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Abstract: This study examined the synergic effect of alloying the element Cr and the environmental
element Mg2+ ions on the corrosion property of a low-alloy steel in seawater at 60 ◦C, by means
of electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) tests and
weight-loss tests. The Mg2+ ions in seawater played an important role in lowering the electron
transfer of the rust layer in the Cr-containing steel. The corrosion resistance of the Cr-containing steel
is superior to that of blank steel in Mg2+ ions containing seawater. XPS and XRD results indicated
that the formation of MgFe2O4 and a mixed layer (Cr oxide + FeCr2O4 + MgCr2O4) improved the
corrosion resistance of the low-alloy steel in the seawater.
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1. Introduction

The water ballast tank (WBT) is a structure that is used for controlling vessel weight with seawater
to provide vessel balance and stability. The repetition of the seawater inflow and outflow induces
the exposure of the WBT to various marine environments, and the seawater acts as a corrosion factor,
due to the various aggressive ions and organisms [1–5].

In recent years, numerous studies have attempted to improve the service life of the WBT.
The primary focus of these studies comprises the following two parts: coating technologies and
corrosion-resistant alloy designs. A zinc (Zn) epoxy-primer coating is mainly used in the ballast
tank for the prevention of corrosion; however, this coating is not an ideal protector of the ballast tank
because of existing defects, and therefore high-corrosion-resistant steel is required [6–11]. Many studies
on the alloying elements in carbon steels have been undertaken because it is widely used in seawater
structures due to its high availability, simple fabrication process, and low cost [12–20].

The typical alloying elements that are used to increase the corrosion resistance are not only
chromium (Cr), aluminum (Al), and nickel (Ni), but a combination of the three elements is also used.
In particular, regarding the effect of Cr in the high-strength low-alloy (HSLA) steels that are reported
by Blekkenhorst et al. [21], it was mentioned that, as an alloying element, Cr is beneficial for general
corrosion. Furthermore, Zhang et al. [22] and Yamashita et al. [23] reported that Cr promotes the
formation of α-CrxFe1-xOOH, called Cr-goethite, and this compact rust layer protects the matrix from
chloride anions by changing the surface property under the cation-selectivity condition.

The corrosion of carbon steel is influenced by various seawater constituents. The chloride and
sulfate ions are representative anions that cause serious corrosive problems. The major cations that
contribute to the corrosion property are calcium (Ca) and magnesium (Mg) ions, as they produce
local alkaline surface conditions, due to the precipitative effects of calcium carbonate (CaCO3) and
magnesium hydroxide (Mg(OH)2). CaCO3 and Mg(OH)2 are attributed to the cathodic reduction of
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oxygen (O). The deposits impede the transport of dissolved O to the metal surface and eventually
decrease the corrosion rate. The precipitate formations are derived according to the following
reactions [24,25]:

Ca2+ + HCO3
− + OH− → CaCO3 + H2O (1)

Mg2+ + 2OH− →Mg(OH)2 (2)

Although the research regarding these deposits has received much attention [25,26], little attention
has been paid to the relationship between the alloy elements and the seawater cations, in terms of
corrosion resistance. Thus, the purpose of this study is the evaluation of the relationship between the
Cr-alloying element and the seawater cation in synthetic seawater, for which electrochemical tests and
surface analyses were used.

2. Results and Discussion

2.1. Interaction between Cr and Seawater Cation

To identify the distribution and the concentration of the alloying elements, the rust layer of
the specimens that were immersed in seawater for 30 days were analyzed using an electron probe
microanalyzer (EPMA). Figure 1 shows the cross-sectional EPMA-mapping results for blank and
Cr-alloying steels. The distribution of iron (Fe) is nonuniform, and the concentration is lower than that
of the substrate, indicating that a part of the Fe in the rust layer had dissolved and the Fe-forming rust
layer was produced by dissolution of the substrate. Also, the Fe in the Cr-alloying steel is distributed
more closely to the substrate, compared with that of the blank steel. Due to the higher distribution and
concentration of O compared with the substrate, oxide and hydroxide were formed in the rust layer.
The localization of Cr in the rust layer near the substrate suggests that the alloying element, Cr, forms
an enrichment layer, which is expected to improve corrosion resistance [21–23,27].

In regard to the seawater cation, Ca is distributed in the rust layers on both the blank- and
0.7-wt.%-Cr steel rust layers. Mg, however, showed a different trend in both of the specimens, as
follows: It is distributed throughout the rust layer on the blank steel, but it is condensed in the
0.7-wt.%-Cr steel; furthermore, the concentrated-Mg region is included in the Cr-enrichment layer.
From this result, it was expected that both the Mg and the Cr would contribute to the corrosion
resistance. Thus, to identify the Cr–Mg synergic effect, the experiment was conducted in both the
presence and the absence of the Cr-alloying element and the Mg2+ ions, in seawater.
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Figure 1. Electron probe microanalyzer (EPMA) cross-sectional mapping results of specimens after 
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2.2. Corrosion Rate Calculation

The corrosion rates of the specimens after 30 days of immersion were calculated using
electrochemical impedance spectroscopy (EIS) and the linear polarization resistance (LPR) test.
By fitting the EIS data and using the slopes of the potential and the current, the polarization resistance
(Rp) can be obtained from the EIS and LPR data. Then, the Rp is transferred to the corrosion-current
density, using the following equation [28]:

Rp =
βaβc

2.3 icorr (βa + βc)
(3)

where βa and βc are the anodic and cathodic Tafel slopes, respectively, and icorr is the corrosion current
density (µA/cm2). The impedance parameters of each specimen, including the Rp, are listed in Table 1.
The corrosion rate can be determined from the icorr through Faraday’s law [28], as follows:

Corrosion rate(mm/y) =
3.16× 102 × icorr ×M

zFρ
(4)

where M is the molar mass of the metal (g/mol), z is the number of transferred electrons per metal
atom, F is Faraday’s constant, and ρ is the metal density (g/cm3).

Also, the weight loss-calculated corrosion rate was determined using the following equation [28]:

Corrosion rate(mm/y) =
87, 600 W

Atρ
(5)
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where 87,600 is the metric- and time-conversion factor, W is the weight loss (g), A is the exposure
area (cm2), t is the immersion time (h), and ρ is the density (g/cm3). Figure 2 shows the corrosion
rates of the blank and 0.7-wt.%-Cr steels after the 30-day immersion in seawater, with and without
the Mg2+ ions. The corrosion rates calculated by EIS, LPR, and weight loss tests showed the similar
trend in all three experiments: The average corrosion rates of the steels decreased in the following
order: 0.7-wt.%-Cr steel without the Mg2+ ions ≈ blank steel without the Mg2+ ions > blank steel with
the Mg2+ ions > 0.7-wt.%-Cr steel with the Mg2+ ions. This result shows that the Cr-alloying element
only improved the corrosion resistance in the seawater containing the Mg2+ ions. The difference in the
corrosion rates of the blank steel, in the presence and absence of the Mg2+-containing seawater, is due
to the Mg(OH)2 that acts as a physical barrier. In the 0.7-wt.%-Cr steel, the difference in corrosion rate
between the Mg2+-containing and Mg2+-free seawater solutions is larger than that of the blank steel,
which can be explained by not only the Mg2+-containing effect, but also the barrier effect between the
Mg2+, Fe2+, and Cr3+ ions. As shown in Figure 1b, it is expected that the Mg2+, Fe2+, and Cr3+ ions
that are concentrated near the substrate will form a compound and act as a barrier against corrosion.
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Figure 2. Corrosion rates of specimens, measured by electrochemical impedance spectroscopy (EIS),
linear polarization resistance (LPR) and weight-loss measurements for 30 days.
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Table 1. EIS parameters of the specimens immersed in 60 ◦C seawater for 1 day and 30 days under an aerated condition.

Specimen Period
Rs

(Ω·cm2)
Constant Phase Element 1 Rrust

(Ω·cm2)
Constant Phase Element 2 RCr

(Ω·cm2)
Constant Phase Element 3 Rct

(Ω·cm2)
Rp

(Ω·cm2)Crust (F/cm2) n (0–1) CCr (F/cm2) n (0–1) Cdl (F/cm2) n (0–1)

Blank steel
(Seawater)

1 day 2.286 - - - - - - 0.58 × 10−4 0.7818 400.9 400.9

30 days 5.349 4.23 × 10−3 0.7643
30.51 - - - 28.20 × 10−3 0.4801 632.7 663.21(α = 21.213)

Blank steel
(Mg2+ ions-free Seawater)

1 day 1.93 - - - - - - 0.38 × 10−4 0.7991 406.6 406.6

30 days 4.164 3.48 × 10−3 0.7463
23.26 - - - 13.76 × 10−3 0.5292 310.7 333.96(α = 22.833)

0.7-wt.%-Cr steel
(Seawater)

1 day 2.202 - - - - - - 0.65 × 10−4 0.7806 420.7 420.7

30 days 3.456 3.68 × 10−3 0.3949 3.64 0.68 × 10−3 0.8063
32.88 6.20 × 10−3 0.6321 769.3 805.82(α = 17.433)

0.7-wt.%-Cr steel
(Mg2+ ions-free Seawater)

1 day 2.077 - - - - - - 0.75 × 10−4 0.7480 415.7 415.7

30 days 5.563 1.59 × 10−3 0.5022 9.51 0.45 × 10−3 0.7646
55.95 1.19 × 10−3 0.7432 262.3 327.76(α = 21.186)



Materials 2018, 11, 162 6 of 18

2.3. Electrochemical Impedance Spectroscopy (EIS)

The Nyquist and Bode plots of the specimens after 1 day of immersion are shown in Figure 3a,b.
Since the formation of the rust layer is insignificant, the impedance results can be fitted to the circuit
model that is shown in Figure 3c, as one time constant, and the impedance parameters that are listed
in Table 1.
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The equivalent circuit consists of the following elements: Rs represents the solution resistance,
Cdl is the capacitance that is generated by the electric double layer, and Rct is the charge-transfer
resistance. The RE is the reference electrode (saturated calomel electrode), and WE is the working
electrode (specimens). The experiment results show that the Rp values are similar, regardless of the
presence of the Cr-alloying element and the Mg2+ ions in the seawater.

Also, the Nyquist plot impedance spectra after the 30 days of immersion are shown in Figure 4.
According to the different rust layers, the equivalent electrical circuits were used to fit the results of
the EIS tests, as shown in Figure 1. Figure 5 shows each of the equivalent electrical circuits of the blank
and 0.7-wt.%-Cr steels. Due to the Cr-enrichment layer, the spectra of the 0.7-wt.%-Cr steel exhibited a
three-time constant, while the blank steel exhibited a two-time constant. The equivalent circuit consists
of the following elements: Rs represents the solution resistance, Crust is the rust capacitance, Rrust is
the rust resistance, Cdl is the capacitance that is generated by the electric double layer, and Rct is the
charge-transfer resistance. The RE is the reference electrode (saturated calomel electrode), and WE is
the working electrode (specimens). Also, CCr is the capacitance that is formed by the Cr-enrichment
layer and RCr is the Cr-enrichment-layer resistance. In this instance, the capacitors were replaced with
the constant phase elements (CPEs) for more accurate EIS-data fitting, where not only a double layer
capacitance (C) but also a phenomenological coefficient (n) have been included. The CPE impedance
takes the following form:

ZCPE =
1

Q(jω)n (6)

where Q is an effective CPE coefficient, ω is the sine-wave-modulation angular frequency, j is an
imaginary number, and n is the phenomenological coefficient that characterizes the phase shift [29–32].
Thus, in this paper, Crust, CCr, and Cdl were replaced with CPE1, CPE2, and CPE3, respectively.
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Figure 5. Equivalent circuit models for interpretation of the impedance spectra after 30 days: (a) blank
steel and (b) 0.7-wt.%-Cr steel.

In the Nyquist plot, the degree of depression of the semicircle, with a center below the real axis,
determines the depression angle (α). The depression angle is an empirical factor that represents the
deviation from the ideal capacity [33,34]. The increase in the depression angle means there is an
increase in surface inhomogeneity, due to surface roughness and layer porosity [35,36]. The depression
angle that is calculated by the following equation is associated with the phenomenological coefficient
(n) [29,32,33]:

α = (1 − n) × 90◦ (7)

Table 1 lists the fitted EIS data from the 1-day and 30-day immersions, which determined the
optimized values that were obtained using the ZSimpwin program (Princeton Applied Research,
USA), according to each of the equivalent electrical circuits in Figure 5 [37,38]. The total polarization
resistance (Rp) that is represented in Table 1 is equal to Rrust + Rct for the blank steel and Rrust +
RCr + Rct for the 0.7-wt.%-Cr steel. In the 0.7-wt.%-Cr steel, the calculated depression-angle value
of the Mg2+-containing seawater specimen is 17.433◦ and that of the Mg2+-free specimen is 21.186◦.
This result means that the characteristics of the Cr-enrichment layers that formed on both specimens
are different, as follows: The 0.7-wt.%-Cr steel with the Mg2+ ions comprises a dense layer compared
with that without the Mg2+ ions. Also, the depression-angle values of the blank steel are 21.213◦ and
22.833◦, with and without the Mg2+ ions, respectively. This porosity difference, regarding the rust
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layer, is due to the physical barrier that is caused by the Mg2+ ions in the seawater, which also causes
the corrosion rate difference for the blank steel.

Figure 6 shows the EIS Bode plots of the blank and 0.7-wt.%-Cr steels, with and without the Mg2+

ions, for the 30-day immersion in the synthetic seawater at 60 ◦C. The splitting of the phase angle
frequency curve indicates the presence of other phases.
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In Figure 6, each of the split shoulders on the phase angle are shifted to the lower frequency,
compared with the Mg2+-free seawater, meaning that the capacitance values of the Mg2+-containing
seawater are larger, as identified in Table 1. In the blank steel, the Crust value is larger in the
Mg2+-containing seawater. Because the capacitance is inversely proportional to the thickness, the
rust layer in the Mg2+-free seawater is thicker, due to the greater corrosion. Also, the Cdl value,
which is formed as the ions are absorbed onto the electrode surface, is larger in the Mg2+-containing
seawater. Thus, the different values are reasonable because the Mg2+-containing seawater comprises a
higher quantity of adsorbable ions. In the 0.7-wt.%-Cr steel, the capacitance values—Crust, CCr, and
Cdl—are larger in the Mg2+-containing seawater. The Crust that represents the rust layer thickness
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shows the formation of a thin rust layer, due to the lower level of corrosion. The Cdl difference can
be associated with ion absorption due to the Mg2+ ions in the seawater. The Cdl values between the
blank and 0.7-wt.%-Cr steels, however, indicate a significant difference. This phenomenon means
that the Cr-enrichment layer interrupts ionic absorption on the metal surface. Here, the CCr, the
thickness of the Cr-enrichment layer, represents the production of a thin Cr-enrichment layer in the
Mg2+-containing seawater that is identified by the detected Cr element in Figures 1b and 6b. The Rct

is a resistance value that prevents electron transfer from the metal layer to the rust layer, thereby
indicating its relation to the metal corrosion rate. The larger Rct values of the blank and 0.7-wt.%-Cr
steels in the Mg2+-containing seawater indicate the suppression of the electron transfer compared with
the Mg2+-free seawater.

2.4. Surface Analysis

Figure 7 shows the cross-sectional EPMA-mapping results for the Mg2+-free seawater during the
30-day immersion. The tendencies, distributions, and concentrations of the Fe, oxygen (O), and Cr
between the rust layer and the substrate are similar to those of the Mg2+-containing seawater, as shown
in Figure 1. The 0.7-wt.%-Cr steel, with and without the Mg2+ ions, represents the Cr-enrichment layer,
and the average thicknesses are approximately 25 µm and 45 µm, respectively. The Cr-enrichment
layers are produced by the corrosion of the specimens, and the Cr3+ ions are redeposited onto the steel
surface through reduction reactions [39]. Thus, the thicker thickness of the Cr-enrichment layer without
the Mg2+ environment means that more corrosion occurred on the steel surface. This result means that
the corrosion rate is more affected by the porosity than the thickness of the Cr-enrichment layer. The Rp

values that were measured at the 1- and 30-day immersions, which are shown in Table 1, indicate that
the rust layer porosity affects the corrosion rate. In the Mg2+-containing seawater environment, both
the blank and 0.7-wt.%-Cr steels increased the Rp over time, whereas the Rp decreased for both of the
specimens in the Mg2+-free-seawater environment; this is because the base steel corrosion continues
through the porous region of the rust layer.
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without Mg2+ ions: (a) blank steel and (b) 0.7-wt.%-Cr steel.

To determine the chemical composition of the corrosion product after the 30-day immersion
test, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements were carried
out. The local area near the Cr-enrichment layer was detected using XPS with the cross-section
specimen, and the whole area was detected by XRD with a top-view specimen. Figure 8 shows
the XPS spectra of the specimens. The Fe peaks were commonly found in all of the specimens, but
the Mg and Cr peaks appeared in accordance with the experimental environment and the alloying
element. The steel surface products that were obtained from the analysis of the XPS peaks are listed
in Table 2. In Figure 8a, a proportional relationship is evident between the intensity values of the
chemical compounds, such as magnetite (Fe3O4), iron(III) oxide (Fe2O3), and iron hydroxide (FeOOH),
and the corrosion resistance. The increase in the amount of the Fe oxide products resulted in an
enhanced corrosion resistance because the Fe oxide products act as the corrosion protection layer of
the steels [34,40]. Similarly, in Figure 8b,c, the high intensity values of the Mg and Cr peaks mean
that the effects of the Mg and Cr barriers react more significantly on the 0.7-wt.%-Cr steel in seawater.
The difference in the intensity value is due to not only the amounts of the Mg(OH)2, chromium(III)
oxide (Cr2O3), chromium hydroxide (CrOOH), and iron(II) chromite (FeCr2O4), but it is also owing to
the formation of Mg and the Cr-containing product, magnesium(II) chromite (MgCr2O4). MgCr2O4,
the structure of which is spinel, is known for its corrosion resistance improvement property [41–44].
It also acts as a p-type-semiconductor corrosive film that prevents the corrosion reaction [45]. Thus,
the formation of MgCr2O4 increases the corrosion resistance of the 0.7-wt.%-Cr steel in seawater.
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Table 2. Analysis of the XPS peaks for the surface of the specimens.

Analyses of the XPS Spectra Product Binding Energy (eV)

Spectrum of Fe2p

FeOOH 711.5, 724.3
Fe2O3 711.0, 724.0, 710.8

Fe3O4 (Fe2+) 708.3
Fe3O4 (Fe3+) 710.2

Spectrum of Mg1s
Mg(OH)2 1302.7

MgO 1303.9

Spectrum of Cr2p

Cr2O3 576.5, 576.8, 587.4
CrOOH 576.8, 577
FeCr2O4 576.0
MgCr2O4 576.4

The XRD spectra of the specimens are shown in Figure 9. The Fe corrosion products show the
same XPS results, but the other corrosion products, such as magnesium magnetite (MgFe3O4) and
magnesium iron oxide (MgFe2O4), which are not shown in the XPS data, were detected. Wang et al. [46]
reported that the existence of MgFe2O4 in the rust layer exerts a protective effect on weathering steel.
Also, since the structure of MgFe2O4 is spinel, like that of MgCr2O4, this improves the corrosion
resistance. The MgFe2O4 acts as an n-type-semiconductor corrosive film that works as a cation-selective
rust layer [42,47,48]. Based on the surface analysis, the schematic diagrams of the corrosion products
that affect the corrosion property are represented in Figure 10. Due to the corrosion barriers, such as
MgFe3O4, the MgFe2O4 with Fe oxide, Cr oxide, FeCr2O4, and Mg(OH)2, the corrosion resistance of the
0.7-wt.%-Cr steel is the highest in seawater. In particular, for the 0.7-wt.%-Cr steel in seawater, the Cr
oxide, FeCr2O4, and MgCr2O4 mixed layers contributed to the enhancement of the corrosion resistance.
The corrosion resistance of the blank steel in seawater is the second highest, due to the MgFe3O4, the
MgFe2O4 with Fe oxide, and Mg(OH)2. The corrosion resistance of the blank steel in the Mg2+-free
seawater, which only comprises an Fe oxide corrosion barrier, is lower. Although the 0.7-wt.%-Cr
steel in the Mg2+-free seawater consists of Fe oxide, Cr oxide, and FeCr2O4 barriers, the corrosion
resistance is similar to that of the blank steel under the same seawater conditions. This phenomenon
is due to the less-protective Cr oxide and FeCr2O4 layers and the galvanic-corrosion effect. On the
steel surface, the Cr oxide and FeCr2O4 layers without the MgCr2O4 comprise the porosity property,
as shown in the EIS results. Also, since the Cr oxide and the FeCr2O4 do not cover the steel surface
perfectly, the Cr oxide behaves as the large cathode and the bare-steel surface behaves as the small
anode. Thus, the large ratio of the cathode-to-anode surface area accelerated the galvanic-reaction
corrosion of the 0.7-wt.%-Cr steel [28].
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3. Materials and Methods

3.1. Materials and Test Condition

Table 3 summarizes the chemical compositions of the low-alloy steels that were used in the
experiment. The specimens were produced by a thermomechanical control process (TMCP), which
is a widely applied process for offshore structures and vessels, because of its superior mechanical
properties, whereby both the rolling and cooling conditions are controlled [49–51]. Since the low-alloy
steel is produced by vacuum melting, there is no contamination from the surroundings and the gas
content of the steel is low. In addition, since the low-alloy steels were produced in small quantities to
improve the product quality, the alloying elements were evenly distributed at the time of production.
The plate of the low-alloy steels was cut into pieces of approximately 1 × 1 × 1.5 cm. The specimens
were abraded with silicon carbide (SiC) papers, with grit sizes from 60 to 600, followed by rinsing with
ethanol and distilled water, and finally drying was performed with a drying machine. The prepared
specimen was immersed in the synthetic seawater at 60 ◦C and a pH of 8.2, under aerated conditions
for 30 days; this temperature was selected because the inner part of the WBT can be reached by
solar heat up to 60 ◦C [27,52]. The synthetic seawater solution was prepared based on the American
Society for Testing and Materials (ASTM) standard D1141 [53]. Magnesium chloride (MgCl2) was
excluded from the D1141 standard for the preparation of the Mg2+-free seawater, and the chlorine (Cl)
concentration was adjusted with sodium chloride (NaCl).

Table 3. Chemical compositions of low-alloy steels (wt.%).

Specimen Fe C Si Mn P S Nb Ti Cr

Blank steel Balance 0.07 0.3 1 0.012 0.003 0.01 0.015 -
0.7-wt.%-Cr steel Balance 0.07 0.3 1 0.012 0.003 0.01 0.015 0.7

3.2. Electrochemical Test

The EIS analysis and the LPR test were performed using the EG&G PAR VMP2 potentiostat/
galvanostat (Princeton Applied Research, VMP2 & VMP2/Z multichannel potentiostats, BioLogic
science instruments, Knoxville, TN, USA). To perform the electrochemical tests, the three-electrode
electrochemical system consists of a low-alloy steel, two pure graphites, and a saturated calomel
electrode (SCE) that served as the working, counter, and reference electrodes, respectively. The EIS
analysis was carried out to calculate the corrosion rate and to observe the change in the rust layer with
an amplitude of 10 mV, at frequencies ranging from 100 kHz to 1 mHz (or 10 mHz in the 1-day case).
With the use of the Zsimpwin software (v3.2, Princeton Applied Research, Oak Ridge, TN, USA), the
impedance plots were interpreted on the basis of the equivalent circuit, according to a suitable fitting
procedure. The LPR tests were carried out at a potential sweep of 0.166 mV/s, from an initial potential
of −20 mVocp, to a final potential of 20 mVocp. The polarization resistance was obtained from the
slope of the potential versus the current-density curve.

3.3. Weight-Loss Test

Weight-loss measurements were performed according to the ASTM standard, G31 [54].
The lengths of three sides of rectangular specimens were measured up to two decimals. Every specimen
was immersed in the synthetic seawater after a plastic wire hanging. After the immersion period
of 30 days, the specimens were removed and then cleaned with a 10-min immersion in a 1000-mL
solution that was composed of 3.5 g of hexamethylene tetramine (C6H12N4), 500 mL of hydrogen
chloride (HCl), and balanced distilled water. These specimens were also degreased for 10 min in an
ultrasonic cleaner with ethanol, followed by cleaning with distilled water and drying with N2, and
then their final mass was measured to four decimal places. To improve the reliability, this experiment
was performed repetitively in triplicate.
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3.4. Surface Analysis

To investigate the effect of Cr and the relationship between Cr and the seawater cation, a surface
analysis was carried out. The corroded surface features after the 30-day immersion in the 60 ◦C
synthetic seawater, depending on the solution states, were observed using the JXA-8900R EPMA (JEOL,
Tokyo, Japan). The chemical composition of the rust layer was identified using the ESCALAB 250 XPS
instrument (Thermo Fisher Scientific, Waltham, MA, USA) with a monochromatic Al-Kα energy source
and the D/Max 2500 V PC XRD instrument (Rigaku Corporation, Tokyo, Japan) with a scan rate of
3◦/min from 5–100◦.

4. Conclusions

This study investigated the synergic effect of the alloying element, Cr, and the environment
element, Mg2+, on the corrosion of low-alloy steels in synthetic seawater at 60 ◦C, using EIS, LPR tests,
weight-loss tests, and a surface analysis. Based on the previously presented results, the following
conclusions can be drawn:

1. From the EPMA results in the seawater, the 0.7-wt.%-Cr steel represents the Cr-enrichment layer,
and the Mg2+ ions in the seawater are also concentrated on the Cr-enrichment layer.

2. The EIS analysis, LPR tests, and weight-loss tests, with and without the Cr-alloying element and
the Mg2+-containing seawater, revealed the following order for the average corrosion rates of
the steels: 0.7-wt.%-Cr steel without the Mg2+ ions ≈ blank steel without the Mg2+ ions > blank
steel with the Mg2+ ions > 0.7-wt.%-Cr steel with the Mg2+ ions. The Cr-alloying element only
improved corrosion resistance in the Mg2+-containing seawater, and the reason is not only the
Mg2+-containing effect, but also the barrier effect between the Mg2+, Fe2+, and Cr3+ ions.

3. The EIS interpretation of the blank and 0.7-wt.%-Cr steels suggests that both of the steels under the
seawater condition show a rust layer, with a relatively nonporous corrosion on the steel surface.

4. The XPS and XRD analyses showed that the rust layer of the 0.7-wt.%-Cr steel in the seawater
comprises effective protection barriers, such as MgFe3O4, MgFe2O4, MgCr2O4 with Fe oxide,
Cr oxide, FeCr2O4, and Mg(OH)2. Also, the high-porosity condition of the Cr oxide layer was
changed to a low-porosity condition.
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