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Panoramic tongue imaging 
and deep convolutional machine 
learning model for diabetes 
diagnosis in humans
Saritha Balasubramaniyan1*, Vijay Jeyakumar2 & Deepa Subramaniam Nachimuthu3

Diabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has 
the characteristics of improper secretion of insulin in pancreas that results in high glucose level 
in blood. The disease is also associated with other complications such as cardiovascular disease, 
retinopathy, neuropathy and nephropathy. The development of computer aided decision support 
system is inevitable field of research for disease diagnosis that will assist clinicians for the early 
prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a 
Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted 
features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The 
feature extraction is done by Convolutional Neural Network (CNN)—ResNet 50 architecture, and the 
classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) 
algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB 
environment and evaluated with performance metrics—accuracy, precision, sensitivity, specificity, F1 
score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, 
the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better 
classification performance and proving its effectiveness.

Diabetes is a worldwide serious metabolic disease that affects well-being of humans by increasing glucose level in 
blood and it is one of leading causes of death throughout the world. According to the study made by Saeedi et al., 
it is estimated about 463 million peoples are affected by diabetes in 2019 and the study is extended to identify 
the possible number of cases that may get affected in 2030 is to be 578 million and by 2045 this may even rise 
to 700  million1. The inability of the body to completely utilize the glucose produced by cells due to improper 
secretion of insulin in pancreas is diabetes; if the produced insulin is not sufficient to convert the entire glucose 
into energy then the disease is characterized as Type 2 diabetes. This type of disease commonly prevails among 
majority of peoples of age group above 40 years but in some cases the beta cells of the pancreas are completely 
damaged so that the insulin is not produced at all, this type is termed as Type 1 diabetes. The complications of 
the disease include neuropathy, nephropathy, retinopathy and cardio vascular diseases, Ljubic et al. Therefore, 
the early diagnosis of the disease and treatment is always a challenging task for Diabetologists  concerned2.

For the past few years, the Chinese medicine has got great attention towards early prognosis and treatment 
of diabetes. The diagnosis strategy followed by the Western Medicine (WM) and Traditional Chinese Medicine 
(TCM) is different from each other, Dong 3. TCM follows two basic theories to study the human body, for a 
healthy wellbeing there should be a perfect balance between five basic elements of universe such as earth, fire, 
water, metal and wood. All the natural phenomena is categorized into Yin-Yang function, where both Yin and 
Yang are opposite to each other and they cannot exist without one another as shown in Fig. 1. In TCM the dia-
betes is caused due to ‘Yin’ deficiency that resulted in frequent drinking and urination, the category of ‘Xiao-Ke 
disease’. The tongue diagnosis is the main strategy employed in TCM to identify the Yin-Yang disorders, based on 
which numerous diseases can be diagnosed at its early stage such as breast cancer (Lo et al.), rhumatoid arthiritis 
(Xie et al.), chronic disease (Sang et al.), lung disease syndrome (Buditjahjanto et al.), liver disease (Cao et al.), 
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spleen and stomach (Bai et al.) and so  on4–9. The development of high accuracy automatic tongue diagnosis 
system is always an open field of study, since the human based analysis requires high degree of experience and 
knowledge for feature interpretation in TCM.

Existing works of literature
Over the past few years, works have been carried out for various diagnoses employing the features extracted 
from the tongue images of humans. Few literature works on research of tongue image based diagnosis strategies 
are presented in this section as follows:

Zhang et al. presented a non-invasive strategy to diagnose non-proliferative diabetic retinopathy (NPDR) 
based on the tongue features such as colour, texture and geometry with small number of  dataset10. The tooth 
marking is the index of Qi deficiency syndrome diagnosis, the convex hull of tongue is constructed by Graham 
Algorithm to perform effective tooth marking identification in the work of Li et al.11. The statistical distribu-
tion characteristics of tongue color and the tongue color gamut was established to identify red spots petechial 
point for tongue diagnosis  purposes12. Wang et al. performed tooth marking identification in tongue images by 
computing the slope of the margin, length and degree of concave regions of  tongue13.

Shao et al. concentrated on feature of convex region to predict the tooth marking of tongue  images14. Preshiya  
presented a diabetes diagnosis based on color image segmentation method. The color of tongue represents the 
effective working of internal organs such as pancreas, liver, intestines, liver and so  on15. Kawanabe et al. employed 
machine learning strategies to perform tongue color based diagnosis strategy based on Japanese Traditional 
 Medicine16. For early prognosis of diabetes disease support vector machines (SVM) based strategy was designed 
with 296 diabetic and 531 non-diabetic patient tongue images and the model reported 83.06% of classification 
accuracy on employing PCA for feature selection and GA for parameter  optimization17. The SVM is simple and 
better classifier model, whereas it has the limitation of large dataset handling issue.

Huo et al. proposed a tongue shape classification model and here the image quality was enhanced by employ-
ing Gabor filter, the feature extraction and classification was made by AlexNet CNN  technique18. The surface 
of tongue color is an essential feature defining the syndrome and the tongue color extraction was employed for 
various disease diagnoses including  diabetes19,20.

Tania et al. studied the research gap in the current works of Automatic Tongue Diagnosis  systems21. Joshi 
and Chawan  employed machine learning strategies for diabetes diagnosis by using SVM, Logistic regression 
and artificial neural network  methods22. The concave regions of tongue was used to perform tooth making 
identification in most of literatures but in case of perfect dimension the result was inconsistent, Li et al.23. So, 
CNN was employed to identify the deep features then multi-intense classifier was employed over the features 
to take final decision.

Srividhya and Muthukumaravel  performed tongue shape, colour, size and texture based disease classification 
based on self-organizing map Kohonen Classifier  technique24. Shen et al. developed a tongue–machine–interface 
based on passive magnetic localization  strategy25. Thirunavukkarasu et al. made diabetes classification based on 
the thermal variations of tongue, the RGB color histogram was employed to extract the features, and the clas-
sification was made based on convolutional neural network (CNN)  technique26. The tooth marking was one of 
the features associated with diabetes disease, Wang et al. developed a ResNet 34 CNN strategy for tooth marking 
identification in tongue  images27.

Figure 1.  Five elements and Yin-Yang theory.
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Naveed  employed fractional order Darwinian particle swarm optimization algorithm to classify diabetes 
based on tongue features such as color and  texture28. Wu et al. proposed a CNN based diabetes diagnosis strat-
egy to perform image classification, small number of training data was utilized with a kind of transfer learning 
strategy adopted to improve the learning  speed29. The background of diabetes and the disease complication was 
reviewed, the overview of decision support models based on machine learning strategies was presented in Lim 
et al.30.

Vijayalakshmi et al. utilized features such as color, texture, geometry of tongue for diabetes diagnosis based 
on SVM-CNN  strategy31. To perform an effective tongue diagnosis, a combination of histogram of oriented 
gradients (HOG) and the support vector machine (SVM) was developed in the study made by Yuan and Liao, 
where the tongue coating was extracted by k-means segmentation  strategy32. A Multi-Task Joint learning (MTL) 
for tongue segmentation and classification based on deep learning technique (Xu et al.), here the UNET and 
Discriminative Filter Learning DFL was fused with MTL to improve the classification  accuracy33.

Tang et al. presented a tooth marked tongue regions based on deep learning strategy, here a two-stage meth-
odology based on cascaded CNN to identify the tongue region and tongue land  marks34. The tongue color and 
texture was employed to perform diabetes classification by Kernel Ensemble Classification (KEC) by Selvarani 
and Suresh 35.

Zou et al. has elucidated the various machine learning techniques employed for detecting diabetes  mellitus36. 
Mujumdar and Vaidehi  employed pipeline based AdaBoost classifier, Gradient Boost classifier and Random 
forest classifier for predicting diabetes mellitus with the considered  datasets37. Peng et al. demonstrated the clini-
cal utilities to rapidly stratify diabetes subjects based on their oxidative status in conjunction to the traditional 
glycemic level to improve the patient stratification and thus the overall outcome of clinical diabetes care and 
 management38. Pen et al. developed a new methodology for rapid, label-free molecular phenotyping of biological 
fluids (e.g., blood) by exploiting the recent advances in fast and highly efficient multidimensional inverse Laplace 
decomposition technique. Machine learning techniques were introduced to transform the NMR correlational 
map into user-friendly information for point-of-care disease diagnostic and  monitoring39.

On investigating the existing works of literatures, numerous models were proposed in general for disease 
diagnosis and only few are available in the field of diabetes diagnosis. The studies mostly employed few dataset 
for training the model that affects the model performance and also they highly concentrated on tongue colour 
and tooth markings as significant features. Based on the review made on all the existing works of this application 
area, the various limitations inferred includes:

– Few methods are not applicable for large volumes of  data15–20.
– Difficult to handle increased data  dimension24.
– Inappropriate extraction of prominent  features12,13

– Increased computational  complexity22

– Delayed  convergence26–30

– Minimal features are employed and hence classification accuracy was not  guaranteed31.
– Premature convergence with the occurrences of global and local minima  problems14

– Inconsistent attainment of  results23

To address the above said limitation the proposed model investigated on various features such as colour, 
texture, tooth markings, fur colour, fur thickness and so on and developed appropriate hybrid neural network 
models to diagnose diabetic. The hybrid approach in this research study employs convolutional neural network 
model for effective feature extraction and a novel deep learning based radial basis function neural model for 
better classification of diagnosing diabetics with tongue image features.

The novelty in the paper includes the development of new deep radial basis function neural network model 
with the Gaussian activation function and enabling in the diagnosis of diabetes mellitus. The developed deep 
convolutional based radial basis function is modelled in the ResNet 50 being the feature extractor and the new 
deep RBFNN to be the classifier. Originally, the deep convolutional models themselves modelled to be feature 
extractor and classifier and in this paper, the effective features of the radial basis function to act as a normal den-
sity function is brought out and led in the development of the deep radial basis function neural network model. 
Additionally, the modelled deep RBFNN is optimized for its deep radial basis layers with 6 layers as shown in 
Fig. 3 and the deep hidden neurons equal to the number of input neurons in the input layer. Generally, TCM 
was operated for its prediction applications with simple neural models, but in this paper the novelty is depicted 
by the utilization of deep convolutional feature extractor and deep radial basis classifier along with the TCM for 
the most effective detection and classification of diabetes mellitus.

The rest of the article is framed as follows: An overview of Xiao-Ke disease is presented in  “Xiao-Ke disease 
(diabetes mellitus)—an overview”, the novel methodology for better classification is discussed in “Methods 
and materials”, the proposed Deep RBFNN model is elucidated in “TCM based diabetes diagnosis in humans 
with proposed technique”, results and discussion made to prove validity of proposed technique is provided in 
“Results and discussions”, and finally “Conclusion” presents the conclusion of this research study based on the 
investigations done.

Xiao‑Ke disease (diabetes mellitus)—an overview
In Traditional Chinese Medicine (TCM), a disease is diagnosed based on the harmony that exist between five 
basic elements such as wood, fire, earth, metal and water, where each element are connected with specific organ 
of the human body. The functions of the organs, the emotional states, and symptoms of disease can be analyzed 
based on Yin-Yang theory. The ‘Yin’ is the dark portion of Yin-Yang that shows the cold, negativity, illness, 
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slow, inward, and passive. The ‘Yang’ is the bright portion that shows brightness, high strength, positivity, heat, 
excitement and so on. In ‘Yin’ there is always small portion of ‘Yang’ and ‘Yang’ is always associated with small 
portion of ‘Yin’.

The diabetes is categorized as Xiao-Ke syndrome in TCM, which means “Wasting” and “Thirsting”, the disease 
gets associated with the organs of lungs, stomach and the kidneys. Traditionally the Xiao-Ke is classified as three 
types—the lower, middle and the upper which are characterized by the symptoms of excessive urination, exces-
sive hunger and excessive thirst respectively. If a patient has symptom of excessive urination, it can be described 
as the ‘Yin’ deficiency of lung and kidney that produces high internal heat and utilizes high body fluids so the 
patient is reported with excess thirsting.

In TCM the tongue is considered as index of all organs, it is connected through meridians to the internal 
organs of the body. The tongue is the visual indicator of the body functions (Gabhale et al.) and its appearance 
reflect the balance that exist between the five elements, so the one who perform diagnosis can understand the 
physical and mental health of the patient based on the tongue features such as color, shape, coating, texture, 
tooth markings, and so  on40. Numerous studies has been carried out on identifying the features for tongue based 
diabetes  diagnosis41, Hsu et al. detailed that the yellow fur, thick fur and the bluish tongue are the features associ-
ated with high prevalence of diabetes and tooth marked tongue identification by employing deep CNN model 
was done by Wang et al., tongue thermography as diagnosing tool for type 2 diabetes, works concentrated on 
tooth marking and color identification process as  well26,27.

In this research study, the tongue features such as tooth mark, fur color, fur thickness, tongue shape, saliva, 
tongue color and red dot are extracted by employing deep convolutional neural network, and the extracted fea-
tures are fed into deep Radial Basis Neural model to flag the tongue as belonging to normal class or affected class 
(diabetes mellitus (DM) or non-diabetes mellitus (non-DM)). Figure 2 presents the block diagram representation 
of the proposed diabetes diagnosis research study.

Methods and materials
In this research study, a novel hybrid convolutional neural network framework with deep radial basis function 
neural network model is developed with the prominent features from the tongue images collected from hospitals. 
This section details the methods employed and data used for performing effective diabetic diagnosis by extracting 
the most significant features from the considered image datasets.

Feature Extraction 

Data acquisition 

Preprocessing

ResNet 50

Tongue Color 
& Shape

Fissure 
identification

Fur color & 
fur thickness

Tooth 
Markings

Red dot

Deep RBFNN

DM Non-DM

Figure 2.  Block diagram of the proposed diabetes diagnosis research study with panoramic tongue imaging 
technology.
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Panoramic tongue image acquisition. The collected tongue image datasets reflects the actual body con-
dition and it does not get altered by other external factors, the color of the tongue, the thickness, and the surface 
of the tongue can be altered by certain food beverages such as coffee, tea, and ice cream, chocolate and so on. The 
tongue color is considered as one of the main feature for disease diagnosis, if the participant consumes fruit like 
blue berries the tongue color will turn blue, consuming spicy food will change the color to bright red, which will 
affect the diagnosis result. Also, the brushing process removes the coating of tongue and it will appear to be thin, 
which will affect the diagnosing accuracy, moreover the thickness of the tongue gets thinner as the day elapses. 
So, considering these factors the participants are requested not to brush or consume any food before their tongue 
image is captured and the image is captured early in the morning before the participant have their breakfast.

Mild red color, considerably wet, covered with thin white layer are the nature of normal tongue, whereas it 
changes for various seasons. The white coating slightly becomes yellow due to hot climatic condition in summer 
and the coating becomes thin and dry during autumn, becomes highly moist during winter season. The yellow 
coating and dryness are the features representing the disease, so there is possibility to label the normal patient 
as a diabetic patient which is highly dangerous. In the existing works of literature there is no study available on 
accounting the seasonal changes affecting the tongue features.

On accounting the above mentioned significance; in the proposed research study one year dataset is collected 
in the diabetic care unit of Kalpana Hospitals, Coimbatore, India, using a high quality panoramic image acquisi-
tion module. The data collection is made in four phases, in the month of December—January the first phase of 
data collection is made and about 530 participants are participated among them 272 are diabetic patients and 
258 were non-diabetic patients. The second phase of data collection made in the month of March–May about 750 
patient images were collected and among them 483 patients were diabetic and 267 were non-diabetic patients. 
In the month of June–September the third phase of data collection is made with 723 of diabetic patient record 
and 339 of non-diabetic patient images. The final phase of data collection is made in the month of October with 
180 images of diabetic record and 153 of non-diabetic patient images.

The proposed research study aims to diagnose type 2 diabetes so the patients of type 1, Gestational diabetes are 
not included in the study. The database of 1658 diabetic patient images with 1017 non-diabetic patients records 
are segregated onto 70% (1161-DM and 712 of non DM) for training the model and 30% (497-DM and 305 non 
DM) as independent dataset to evaluate the performance of the proposed diagnosis model.

Developed ResNet‑50 machine learning architecture for diagnostic study. Basically, the deep 
learning network is difficult to train because of vanishing gradient issues, when the network grows deeper the 
accuracy gets saturated. On considering this limitation a residual network is employed in this proposed research 
study. The residual network employs a concept of skip connection strategy; where the original input is added 
to the loss function at output through skip connection so that the vanishing gradient issue gets addressed. The 
shortcut connections optimize the ResNets by reducing the training error of the conventional stacked connec-
tions by the formulation of Y = F(X)+ X at the output side. The basic objective of residual network is making 
the residue F(X) tend to zero, so that the output will be equal to the input at the output end.

The architecture of the ResNet-50 employed in this research study is presented in Fig. 3. The input image is 
fed into the first layer where the filter size is 7 × 7 and number of filters is 64 with stride value of 2 and padding 
of 3, the max pool is employed for down sampling with the stride of 2. Each of Relu block in ResNet-50 has three 
feature layers, the skip connection is employed by two ways based on the size of F(X) and X. The input is directly 
connected to the output if the size of F(X) and X are same else a convolution is made in the skip connection to 
match the size of the input and the functional output if they are varied. The fully connected layer retains the 
complete feature of the image without any loss, this feature vector is seeded as input for deep radial basis func-
tion network to classify the vectors as a diseased one or not.

Multilayer RBFNN Architecture for panoramic tongue image classification. Neural network 
forms the base of deep learning where the algorithms are based on the learning behaviour of human brain. The 
network is trained with set of input–output patterns and the model is tested with new pattern of input and the 
corresponding response is evaluated. The framework of a neural network model has input and output layer with 
one or more hidden layers based the network architecture and based on the problem requirement. Deep learning 
architecture mimics the structure of human brain where numerous neurons are interconnected together to take 
a specific decision. In this research work, a multilayer Radial Basis Function Neural Network (RBFNN) model 
with auto-encoder learning mechanism is implemented to learn the features with better generalization ability. 
The RBFNN is a single layer feed forward neural network like multilayer perceptron and was initially developed 
by Craddock and Warwick (1996)42.

The centre identification in multilayer RBFNN model is not an easy task during learning process, so the 
k-means clustering algorithm is employed to identify the center. The functional connection between the layers 
are represented as,

Equation (1) is similar to that of traditional RBFNN model whereas, in multilayer RBFNN a norm function 
is introduced to locate the position of data points in the high dimensional space. 

Deep auto-encoder based learning mechanism is implemented over layer by layer of hidden neurons, and the 
data is decoded so that the underlying significant features are reflected at output layer to present specific classes 
with better and effective accuracy rate. The conventional gradient decent learning rule is employed to update 
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N
∑
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the weight vectors, the objective of the algorithm is to reduce the reconstruction error between the encoded and 
decoded data. The derivative of error function is back propagated from output layer to the hidden layer based 
on the error function and then the weight vectors are updated.
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Figure 3.  Machine learning architecture of deep CNN-RBFNN for tongue diagnosis.
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The weight vectors between the input and the hidden layers are depicted as wij and the weight vectors between 
the hidden and the output layers are presented as vjk , the error gradient between the input and the hidden layer is 
presented as δi and δk ; these indicates the error gradient between the hidden and the output layer. The net input 
is calculated between the input and hidden layer as,

The net input between the hidden and the output layer is presented as

The error between the actual and the network output is represented as E, the error gradient and is estimated as,

The change in weight vectors are presented as,

(2)z−inj =

n
∑

i=1

xiwij + b

(3)y−ink =

n
∑

j=1

zjvjk + b

(4)E =
1

2

(

n
∑

i=1

yt arg et − ypredicted

)2

(5)
∂E

∂vjk
=

∂

∂vjk





1

2

�

n
�

i=1

ytarget − ypredicted

�2




(6)=
1

2

∂

∂vjk
(yt arg et − f (y−ink))

2

(7)= −[yt arg et − ypredicted]f
′(y−ink)

∂

∂vjk
(y−ink)

(8)= −[yt arg et − ypredicted]f
′(y−ink)zj

(9)δk = −[yt arg et − yprediced]f
′(y−ink)

(10)
∂E

∂wij
= −

∑

k

[yt arg et − ypredicted]
∂

∂wij
(yk)

(11)= −
∑

k

[yt arg et − ypredicted]f
′(y−ink)

∂

∂vjk
(y−ink)

(12)= −
∑

k

δkvjk
∂

∂vjk
(zj)

(13)= −
∑

k

δkvjkf
′

(zinj)(xi)

(14)δj =
∑

k

δkvjkf
′

(zinj)

(15)�wij = −α
∂E

∂wij

(16)�wij = αδkxi

(17)�vjk = −α
∂E

∂vjk

(18)�vij = αδjzj



8

Vol:.(1234567890)

Scientific Reports |          (2022) 12:186  | https://doi.org/10.1038/s41598-021-03879-4

www.nature.com/scientificreports/

In Eqs. (15) through (18), ‘α’ denotes the learning rate , ‘ �w ’ is the change in weight vector between input 
and hidden layers and ‘ �v ’ is the change in weight value between the hidden and the output layers, the new 
weight vectors are updated as,

The nonlinear transformation within deep layers is made by encoder and decoder based pre- training tech-
nique, and the output of one layer forms the input for the next layer. The encoder employs encoding function 
over the incoming dataset and converts that into coded form, whereas the decoder at output side decodes the data 
into its original form on utilizing decoding function. On fine-tuning the reconstruction error, the ‘loss function’ 
is estimated to handle the variation between the decoded and the encoded data. The encoding and decoding 
function for the given dataset is presented as,

The reconstructed dataset is presented as,

‘ fϕ ’ is the encoding function and ‘ gϕ ’ is the decoding function.
The encoding is made layer by layer, the encoded data of first layer is fed as input for second layer and likewise 

the data which is encoded at last hidden layer is employed to find output at output layer. The error between the 
encoded and decoded data is given by,

Deep learning neural model in this research study is trained to minimize the loss function, which is the 
objective function and is presented as,

The next step of pre-training is the fine tuning by error back propagation, for the given input data the output 
at output layer is given by,

where, the Nth encode vector at the last hidden layer is employed to present the final output of the trained 
network model.

Radial basis functions that are employed as activation function in the designed new deep radial basis func-
tion neural network model are radially symmetric functions that get shifted by points in multidimensional 
Euclidean space and then are linearly combined so that they result in data-dependent approximation spaces. The 
applicability of the RBFNN with varied design of deep learning architecture increased the classification results 
by decreasing the error rate with its best generalization ability, strong tolerance to the input signals and better 
learning ability for image based data input signals presented to the network. The architecture of the deep learn-
ing model with the encoding and decoding with the fault tolerant radial basis function tends to make the neural 
network converge with better classification results. The generalization and learning capability of the radially 
symmetric radial basis function being used as the activation function in the deep learning model evolves better 
output from each of the deep learning layers compared to other activation functions like tangential functions, 
sigmoid functions, and other exponential functions. Hence this RBFNN with its radially symmetric activation 
function has attained better classification results for the detection of tongue image datasets.

TCM based diabetes diagnosis in humans with proposed technique
In tongue image based diagnosing procedure the color of tongue should not be affected by image capturing sys-
tem, it should reflect all colours without any change from the actual image. The collected image is preprocessed 
to balance the light illumination and the brightness of each image by means of image enhancement and noise 
removal techniques. The image quality is enhanced by employing Gabor filter algorithm. All the images are 
calibrated for color correction by histogram equalization technique and the tongue portion is alone segmented, 
further the motion blur is avoided to improve the texture quality of the images.

The feature extraction is the next step to image pre-processing, numerous feature extraction strategies are 
available in literatures, but in this research study convolutional neural network (CNN) is considered because dur-
ing image flattening the information may get lost in conventional techniques whereas the convolutional network 
model retains the actual information without any loss, and it learn the features by itself. The 2D image is pro-
cessed as 3D matrix with RGB color channel as depth as shown in Fig. 4. The collected data samples are labeled 
by TCM experts based on tongue color, texture, tooth markings, fur color and thickness, the features associated 
with the patient records and are presented in Table 1. The extracted features of the tongue data samples such as 
tongue color, red spots, black spots, Fissure, dry tongue, tooth markings, saliva, size, and fur are shown in Fig. 5.

(19)wij(t + 1) = wij(t)+�wij

(20)vjk(t + 1) = vjk(t)+�vjk

(21)encoded_data = fϕ(x)

(22)x̂ = gϕ(encoded_data)

(23)Eerror =
∥

∥x − x̂
∥

∥

2

(24)δerror(x, x̂) =
1

N

N
∑

i=1

Eerror

(

xi , g
ϕ
′

(

fϕ
(

xi
))

)

(25)youtput = fϕN+1(enocoded_data
N ),
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Metrics employed for diabetic diagnosis model. To evaluate the effectiveness of the proposed diag-
nosis model, the performance metrics -accuracy, precision, sensitivity, specificity, F1 score and error rate are 
evaluated. The accuracy represents how closely the true predictions are made by the proposed classifier, whereas 
in medical decision making models in addition to accuracy, it is necessary to analyse how accurately the true 
positive and true negative predictions are made. Because, the false prediction is highly dangerous in the field of 
diagnosis, so in addition to accuracy, True Positive Rate and False Positive Rate are employed to illustrate the 
effectiveness of the proposed diagnosis strategy.

Accuracy. Accuracy highlights the true positive and negative predictions of the model, the ratio between num-
ber of true positive and negative prediction to the total number of all samples is the accuracy.

(26)Accuracy =
TP + TN

TP + TN + FP + FN

Figure 4.  RGB channels for few sample of panoramic tongue images.

Table 1.  Features associated with patient records.

Features Types Number of data samples Features Types Number of data samples

Tongue body

Medium 1332
Teeth markings

Yes 1662

Enlarged 915 No 1013

Small 428

Fur color

White 1203

Tongue color

Mild red 1400 Black 201

Red 677 Yellow 996

Pale 375

Saliva

Normal 1884

Bluish 223 Dry 518

Tongue surface

Red spots 1489 Wet 273

Black spots 1044

Fur thickness

Thin 852

Fissures 1038 Thick 1606

Petechiae 205 No fur 217
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Precision. Precision is a measure of how accurate the model performs positive prediction, the ratio between the 
correct positive predictions and the total number of positive prediction is the precision.

Recall or sensitivity. Sensitivity reflects what percent of true positive is presented as positive; mathematically it 
is expressed as the ratio between the correct positive predictions and the sum of correct positive and false nega-
tive predictions. The higher the recall the higher the performance of the model.

Specificity. The measure that demonstrates what percent of true negative is identified as negative class by the 
classification module, the higher the specificity higher the model performance.

F1 score. It ranges from 0 to 1, when F1 score increases the performance became better. The harmony between 
the precision and recall is represented by the F1 score.

(27)Pr ecision =
TP

TP + FP

(28)Sensitivity =
TP

TP + FN

(29)Specificity =
TN

TN + FP

Original 
Tongue Image

Fissure

Red Spot

Black spot

Pale with 
fissure

Puffy with 
fissure & red 

spots

Thin with 
fissured & 
red spots

Figure 5.  Extracted features of tongue image samples.
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Error rate. Error rate is defined as ratio between the number of all the false predictions and the total number of 
samples used in the model. The higher the error rate, then lower is the performance of the model.

where, TP represents the True Positive, FP—False Positive, TN—True Negative, and FN—False Negative. The 
metric results are evaluated based on the confusion matrix framed in Table 2.

Ethics approval and consent to participate. Necessary ethical standard was maintained in this research 
study. All methods were carried out in accordance with relevant guidelines and regulations of Medical Council 
of India.

All experimental protocols were approved by a Kalpana Hospitals, Coimbatore. Consent was obtained from 
all subjects with the approval from Kalpana Hospital Authorities. “Written Informed Consent” has been obtained 
from participants for whom tongue image datasets were attained. The methods were carried out based on the 
norms and guidelines of Medical Council of India (MCI). Board of Council members (BCM) of the Kalpana 
Hospital is the ethics committee that approved the study.

Results and discussions
Hybrid convolutional neural network with Deep RBFNN model is designed and simulated in this research 
study for effective diabetes diagnosis and is performed in MATLAB R2019a environment in a Intel Quad Core 
i7 processor with 3.9 GHz processor speed, 16 GB RAM on 64 bit operating system and with NVIDIA MX250 
2 GB Graphics features. The input dataset is preprocessed by employing Gabor filter, the color calibration is done 
with histogram equalization algorithm. The tongue segment is extracted from the original images and fed into 
ResNet-50 for feature extraction. The features such as the tongue size, shape, fissure, saliva, red spots and black 
spots are extracted and presented in Fig. 5. Table 3 lists the parametric values of the proposed deep RBFNN 
model designed for classifying diabetes mellitus.

The color of the tongue indicates the blood and Qi (Energy) flow through the body, if the tongue appears to 
be red then it indicates excess flow of heat, when it is pale then it represents deficiency of heat and deficiency 
of blood, hence this imbalance of energy causes problems in intestine and pancreas. The shape of the tongue 
also reflects the working of digestive and pancreas, normally the shape will neither be thin nor be thick, and the 
characteristics such as swollen (larger and thicker) or puffy tongue indicates the Qi and excess fluid accumula-
tion. The swollen tongue are usually associated with tooth markings that shows the Yang deficiency, the tooth 
markings for sample of dataset is presented in Fig. 6.

(30)F1 = 2 ∗
precision ∗ recall

precision+ recall

(31)Error rate =
FN + FP

TP + TN + FP + FN

Table 2.  Confusion matrix framework for diabetes diagnosis.

Actual class

Predicted class
True outcome: diabetes identified

P (diabetes) N (non-diabetes)

P (diabetes) TP (diabetes patients identified as diabetes) FP (diabetes patients identified as non diabetes)

N (non-diabetes) FN (non-patients identified as diabetes) TN (non-diabetes patients identified as non-diabetes)

Table 3.  Parameters of the proposed deep neural model.

Parameters Parametric values

Learning rate 0.2

Number of epochs Until the network settles at convergence criterion

Convergence criterion 10–6

Loss function (mean square error)
n
∑

t=1

(

yt − Ot

)2

Learning rule Gradient Descent learning rule

Optimizer Ant colony optimizer

Activation function Gaussian function

Number of deep radial basis layers 5

Batch size 40 samples



12

Vol:.(1234567890)

Scientific Reports |          (2022) 12:186  | https://doi.org/10.1038/s41598-021-03879-4

www.nature.com/scientificreports/

The longitudinal and transverse cracks that groves into the surface of tongue is fissures, if the tongue is fissured 
and red in color that shows high accumulation of heat, the light fissured tongue indicates the Yin deficiency and 
the location of the fissure represents an affected organ. If the fissure gets developed in the middle of the tongue, 
it shows the stomach Yin deficiency; if the sides of the tongue have fissures then the spleen Yin deficiency is 
reported. The fur is the another feature that has great impact on diabetes, the surface of normal tongue is nor-
mally covered with thin white layer, but because of imbalance between Yin-Yang, the layer of tongue appears to 
be thick fine hair like structure. In Fig. 7, the fur layer is extracted and shown, fur may be white, yellow, black, 
brown or black, the thickness of fur and color of the fur is considered to be major factor for diabetes diagnosis.

In this research paper, fivefold cross-validation is conducted and once 25% data are used for testing, the 
remaining 25% is equally divided into five equal parts. Hence, the training and validation process are performed 
in 5 iterations and in each iteration 4 parts are employed for training and 1 part is employed for validation. Fig-
ure 8 presents the fivefold cross validation employed for diagnosis of diabetes mellitus.

In the proposed study of 2675 participants, 49.80% of peoples have medium sized tongue, 34.21% peoples 
have enlarged tongue and 15.98% peoples have small sized tongue. The color of the tongue represents the ‘Qi’ 
and blood flow in the body, about 52.34% of peoples shows mild red color tongue, 25.30% reported red color, 
14.00% have pale colored tongue and 8.30% shows bluish tongue. On investigating the tongue surface, about 
55.66% peoples have red spots, 39.02% peoples have black spots, 38.80% peoples shown fissures, and 7.66% of 

Figure 6.  Tooth markings of tongue images.

Figure 7.  Fur layer extraction of the considered tongue images.
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peoples shown petechiae. About 62.14% of participants have tooth markings. About 44.97% of peoples shown 
white color fur, 7.50% participants have black colored fur, 37.24% peoples have yellow fur. The fur thickness is 
one of main feature employed for diabetes diagnosis, about 31.85% of participants had thin fur, 60.04% had thick 
fur and 8.11% had no fur. On analyzing the dryness of the tongue, 72.59% peoples have normal tongue, 19.35% 
reported dry tongue and 8.05% of peoples reported wet tongue.

The features selected and extracted by the ResNet-50 is passed into the developed Deep RBFNN model 
for performing classification; the deep RBFNN model is designed with 8 input neurons corresponding to the 
features such as tongue color, shape, fur color, fur thickness, tongue spots, saliva, fissures, and teeth markings. 
The hidden layer fixation and hidden neuron fixation is inevitable and significant step in framing of network 
architecture. The inadequate number of hidden layers and hidden neurons affects the training accuracy, whereas 
higher their number increase the complexity of the network and cause over-fitting issue so it is necessary to fix 
optimal number of hidden layers and hidden neurons. Based on trial and error method the hidden layers are 
fixed to 7 with neurons of 3–5–7–5-3–4–3 in each layer. The output layer has neurons of 2 units that demonstrate 
whether the input image falls in diabetes class or non-diabetes class. The classification performance is evaluated 
by the metrics given through Eq. (26) through (31). Table 4 shows the performance metric values of the proposed 
hybrid CNN—Deep RBFNN learning diabetes classification module.

The training and testing performance is presented in Table 5, the performance of the proposed model is 
investigated by employing ResNet-50 for classifying the dataset and it reported classification accuracy of 0.885 for 
training and 0.929 for testing. To improve the classification performance, the last layer of ‘soft-max’ is removed, 
the flattened data is fed into the RBFNN model with traditional learning strategy and the classification metric 
results are reported. Table 6 presents the training and testing mean square error elapsed with respect to the 
number of epochs.

On comparing with conventional CNN model, the RBFNN incorporated strategy improved accuracy, true 
positive prediction rate, true negative prediction rate whereas the error rate is significantly reduced than the 

Validation Training Training Training Training 

Training Validation

Validation

Training Training Training 

Training Training Training Training 

Training Training Training Training Validation

Training Training Training Training Validation

Tongue image datasets

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Data Split into five partitions

Figure 8.  Fivefold cross validation for diagnosis of diabetes mellitus.

Table 4.  Classification performance of the proposed model.

Model Accuracy Precision Sensitivity Specificity F1Score Error rate

ResNet50 0.929 0.961 0.956 0.776 0.958 0.071

ResNet50-RBFNN 0.944 0.968 0.965 0.819 0.967 0.056

ResNet50-DeepRBFNN 0.984 0.989 0.991 0.943 0.990 0.016
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strategy when ResNet-50 alone is employed for diabetes diagnosis as depicted in Fig. 9. The training accuracy of 
ResNet50-RBFNN model is 92.3% and the testing accuracy is 94.4%. To further enhance the model performance 
deep learning strategy has been employed, here the training is preformed based on auto-encoder based learn-
ing algorithm and the model reports significant improvement in diagnosis performance with training accuracy 
of 98.9% and testing accuracy of 98.4%, the error rate has been reduced with the value of 0.071. The ROC plot 
depicting the behaviour of the proposed model is shown in Fig. 10.

The performance of the proposed ResNet50-Deep RBFNN for diabetes classification is compared with existing 
works of  literature17,18,27,29,43–48, such as ResNet34, AlexNet, SqueezeNet and SVM based strategy and obtained 
metric results are presented in Table 7. The performance of proposed Deep RBFNN with ResNet50 architecture 
significantly improved the performance than that of the other deep networks such as AlexNet, SqueezeNet, and 

Table 5.  Training and Testing Performance of the model.

Model Training accuracy (%) Testing accuracy (%)

ResNet50 0.885 0.929

ResNet50-RBFNN 0.923 0.944

ResNet50-Deep RBFNN 0.989 0.984

Table 6.  Error variations based on number of epochs evolved.

Training variations Testing variations

Number of epochs Mean square error Number of epochs Mean square error

10 2.1629 10 3.0128

20 1.4127 20 2.7219

30 1.0054 30 2.2209

40 0.0061 40 1.7286

50 0.00175 50 0.09963

56 0.00034 60 0.01692

The neural model got converged at 56th epoch in the training process
73 0.00721

The trained neural model got converged at 73rd epoch in the testing process

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Sensitivity Specificity F1Score Error rate

ResNet50-DeepRBFNN ResNet50-RBFNN ResNet50

Figure 9.  Performance analysis of the proposed diabetes diagnosis in humans.
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ResNet34 models employed for diabetes classification. It is noted that the accuracy of the proposed model is better 
than that of ResNet 34 with 10.9%, 12.8% than the SqueezeNet and 12.1% than that of AlexNet. The precision 
of the deep proposed RBFNN model is significantly improved with the value of 9.9% than the ResNet 34, 12.4% 
than the SqueezeNet and 11.9% than the AlexNet.

The sensitivity employing the proposed ResNet50-Deep RBFNN model is higher than that of ResNet-34 by 
8.4%, SqueezeNet by 9.2% and AlexNet by 8.6%. The specificity of the proposed model is better than that of other 
deep networks with the rate of 11.7% than the ResNet, 15% than the SqueezeNet and 14.2% than of AlexNet. 
The F1 Score of the Deep RBFNN with Resnet 50 framework is 9.2% better than that of ResNet 34, 10.8% than 
the SqueezeNet and 10.3% than the AlexNet. The error rate of the proposed model is greatly reduced than the 
other deep neural nets and the performance is significantly higher than that of SVM based  strategy17. The com-
putational time of SVM is better than that of deep neural networks, but the classification performance is not to 
the desired level. So, on considering the deep neural networks the proposed Deep RBFNN model has average 
computational time of 23 s higher than that of other deep nets, but the metric values is significantly improved 
than that of other deep networks.

Figure 10.  ROC plot for the deep RBFNN diabetes diagnosis model.

Table 7.  Comparative analysis with previous works.

Classification models Accuracy Precision Sensitivity Specificity F1 Score Error rate Computational time (min)

PCA- GA-SVM—Zhang 
et al.17 0.670 0.669 0.769 0.555 0.715 0.329 2.01

Non-invasive approach—
Zhang 43 0.763 0.691 0.728 0.607 0.774 0.317 3.46

Greedy Snake Algorithm—
Naveed and Geetha 44 0.801 0.760 0.803 0.669 0.792 0.258 3.19

ResNet 34—Wang et al.  [27] 0.875 0.890 0.907 0.826 0.898 0.125 3.24

SqueezeNet—Wu et al.29 0.856 0.865 0.899 0.793 0.882 0.143 3.31

AlexNet—Huo et al.18 0.863 0.870 0.905 0.801 0.887 0.137 3.27

Random forest algorithm—
Xiang et al.45 0.877 0.881 0.893 0.829 0.890 0.133 3.07

Stacking model—Li et al.46 0.892 0.894 0.912 0.850 0. 917 0.119 3.61

GA_XGBT approach—Li 
et al.47 0.906 0.911 0.899 0.872 0.934 0.103 3.57

SVM classifiers—Sagayaraj 
et al.48 0.927 0.932 0.945 0.917 0.955 0.085 3.41

Proposed ResNet50-Deep 
RBFNN model 0.984 0.989 0.991 0.943 0.990 0.016 3.50
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The significance of the proposed diagnosis strategy over other previous models is demonstrated by performing 
statistical  analysis49,50. The significance analysis is presented based on 5× 2 CV test, where the entire dataset is 
segmented into 5 folds and iterated for five times. At each iteration, the training and testing datasets are rotated. 
Considering two models the performance is compared by,

The mean and variance of difference is evaluated,

The ‘t’ statistics is evaluated after 5 iterations and is as follows:

where, ′Acc′A,1 indicates the accuracy of first iteration of ‘A’ sample.
The ‘t’ distribution with 5 degrees of freedom is followed by ‘t’ statistics, the p-value is estimated and compared 

with the level of significance α = 0.05 in order to illustrate the level of hypothesis and is presented in Table 8. The 
proposed ResNet-50 Deep RBFNN model has null hypothesis rejection with ResNet50 and ResNet50-RBFNN 
models proving its better classification performance.

Conclusion
In this research study, a non-invasive technique of diabetes diagnosis based on TCM was developed by employing 
deep auto encoder learning algorithm with CNN networks. The tongue being the index of internal organs, its 
characteristics such as texture, geometry, and color depicts the balance that exists between the five element theory 
and Yin-Yang concept of TCM. The deep features of panoramic tongue images were extracted by CNN-ResNet 
50 architecture and the extracted features are trained with Deep RBFNN classifier model. The performance of 
the proposed model is compared with other existing works of literature such as ResNet 34, AlexNet, SqueezeNet 
and it was investigated that the proposed deep RBFNN model has shown improved performance with better 
classification accuracy and reduced error rate. The significance of the proposed model as well was analysed based 
on 5× 2 CV test and it was demonstrated that the proposed model statistically fits to perform diabetes diagnosis.
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