CLL), which already have approved doses
of 560 and 420 mg, respectively. It is worth mentioning that patients with CLL do not
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usually use doses of 840 mg due to the risk of discontinuation caused by adverse effects
(AEs) [118].
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signaling pathways, in the case of IP3, and NFκB and MAPK signaling pathways, in the case of DAG.
Inhibition of BTK by ibrutinib, however, can drastically disrupt the metabolism of MM cells and
happens through the covalent and irreversible interaction of ibrutinib with the cysteine residue on
position 481 of the BTK active domain. Created with BioRender.com.

All four studies [91–94] utilized drugs which are standards for MM therapies in com-
bination with ibrutinib, varying between carfilzomib and bortozomib, but the association
of ibrutinib with dexamethasone was unanimous among all groups. The association of the
BTK inhibitor with other drugs seeks to potentiate the therapeutic action and increase rates
such as overall response rates (ORR) and progression-free survival (PFS) [94]. This associa-
tion is also observed in cases of CLL, since BTKis in monotherapy are not enough to obtain
profound responses and are therefore used in combination with other drugs to increase
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efficiency and not lose their effects due to resistance mechanisms [103,105]. In the study
carried out by Richardson et al. [94], the combination of ibrutinib with dexamethasone
demonstrated better results when compared to ibrutinib monotherapy. Chari et al. [91]
observed that the combination of ibrutinib with carfilzomib and dexamethasone showed a
promising response.

In studies using ibrutinib, among the AEs suffered by patients, the presence of anemia,
diarrhea, and thrombocytopenia was constant [91–94]. AEs related to BTKi inhibitors
are still being described, however, cardiac effects are the main concern due to the risk of
combining these with hemorrhagic effects [108]. In in vitro studies, ibrutinib has already
been demonstrated to interact with collagen-dependent platelet activation and von Wille-
brand factor, and it has been linked to an increased incidence of ventricular arrhythmia,
hypertension, and neutropenia [110,111,118,119].

Dickerson et al. [54] observe that 78.3% of the patients who were using ibrutinib devel-
oped or worsened hypertension in an average period of 30 months. Although the causal
relationship between ibrutinib and cardiotoxicity has not yet been fully elucidated, there
are some theories, one of which would be the ability of ibrutinib to bind with other Tec
kinases [120]. Despite cases of cardiotoxicity such as atrial fibrillation (AF), as long as the
patient is benefiting from the therapy, they may continue with the treatment, with follow-up
and medication to control the possible AEs. Next-generation BTK inhibitors, with less capacity
to cause cardiotoxicity, are being studied and considered for MM treatment [120–122].

5. Clinical Perspectives with Other TKIs

In general, the use of tyrosine kinase inhibitors alone does not present a satisfactory
response in patients with refractory MM [123]. The use of sorafenib alone in 7 out of
11 patients did not stop progression of MM, presenting a PFS of 2.6 months [100], while
the isolated use of tivantinib was shown to be well tolerated, but in a clinical trial with
11 patients the agent was only able to stabilize 4 of 11 (36%) patients with progressive
myeloma [124].

Other studies show that isolated administration of trametinib and afuresertib pre-
sented a significant clinical improvement in patients with MM, but when they are associated
with other medications patients have even better responses [125,126]. Since trametinib is
a drug also used to treat melanoma, its mechanism is based on MEK inhibition [127] and
afuresertib is an AKT inhibitor that can also be used in the treatment of ovarian cancer [128].
However, the association between these two kinase inhibitors for the treatment of refractory
MM patients performed in the study by Tolcher et al. [99] did not show such promising
results, because despite having obtained maximum tolerated dose (MTD) values, these
were compatible with subtherapeutic doses, thus, rending the maintenance of the drugs in
clinically significant concentrations for a long period of time impossible due to the AEs.

In the study carried out by Scheid et al. [101], the activity of dovitinib, which acts on
the fibroblast growth factor receptor 3 (FGFR3), was evaluated in MM patients. FGFR3 is an
RTK of the FGFR family that is responsible for cell growth, differentiation, and migration
in a wide variety of cell types and is present in MM and a variety of cancers. Upon
ligand stimulation, a dimerization of the receptor occurs followed by transphosphorylation
of tyrosine residues in the intracellular domain signaling mainly through extracellular
signal-regulated kinase (ERK) 1 and 2 pathways, PI3K and PLC [129–134].

Better results from dovitinib were observed in patients with MM with the presence of t
(4;14). This translocation is associated with a worse prognosis, causing the overexpression of
the MMSET (multiple myeloma SET domain protein) and FGFR3 genes [135,136]. Thus, the
interaction between genetic abnormalities can be further explored, bringing new insights
into personalized therapy.

It was possible to perceive a wide variety of occurrences in the AEs manifested by
the patients participating in the analyzed studies. In general, the most recurrent AEs
were diarrhea, nausea, fatigue, dermal toxicity, anemia, leukopenia, thrombocytopenia,
infections, hypertension, and congestive heart failure [95–100].
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Due to many clinical difficulties in the treatment of refractory MM, it is important
to point out that the search for newer effective therapies extends also to the promising
use of TKIs, which demonstrated the positive ability to prevent the progression of the
disease in several studies described here. However, it is worth emphasizing the importance
of follow-up studies and clinical trials with different drug combinations to obtain better
clinical results and avoiding AEs [137].

A new alternative to this would be other BTK inhibitors that are already approved
by the FDA and even those in the study phase. Ibrutinib, despite its satisfactory results,
presents the problem, already discussed, regarding the AE profile and its susceptibility to
resistance pathways. However, since its mechanism of action demonstrates benefits, drugs
that act in a similar way appear as a good proposal for future research and treatment. An
example would be zanubrutinib and acalabrutinib, which are already approved by the FDA,
and despite having irreversible links in their sites of action, are able to be more selective
and show fewer problems related to platelet dysfunction and bleeding. Another proposal
that has been showing good prospects is the non-covalent, reversible BTK inhibitors, that,
among their advantages, have a greater selectivity for the site of action and are also effective
in patients with resistance to ibrutinib [138–141].

6. Conclusions

In this review, we observed that among the TKIs tested in the last 10 years for the
treatment of refractory MM, Ibrutinib was the most used and presented better clinical
results, manly when administered in association with other drugs to avoid the emergence
of resistance mechanisms that have already been found in other hematological neoplasms.
Although AEs emerging from TKI’s clinical administration is a major problem, when
properly addressed and managed, treatment-emergent AEs are not considered serious, and
the patient benefit versus risk ratio must be measured and taken into account individually
from case to case.
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