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Abstract Sensory information can be encoded using the

average firing rate and spike occurrence times in neuronal

network responses to external stimuli. Decoding or

retrieving stimulus characteristics from the response pat-

tern generally implies that the corresponding neural net-

work has a selective response to various input signals. The

role of various spiking activity characteristics (e.g., spike

rate and precise spike timing) for basic information pro-

cessing was widely investigated on the level of neural

populations but gave inconsistent evidence for particular

mechanisms. Multisite electrophysiology of cultured neural

networks grown on microelectrode arrays is a recently

developed tool and currently an active research area. In this

study, we analyzed the stimulus responses represented by

network-wide bursts evoked from various spatial locations

(electrodes). We found that the response characteristics,

such as the burst initiation time and the spike rate, can be

used to retrieve information about the stimulus location.

The best selectivity in the response spiking pattern could be

found for a small subpopulation of neurones (electrodes) at

relatively short post-stimulus intervals. Such intervals were

unique for each culture due to the non-uniform organiza-

tion of the functional connectivity in the network during

spontaneous development.
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Introduction

Selectivity is one of the key properties of brain dynamics

necessary for the classification of sensory information. It

has been shown that selectivity requires two basic prop-

erties of a sensory stimulus response, namely high temporal

precision of spike times (Jenmalm and Johansson 1997;

Wesson et al. 2008) and firing rate (Adrian and Zotterman

1926; Celebrini et al. 1993). A neuron’s selectivity to

different stimuli has been well studied in the visual cortex

(Sigala and Logothetis 2002; Maunsell and Van Essen

1983; Crook et al. 1998; Sompolinsky and Shapley 1997),

intraparietal area (Fanini and Assad 2009), somatosensory

cortex (Wilent and Contreras 2005) and temporal cortex

(Kraskov et al. 2007). Most of these works have been done

using single cell or single unit (electrode) recording tech-

niques. However, selective responses at the level of single

cells need to be linked to the dynamics of a population of

interconnected neurons. Several studies of decoding visual

stimuli using multisite recordings in vivo revealed impor-

tant spatio-frequency features of local field potentials (Seif

and Daliri 2015; Wang et al. 2008) or spiking patterns

(Sundberg et al. 2009). Visual stimulus encoding in neural

networks was also studied in retinal ganglion cells placed

on microelectrode arrays (Gong et al. 2010). It has been

established that unique features of the sensory stimuli in
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the brain can be found in time–frequency domain, in par-

ticular, a precise spike timing of the initial activity of the

stimulus responses, firing rate and particular frequencies of

the responses (gamma, theta) etc. Note that in these studies

(in vivo and in vitro) the stimuli were uniformly applied to

the whole neural network (light or visual image). However

it was shown that information processing implemented in

dendrites and synapses (Yoneyama et al. 2011; Engel et al.

2005; Rasch et al. 2009). Thus the spatial features of the

information encoding/decoding in the neural networks can

be studied applying localized stimulus to the neurons or

small subpopulations (electrodes).

Many experimental observations of neural network

activity have reported the existence of repeatable spiking

patterns both in vivo (Ikegaya et al. 2004; Mokeichev et al.

2007) and in vitro (Tateno and Jimbo 1999; Raichman and

Ben-Jacob 2008; Segev et al. 2002; Madhavan et al. 2007;

Pimashkin et al. 2011). These spiking patterns consisted of

motifs organized by the coherent activation of many neu-

rons. Such repeatable patterns could be treated as a tool to

encode information in the characteristics of spike sequen-

ces. In this context, the configuration of these patterns

should be sensitive and selective to the external stimulation.

In network studies, there is an expanding interest in

in vitro models of dissociated neuronal cultures grown on

microelectrode arrays (MEA). MEA systems allow for the

simultaneous recording and stimulation of electrophysio-

logical activity at multiple sites non-invasively (Martinoia

et al. 2005; Jimbo et al. 2000; Bove et al. 1995; Jimbo

1992). During development, dissociated cultures form

networks of synaptically coupled neurons capable of gen-

erating electrical activity that can be recorded by multiple

extracellular electrodes. Changes in the network architec-

ture can be simultaneously monitored by optical micro-

scopy. Thus, culture networks represent a convenient

experimental model to analyze network mechanisms of

neuronal response selectivity. In mature cultures, low-fre-

quency (0.05–0.3 Hz) biphasic pulse stimulation of single

or paired electrodes can induce burst responses within

several hundreds of milliseconds of the stimulation (Bak-

kum et al. 2008; Maeda et al. 1995; Wagenaar et al. 2005).

These stimulus-evoked bursts have further been used for

the analysis of spike timing precision (Shahaf et al. 2008;

Potter et al. 2005) and learning and memory (Shahaf and

Marom 2001; Le Feber et al. 2010). In recent studies, it has

been shown that low-frequency electrical stimulation could

induce changes in the inter-burst interval (Bologna et al.

2010) and modify the spiking structure of spontaneously

generated bursts (Vajda et al. 2008). Other studies, how-

ever, have reported that continuous low-frequency stimu-

lation did not significantly affect spike sequences within

the response (Chiappalone et al. 2008; Eytan et al. 2003).

However, strong tetanic stimulation delivered through two

distant electrodes with specific delays could significantly

change the structure of the burst response (Wagenaar et al.

2006; Chiappalone et al. 2008; Tateno and Jimbo 1999).

Interestingly, the stimulus selectivity relative to the stim-

ulation site has been reported in the population response

over electrodes for the burst initiation time profile (Shahaf

et al. 2008).

In a recent study using novel setup with high-density

microelectrode arrays (4096 with 21 lm electrode size) it

was shown that bursting activity propagate through short

and preferably locally distributed pathways (Maccione

et al. 2012). Such method allowed to monitor spiking

activity with a single cell precision. During network-wide

bursts formation the spikes propagation recruited mostly

sequence of small clusters of nearby cells (tens of cells)

within a each small time interval of several milliseconds.

Furthermore we suggested that the selectivity implemented

on the scale of small neuronal subpopulations (tens of

microns) and can be investigated with conventional 60

electrodes arrays with 50 lm electrode size.

In this study, we demonstrate that selectivity features of

the response can be used to retrieve the stimulus location

on the basis of the precise spike latency and the firing rate

of the stimulus evoked response. We further analyzed how

efficient the selectivity is depending on the size of the

neural network (i.e., provide population coding). We

characterized the stimulus response as the activity at

individual electrodes over short time intervals (20 ms),

which displayed selectivity properties in different time

intervals and spatial localizations of the response.

Materials and methods

Cell culture

Hippocampal cells were dissociated from embryonic mice

(E18) and plated on microelectrode arrays (MEAs) pre-

treated with the adhesion promoting molecule poly-

ethyleneimine (Sigma P3143) at a final density of

approximately 15,000–20,000 cells/mm2. C57Bl/6 mice

were euthanized via cervical dislocation, according to the

protocols approved by the Russian National Ministry of

Public Health for the care and use of laboratory animals.

The embryos were removed and decapitated. The entire

hippocampi, excluding the cortex, whole medulla and the

lower part of the pons, were dissected under sterile con-

ditions in Ca2?- and Mg2?- free phosphate-buffered saline

(PBS-minus). Following enzymatic digestion for 20 min

with 0.25 % trypsin at 35.5 �C (Invitrogen 25200-056), the

cells were separated by trituration (50 passes) using a

1 mm diameter of pipette tip. The solution was then cen-

trifuged at 1000 rpm for 4 min and the cell pellet was
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immediately re-suspended in Neurobasal medium (Invit-

rogen 21103-049) supplemented with B-27 (Invitrogen

17504-044), glutamine (Invitrogen 25030-024) and 10 %

fetal calf serum (PanEco R055). The dissociated cells were

seeded in a 25–30 ll droplet covering the center of the

culture dish within the 1 mm2 electrode region of the

MEA, forming a dense monolayer (Pimashkin et al. 2013).

After the cells had adhered (usually within 1.5 h), the

dishes were filled with 1 ml of Neurobasal medium (NBM)

supplemented with B-27 and 0.5 mM glutamine with 5 %

fetal calf serum. After 24 h, the plating media was replaced

with NBM containing 0.5 mM glutamine and 0.4 % fetal

calf serum, but with no antibiotics or antimycotics. Glial

growth was not suppressed, because glial cells are essential

for the long-term health of the culture. One half of the

media was changed every 2 days. The cells were cultured

under constant conditions of 35.5 �C, 5 % CO2 and 95 %

air at a saturating humidity in a cell culture incubator

(MCO-18AIC, SANYO).

Phase contrast images of the cultures were taken weekly

to record the status of the culture using a Leica DMIL HC

(Germany) inverted microscope with a 109/0.2Ph1

objective. Experiments were performed when the cultures

were 3–5 weeks in vitro.

Electrophysiological methods

Extracellular potentials were collected using 64 planar

platinum black electrodes integrated into the MED64 sys-

tem (Alpha MED Science, Japan). The microelectrode

arrays (MEA) had 8 9 8 (64) electrodes with a size of

50 lm 9 50 lm and were spaced by 150 lm (Fig. 1a).

Data were recorded simultaneously in 64 channels at a

sampling rate of 20 kHz/channel. Electrical stimulation

was applied using a STG-4004 stimulator (Multichannel

Systems, Germany). All signal analysis and statistics were

performed using custom made software in Matlab�.

Spike detection

The detection of recorded spikes (Fig. 1b) was based on a

threshold calculation:

T ¼ NSr; ð1Þ

where r ¼ median
jxj

0:6745

� �
which was the estimate of the

median normalized to standard deviation of a signal with

no spikes (see Quiroga et al. 2004 for more details), x is the

band pass-filtered (0.3–8 kHz) signal and NS is the spike

detection coefficient which was set to 8. The amplitudes of

detected spikes were in the range of 10–40 lV.
We applied spike-sorting algorithms to classify spikes

coming from different cells (Quiroga et al. 2004). We

found that during high-frequency bursting discharges

integrated signals from a large area with group of the

neurons (50 lm electrode size) couldn’t be differentiated

as local spikes arriving with negligible latencies (Support

Fig. 1, cluster 3). Only spikes between the bursts had dis-

tinguishable shapes (Support Fig. 1, cluster 1). Thus, we

analyzed the signals contributed by a local group of the

neurons near a particular electrode as a single event.

Stimulation protocol

Electrophysiological activity was induced using a train of

biphasic voltage pulses of 400–800 mV with a 600 ls
duration. The stimulus was delivered through a pair of

nearby electrodes, for which the pulse of one electrode was

antiphasic to the other to localize the induced current

flowing between the electrodes. Such electrode pairs were

defined as the stimulation site. All experiments were per-

formed in the presence of spontaneous bursting activity.

The observed inter-burst interval was in the range of

10–20 s. The inter-stimulus interval for each culture was

set to match the mean inter-burst interval. This method

maximized the probability of evoking a burst response.

Two stimulation sites (S1 and S2) were chosen so that the

inter-electrode distance was 2–4 electrodes (400–800 lm).

For each experiment, the stimulation site was chosen

according to its ability to induce population bursts in

response to more than 80 % of the stimuli. Among 20

tested sites for each MEA, only 4 sites on average evoked

stable responses. A stimulation trial consisted of the con-

sequent stimulation of each site two times for 15 stimuli

(5 min) (Fig. 1d). 30 stimuli (Na or Nb) at each site were

applied in total. Such repetitive stimulation was used to

investigate the selectivity as a stable property rather than

an alteration in the synaptic connectivity when switching

between the sites (Fig. 2a)

Evoked response analysis

The stimulation of each site induced a population response

in the form of a burst of activity over most of the elec-

trodes. Raster plots of the responses of two distinct sites for

an example culture are shown in Fig. 1e–g. To characterize

the evoked bursts we used a Population Post-Stimulus

Time Histo-gram [PSTH, (Chiappalone et al. 2008; Cozzi

et al. 2006; Jimbo et al. 2000; Li et al. 2007; Marom and

Shahaf 2002; Shahaf et al. 2008; Stegenga et al. 2010;

Wagenaar et al. 2004)] (Fig. 1h, i). Within each 20 ms time

bin of the post-stimulus response, we calculated the total

number of spikes recorded from all of the electrodes.

Selectivity was defined as the ability of neurons to

generate unique responses to different stimulus locations

(i.e., stimulation sites). We investigated two main features

of the responses, including the activation time, which
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represents the latency of the first synaptically evoked spike,

and the spike rate, representing the number of spikes in the

post-stimulus spiking activity (300 ms). Note that the

spikes within the first 15 ms after stimulus have non-sy-

naptic origin and only latter activity was considered as

synaptically evoked spikes (Bakkum et al. 2008; Jimbo

et al. 2000; Marom and Shahaf 2002; Wagenaar et al.

2004). The latter interval was binned into 20 ms time slots

(bins). The number of spikes in each bin per electrode was

defined as the spike rate pattern. Different patterns relative

to different stimulation sites were collected and analyzed.

Note that we considered only those time bins where the

evoked responses were stable, (i.e., reproducible). Further

analysis was performed for the time bins in which at least

80 % of the stimuli evoked at least one spike. There was

also a condition for responding electrodes, i.e., for elec-

trodes eliciting at least one spike within 300 ms after the

stimulus in more than 80 % of the cases. The presence of

statistical selectivity for each electrode was defined if two

sets of the responses from the electrode were statistically

different applying Mann–Whitney rank sum test

(p\ 0.001).

We also quantified the selectivity for each electrode as a

level of discrepancy between two sets of the responses to

Fig. 1 a Hippocampal neurons

cultured on a MEA with 64

electrodes of 50 lm size.

b Typical electrophysiological

signals recorded from a single

microelectrode during a

stimulus response. c Location of

the stimulation sites (pairs of

electrodes), S1 and S2, on the

MEA. d The stimulation

protocol; each site was

stimulated twice for 5 min (see

‘‘Materials and methods’’

section). e Raster plot of the

sample activity (20 s) with

spontaneous and stimulus

evoked bursts recorded over 64

electrodes. Each black point on

the raster represents spike.

Raster plots of stimulus

response examples evoked from

sites S1 (f) and S2 (g). Post
Stimulus Time Histograms

(PSTH) with 20 ms time bin of

the response activity within

300 ms of stimulation at sites

S1 (h) and S2 (i), respectively
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different sites using clustering methods. We applied

K-Means clustering to all responses in the trial stimulation

which optimally separated the sequence of the responses

into two data sets. Then the set of the responses with

known stimulus sources (sets A and B) we compared with

set of the responses after cluster analysis (A0 and B0).
Number of the patterns incorrectly identified according to

its stimulus source (Na = A0 \ B and Nb = B0 \ A) rep-

resents a classification error. A percent of such patterns

relative to a total number of the responses [100 � Nc/

(Na ? Nb)] was defined as an overlap for the selectivity

measure and varied in range 0–50 %. The overlap was

calculated for each pair of sets of the electrode responses

and for each time bin from each electrode. In contrast to

statistical test such measure represented a degree of the

selectivity, e.g. 0 % overlap can be found if all values of

the responses from one stimulation site are greater than the

responses from other stimulation site or vice versa. Overlap

equal to 10 % will be found if 10 % stimuli applied to both

sites evoke undistinguishable responses.

Pattern classification

To estimate the selectivity of the responses from all elec-

trodes, we applied the following procedures.

First, the patterns of the total spike count from each

electrode were united in a single set of patterns that was

further clustered into two groups using a K-means clus-

tering method. Then, the initial set of response patterns to

the different stimulations was compared with the clustered

Fig. 2 a Time course of the responses to the stimuli of two different

sites (S1 electrode pairs 18–19 and S2 50–51) during trial stimulation.

Each site was stimulated twice by 15 stimulus pulses with 800 mV

amplitude. Color represented total spike count for each electrode in

each response (see ‘‘Materials and methods’’ section). Example time

courses for the b total spike count measure and c burst activation

times observed in a single electrode #17 after each 300 ms post-

stimulus interval during repetitive stimulation of sites S1 and S2.

Asterisk (*) depicts time where stimulation site was switched to

another. d The number of active electrodes, statistically selective

electrodes identified using the spike rate measure (2) and burst

activation times (3) and number of electrodes with unstable responses

showing different responses after second stimulation of the same sites

(see ‘‘Materials and methods’’ section). e Distributions of the overlaps
calculated from the spike rate measure of the responses from two

different sites (red bars) and responses from repetitive stimulation of

the same sites (brown bars). f Distributions of the overlaps calculated
from the spike rate measure and burst activation times. Stimulation

repeat—overlaps of the responses evoked from single sites which

were stimulated two times with 5 min each. Total spike count—

overlaps of the responses evoked from different sites, same as

presented on e. (Color figure online)
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set to validate the classification method and estimate the

classification accuracy. The fraction of patterns correctly

identified was considered as the K-means classification

accuracy. The accuracy was also estimated for other

response characteristics, including the spike rate pattern

and burst activation time. A conventional K-means clus-

tering method separates patterns into clusters according to

the minimum Euclidean distance to the cluster centroid.

The cluster centroid was found using efficient heuristic

algorithms.

Next, we applied a modified K-means clustering method

where each cluster centroid was preliminary calculated by

averaging the responses for each electrode. We defined this

procedure as a K-means clustering with predefined cen-

troids (K-means p.c.). The cluster centroids were estimated

by averaging the values of each response from each elec-

trode for a subset of the particular stimulation source-in-

duced patterns. Then, each pattern was assigned to one of

the two clusters according to the minimum Euclidean dis-

tance to one of the cluster centroids.

Finally, the clustering accuracy was tested using the

Support Vector Clustering (SVC) method with a Gaussian

Radial Based Function kernel. The kernel parameter and

confidence intervals were set using a fivefold cross-vali-

dation procedure. First, the method was trained to classify

different patterns into two data sets. Next, we examined the

classification accuracy by cross-validation.

Results

We first analyzed how electrical stimuli (a train of 10–20 s

inter-stimulus interval) applied to different stimulation

sites (electrodes pairs, Fig. 1c) could evoke statistically

distinguishable response spiking patterns on a microelec-

trode array (Fig. 1f, g). The response spiking activity was

evoked by consecutive stimulation trains of two stimula-

tion sites (Fig. 1d). Stimulation sites S1 and S2 were

chosen according to their ability to generate population

burst responses. Such response typically consisted of a

short period (100–300 ms) of spiking activity from recor-

ded from the electrodes (Fig. 1b). Raster plots and post-

stimulus histograms (PSTHs) of the responses from two

stimulation sites are illustrated in Fig. 1f–i, respectively.

Shapes of the PSTHs represented average time course of

network-wide activity in each 20 ms time bin. Such

dynamics was also typical for spontaneous activity.

Selectivity at individual electrodes

Figure 2a depicts time course of the total spiking count of

the responses from all electrodes during trial stimulation of

two sites. Color of each response represented the total

number of spikes after stimulus. On average, the number of

active electrodes was 36.18 ± 8.44 SD out of 64 electrodes

in total and estimated from 50 stimulation trials i.e.

recordings. We tested stationarity of the responses during

repetitive stimulation of each site according to the stimu-

lation protocol. Two sets of the responses as total spiking

count evoked from single sites were tested for statistically

significant difference. Note that we took into account the

responses that has at least one spike in the evoked bursting

activity. For example in Fig. 2b sets of the responses were

tested from S1 (responses 1–15 and 31–45) and S2 (re-

sponses 16–30 and 46–60) independently. Only the elec-

trodes with stationary responses evoked by each

stimulation site were used in further analysis. In summary

we found that 4.1 ± 1.12 (2.1 % ± 1.9 SD %) of all active

electrodes were not stable during trial stimulation. Various

cultures show different ability of the response phase-

locking to the stimuli (Fig. 2b) due to high variability of

spontaneous bursting intervals and hence the spiking rate

of the bursting responses was not stable in stimulation

series on some cultures.

Next, we analyzed the selectivity with respect to a single

electrode’s response activity. We were interested in whe-

ther the neurons could respond to different stimuli with

separable and repeatable features of the response signals.

The responses for each electrode can be characterized by

two main features, including the burst activation time, i.e.,

the latency to the first synaptically evoked spike following

a stimulus, and the total spiking count of the response

within the first 300 ms post-stimulus period.

An example of the total spike counts from one electrode

during a stimulation trial of sites S1 and S2 is shown in

Fig. 2b. If the values from two sets of the spike rates were

significantly different, then the electrode (i.e., neurons

contributing to the electrode signal) was considered to be

statistically selective (see ‘‘Materials and methods’’) to the

stimulation sites using the total spike count measure. Note

that the statistical selectivity test indicated only the dif-

ference in the median values of the observed data sets. To

estimate the degree of the selectivity we calculated an

overlap characteristic for each electrode (see ‘‘Materials

and methods’’ section). Such a characteristic represents

ambiguity in the responses classification of the two

response sets. The overlap between the spike rates from the

example shown in Fig. 2b was 18 %, indicating that the

stimulation source couldn’t be correctly identified in 18 %

of the data.

Next, we analyzed the selectivity with respect to the

burst activation time. Figure 2c depicts the time of the first

post-stimulus spikes during the stimulation of sites S1

(Fig. 2c, blue line) and S2 (Fig. 2c, red line). In this
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example, the sets of spike times were significantly differ-

ent; electrodes with such responses were considered as

statistically selective with respect to their burst activation

time. The sets of spike times were also characterized by

their overlap. For the above example, this overlap was

23 %.

The summarized results of the statistical selectivity tests

for single electrodes are shown in Fig. 2d. The experiments

were performed on 11 cultures where each culture was

stimulated from age 20–35 days in vitro (DIV). During this

period, different stimulation sites were chosen for trial

stimulations so that each culture was stimulated with 4–5

trials (50 trials in total). Note that the spike rate and burst-

evoking efficacy for various electrodes changed on a

timescale of 5 days due to the spontaneous development of

the culture. The number of active electrodes varied in all

cultures and in average was 36.12 ± 7.78 (SD) out of 64

electrodes of the MEA. We found that the number of sta-

tistically selective electrodes with respect to the burst

activation times was relatively small, 3.89 ± 5.31 % SD

(10.77 % of all active electrodes). Surprisingly, the average

number of statistically selective electrodes with respect to

the spike rate measure was quite high, 11.89 ± 6.89 SD,

which was 32.93 % of all active electrodes. These results

indicate the efficiency of neurons to generate responses

with distinguishable spike rates. The difference between

the mean characteristics was not statistically significant

(t test) which can be explained by high variability between

cultures.

The distribution of the overlaps with respect to the total

spike counts measure and burst activation time for all

experiments (11 cultures and 50 trials) are presented in

Fig. 2e. Interestingly, the distributions for both response

measures were statistically similar, and most of the elec-

trodes had overlaps in the range of 25–45 %. Note that the

number of electrodes with an overlap of less than 5 % was

close to 0 (for the activation time: overlap \5 %,

2.42 ± 4.02 SD; for the total spike count: overlap\5 %,

0.34 ± 1.04 SD). These results indicate the absence of

error-free selectivity in single electrodes. During trial

stimulation each stimulus response may be affected by

spontaneous bursting activity.

We also tested the stability of the responses evoked

from single sites during stimulation (Fig. 2f). For each

stimulation site we compared two sets of the responses

evoked during first (1–15) and second (31–45) stimulation

trials (Fig. 2a). Most of the overlaps was found in the

range of 40–50 % indicating that most of responses

evoked from single site are similar and does not show the

selectivity in contrast to the responses from different sites

with overlaps in the range of 0–25 % (see Fig. 2f red

bars).

Selectivity of the spike rate within small intervals

During the formation of single evoked bursts, the spike rate

changed significantly, on the scale of tens of milliseconds.

The maximum spike rate was observed at 50–100 ms after

the stimulus artifact. In previous studies of spontaneous

bursting activity, it has been shown that spiking patterns

within a burst are organized in a non-random, repeat-

able manner (Madhavan et al. 2007; Raichman and Ben-

Jacob 2008; Rolston et al. 2007). In particular, the spiking

patterns at the beginning and end of the bursts displayed

maximum reproducibility. Therefore, the analysis of

selectivity with respect to the spiking activity over the

entire response (total spike count) may not account for the

unique activity features in different latencies of the burst

(i.e., the beginning and end of the burst with high repro-

ducibility and the middle with high variability). To over-

come this, we analyzed the selectivity of the spike rate

within small intervals (20 ms) by performing the following

procedure.

Each 300 ms of the post-stimulus response for each

electrode was divided into 20 ms bins. The responses from

stimulation sites S1 and S2 for each electrode were char-

acterized by the spike rate pattern (see ‘‘Materials and

methods’’ section). Each pattern was presented as 2d

matrix (64 electrodes 9 15 time bins) of spike rate values.

An example of the responses after each stimulus within a

single bin for a single electrode is shown in Fig. 3a. The

black and red curves depict the responses corresponding to

stimulation sites S1 and S2, respectively, whereas their

distributions are presented in Fig. 3b. Note that the

responses in time bins where no spikes were elicited (zero

values) were also taken into account because the entire

response within 300 ms of the stimulus contained spikes

and was classified as an active electrode. The average spike

rate profiles for all electrodes are illustrated in Fig. 3c as

color-coded images (left and right profiles representing the

average spike rate patterns (SRP1 and SRP2) from the

stimulation of the two sites, respectively). The color grade

encoded the values of the average spike rate within each

time bin and electrode.

Next, we compared the spike rates of the responses to

different stimulation sites. All active electrodes and time

bins were tested for significant differences between the two

sets of responses (see ‘‘Materials and methods’’ section).

The time bins with significant differences (p\ 0.05) for

the responses were defined as being statistically selective.

A color-coded representation of the statistical selectivity

for the time bins within a single experiment is shown in

Fig. 3d (white color: statistically selective time bins; black

color: no difference). A set of such binary indicators for all

bins and electrodes can be treated as a statistical selectivity
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signature, emphasizing its uniqueness for a particular

culture and specific stimulation sources.

Next, we analyzed the accuracy of these classifications.

The spike rate overlap for the example shown in Fig. 3b

was 10 %. A set of overlaps within each time bin for each

electrode was defined as an overlap signature and is rep-

resented as a color pattern (Fig. 3e). The color of each time

bin encodes the overlap value for that bin. In this example,

the lowest overlap values were found in the initial time bins

(20–40 ms after the stimulus artifact). Note that only a few

electrodes had a relatively small amount of low (\20 %)

overlaps. However, other cultures may show more efficient

selectivity, i.e., have a higher number of low overlap time

bins (Fig. 3g). In general, the spike rate measure with

respect to small time bins (20 ms) revealed more variable

results compared with the rates calculated for the entire

evoked burst (300 ms). The number of electrodes having at

least one bin with an overlap of less than 5 % was

64.2 ± 23.7 % of the total number of active electrodes,

whereas the number of electrodes having a total spike

count overlap of less than 5 % was 1.5 ± 5.4 % (11 cul-

tures, 50 trials).

Furthermore, we considered whether the spatial orga-

nization of highly selective electrodes during a time bin

had a non-random structure. We plotted the overlap values

of the first time bin from each electrode according to its

location on the MEA (Fig. 3f). Note that relatively low

overlap values were localized in space non-randomly. This

may indicate that a particular subnetwork or a cluster of

neurons with high selective properties was activated in the

culture. Surprisingly, the latencies (i.e., time intervals) of

the overlap signatures relative to the cluster of bins with

minimum overlaps (B10 %) were found to be different for

various cultures and stimulation sites (Fig. 3g). Interest-

ingly, a high fraction of time bins with low overlap (high

selectivity) could only be found at the beginning (Fig. 3h,

left) or at the end (Fig. 3h, right) of the signature, i.e., burst

intervals with high repeatability (Raichman and Ben-Jacob

2008; Pimashkin et al. 2011). However, on average, all

cultures demonstrated a relatively stable selectivity during

the response (Fig. 3i) which indicated that such intervals of

high selectivity were unique to specific morphological or

synaptic neural network grown in the culture. The distri-

bution of the overlaps for all bins is shown in Fig. 3j (11

cultures, 50 trials). The fraction of time bins with an

overlap of less than 10 % was 2.53 ± 3.67 % of all the

bins that responded to both stimulation sites. The fraction

of time bins with statistical selectivity was

35.34 ± 22.15 %. Each selective time bin (i.e., with low

overlap value) could be considered as an indicator of a

unique stimulation site.

Selectivity of spiking patterns

In this section, we investigated the capability of a popu-

lation of neurons to generate statistically separable

responses to the stimulation of different sites. Several

classification methods were applied to estimate the

selectivity.

First, we applied a standard K-means clustering method

to estimate the classification accuracy (see ‘‘Materials and

methods’’ section). The average classification accuracy for

three different response characteristics is shown in Fig. 4a.

The estimated accuracy for the spike rate in the first time

bin was found to be insufficient for selectivity

(42.92 ± 17.42 %). Note that for the burst activation time

the accuracy was higher but not significantly different from

the spike rate accuracy (69.46 ± 23.79 %).

Next, we applied a K-means clustering with predefined

centroids (K-means p.c., see ‘‘Materials and methods’’

section). In this case, the efficiency of classification

increased significantly compare to K-means (Fig. 4a). The

average classification accuracy was 89.34 ± 13.81 % for

burst activation, 86.47 ± 12.83 % for the total spike count

(TSC) and 91.41 ± 6.39 % for the first time bin spike rate.

Thus, the spike rates in the first time bin could be con-

sidered the most efficient for the selectivity but the dif-

ferences for three characteristics were not statistically

significant (ANOVA analysis).

Finally, we tested the classification accuracy using a

support vector clustering (SVC) method (see ‘‘Materials

and methods’’ section). The results demonstrated that the

SVC in most cases revealed error free classification

(Fig. 4a). The classification accuracy was 99.68 ± 0.74 %

for the burst initiation profile, 100 % for the total spike rate

and 100 % for the first time bin spike rate. Note that the

result for selectivity with respect to the burst initiation

profile is consistent with previous work by Shahaf et al.

bFig. 3 a Time courses and b distributions of spikes within single

20 ms time bins for a single electrode in response to the stimulation of

sites S1 (black line) and S2 (dashed red line). c Spike rate profiles

representing the average number of spikes registered in 64 electrodes

for each 20 ms time bin after the stimulus. d Statistical selectivity

signature of each time bin and electrode for the responses to two

stimulation sites; the time bins of white color correspond to the

statistically selective spike rate intervals. e Estimation of the overlap

signature. The color grade corresponds to the overlap values (see

‘‘Materials and methods’’ section). f The average overlaps for the first
20 ms post-stimulus interval of the responses from each electrode

according to its location on the MEA for one experiment. g The

overlap signature for different cultures and stimulation sites. Highest

selectivity (lowest overlaps) was observed in the beginning of the

responses (left image) or at the end (right image). h Average overlaps

for different time bins estimated for two cultures in h (vertical lines—

standard deviation). i Average overlaps for different time bins

estimated for all experiments (11 cultures, 50 trials). j The distribu-

tion of the overlap values within all post-stimulus time bins (11

cultures, 50 trials). (Color figure online)
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(2008). Our results clearly demonstrate that patterns com-

posed of activity from all electrodes can be much more

effective for selectivity than activity recorded from single

electrodes. In summary all methods produced significantly

different results considering each tested characteristic

(t test, p\ 0.05) except K-means and K-means p.c. didn’t

show significant difference in comparing activation time

patterns. The best results were found using SVC method

for each tested response classification which were close to

100 %. SVC clustering basically estimates nonlinear

boundaries of the clusters in characteristics space. Best

clustering accuracy can be explained by the fact that con-

sequent stimulation of single site may evoke several unique

types of the response patterns. Multiple patterns (motifs) in

the response sequence forms complex distribution of the

response characteristics (spike rates, activation times) that

cannot be separated by plane with linear classifiers (K-

means and K-mean p.c.).

We also studied how the selectivity depended on the

number of electrodes taken into the analysis and how

sensitive it was relative to electrodes with higher spike rate

selectivity. The classification accuracy of the total spike

count measure was estimated by k-means p.c. clustering for

all electrodes that responded to both stimulation sites.

Then, the electrode with the lowest overlap (i.e., the

highest selectivity) was excluded from the analysis and the

accuracy was recalculated. This procedure was repeated

until only two electrodes with the lowest overlap remained

(Fig. 4b, black line). The result showed that the selectivity

was independent of the number of electrodes with high

overlaps. In other words, we found that the classification

accuracy for two electrodes with the lowest overlaps was

not significantly different to the maximum accuracy esti-

mated for all electrodes. The same characteristic was

calculated when electrodes with the highest overlaps (i.e.,

the lowest selectivity) were excluded iteratively (Fig. 4b,

red line). One can notice that the difference between the

two curves is visibly notable until 20-23 electrodes

remained in the patterns. A significant difference between

the two curves could be observed only in the range of 2–11

electrodes. In other words, the stimulus response activity

recorded from a group of any 12 or more electrodes (up to

64) may be sufficient to decode the stimulus location with

the highest accuracy.

Discussion

We have demonstrated that cultured neural networks are

capable of distinguishing input stimuli applied to different

electrodes in a MEA system. We used mature hippocampal

cultures of 20–30 days in vitro with a relatively

stable functional organization of synaptic connections. The

network responded selectively to different stimulus loca-

tions. In other words, spike trains that propagate in a cul-

ture network contain information about the stimulus

location. Such a feature, referred to as selectivity, is one of

the key functional properties of brain circuits used to

classify sensory information (Birznieks et al. 2001; Cariani

2001; Heil 1997; Johansson and Birznieks 2004; Shahaf

et al. 2008).

A necessary condition for the selectivity estimation in

the cultures was a stability of the stimulus response char-

acteristics (total spike count) during the experiment

(Fig. 2a, b). Switch of the stimulation source didn’t affect

on the train of the responses evoked from various sites. The

mechanism of such stability could be explained by the fact

that we used a low-frequency stimulation that was close to

Fig. 4 a Classification accuracy of population responses with respect

to the stimulus response activation time, total spike count (TSC) and

the first time bin spike rate (SR). The accuracy was estimated using

K-means clustering, K-means clustering with predefined centroids

and Support Vector Clustering methods (see ‘‘Materials and meth-

ods’’ section) (n = 11, 50 trials). Error bars represent standard

deviation. For each characteristic the methods produced significantly

different results (t test, p\ 0.05) except K-means and K-means p.c.

for activation patterns (p = 0.13). b Classification accuracy of the

spike rate in the responses estimated by K-means clustering with

predefined centroids using patterns comprised of different numbers of

electrodes. Black curve patterns comprised of the electrodes with the

highest overlap; red curve patterns comprised of the electrodes with

the lowest overlap. (Color figure online)
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the natural frequency of spontaneous bursts, thus not

affecting of the culture activity. In a previous work,

response stability has been analyzed during long low-fre-

quency stimulation of a single electrode under the same

experimental conditions (Pimashkin et al. 2013). No sig-

nificant changes were reported, even after 4–5 h of stim-

ulation. Similar experiments using an open-loop low-

frequency stimulation were done by Le Feber et al. (2010)

and Marom and Shahaf (2002). In other studies, the stim-

ulation of multiple sites did not significantly change the

spatio-temporal characteristics of the responses (Chiap-

palone et al. 2008; Maeda et al. 1995). Only high-fre-

quency stimulation significantly changed the first spike

times and spike rate of the low-frequency responses

(Tateno and Jimbo 1999; Chiappalone et al. 2008). It was

also shown that a functional structure of connectivity in the

culture was affected by consequent stimulation of two

electrodes (Le Feber et al. 2015). Low-frequency electrical

stimulation at one electrode disturbs the balance between

activity and connectivity which induce new spiking pattern

in the stimulus response. Such ‘‘adaptation’’ to the stimulus

might occur in our experiments during testing of the

stimulation sites before main stimulation trial (see ‘‘Ma-

terials and methods’’ section). Therefore we suggest that

the selectivity experiments were performed in the cultures

with stable functional connectivity.

We discovered that two principal characteristics of

neural signaling in the stimulus response, such as the

average spike rate and evoked burst activation time, were

sufficient for the stimulus location retrieval. In previous

studies, it has also been shown that the spike rate (Tes-

sadori et al. 2012) and activation time characteristics

(Shahaf et al. 2008) could be used for the estimation of

selectivity in the stimulus response.

In addition to these two characteristics, population

characteristics of multisite patterns, i.e., population coding,

could be the most effective for location retrieval. In par-

ticular, the patterns of activation times and the order of the

first spike occurrence from multiple electrodes provided

100 % accuracy in two stimulation site experiments (Sha-

haf et al. 2008). We also demonstrated that patterns com-

prised of spike rates could be used for high selectivity

estimation (Fig. 4).

Basic cellular mechanisms of selectivity are associated

with a certain synaptic organization of the network con-

nectivity. On the one hand, the connectivity that sponta-

neously forms during the development of the culture allows

for population burst discharges involving the activation of

almost all neurons in the network. On the other hand, burst

discharges are comprised of a number of synaptic signaling

pathways that can be activated selectively by an appro-

priate stimulation. In particular, we demonstrated that the

spike rate at certain time intervals (DT = 20 ms) within the

burst response could display significantly higher selectivity

than for the entire stimulus response (300 ms). Analysis of

the entire intra-burst structure showed that responses in

different cultures have short phases or intervals in which

selectivity was found in certain cultures. Despite the high

repeatability of the spiking patterns at the beginning and

the end of the evoked bursts (Pimashkin et al. 2011), we

haven’t found high selectivity at these phases in all cultures

in average which may be explained by high variability of

the internal synaptic organization in different cultures. Also

such selectivity features in different phases of the respon-

ses may depend on stimulus location in the network. In

other words, there might be network sites preferable for

better retrieval of input information. Such effects should

will be explored in further studies.

For the comparison of two subsets of the responses from

individual electrodes, we used statistical two-sample t test

and K-means clustering with a cross-validation of the two

samples. Such an approach can be used only for the selec-

tivity estimation in experiments with two stimulation sour-

ces. However, K-means clustering can be used for this

analysis as well as for the estimation of selectivity to many

stimulation sites. To evaluate clustering results we used

overlap measure which represents the percentage of the

patterns that cannot be clearly associated with certain stim-

ulation site. Such indicator can measure relative quality of

the selectivity. The clusterization result can be also evaluated

using the Davies–Bouldin index, which indicates how well

clusters are separated. The dispersion of a cluster and dis-

similarity between clusters are often used to compute the

Davies–Bouldin index (Davies and Bouldin 1979). However

we didn’t use it because such measure doesn’t represent

actual percentage of the data that cannot be clearly identified

with a certain cluster and can be useful in clustering esti-

mation of multiple stimulation sites responses. The Support

Vector Clusteringmethod can also be usedwith much higher

accuracy in the clustering due to the non-linearity of the

algorithm, in contrast to the k-means method.

Finally, our method of stimulus characteristics decoding

could be interesting for the design of bidirectional neural

interfaces in vitro, in which reliable selectivity is one of the

key problems (Carmena et al. 2003; Cozzi et al. 2005;

Demarse et al. 2001; Doud et al. 2011; Lebedev et al. 2005;

Luo and Sullivan 2010; Novellino et al. 2007; Shahaf et al.

2008; Warwick et al. 2010). The advantage of our approach

is that we can identify specific electrodes and parts within

the bursts that are highly selective for stimulation at dif-

ferent network sites. To estimate the selectivity, we applied

a K-means clustering method that, in general, performs a

linear classification. Such simple classification methods

can be implemented for a closed-loop system with low

response latencies and thus can be efficiently used for

bidirectional interfaces.
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