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Abstract 

Background:  Genome-wide association studies (GWAS) have uncovered thousands of genetic variants that are asso-
ciated with complex human traits and diseases. miRNAs are single-stranded non-coding RNAs. In particular, genetic 
variants located in the 3’UTR region of mRNAs may play an important role in gene regulation through their interaction 
with miRNAs. Existing studies have not been thoroughly conducted to elucidate 3’UTR variants discovered through 
GWAS. The goal of this study is to analyze patterns of GWAS functional variants located in 3’UTRs about their relevance 
in the network between hosting genes and targeting miRNAs, and elucidate the association between the genes 
harboring these variants and genetic traits.

Methods:  We employed MIGWAS, ANNOVAR, MEME, and DAVID software packages to annotate the variants 
obtained from GWAS for 31 traits and elucidate the association between their harboring genes and their related 
traits. We identified variants that occurred in the motif regions that may be functionally important in affecting miRNA 
binding. We also conducted pathway analysis and functional annotation on miRNA targeted genes harboring 3’UTR 
variants for a trait with the highest percentage of 3’UTR variants occurring.

Results:  The Child Obesity trait has the highest percentage of 3’UTR variants (75%). Of the 16 genes related to the 
Child Obesity trait, 5 genes (ETV7, GMEB1, NFIX, ZNF566, ZBTB40) had a significant association with the term DNA-Bind-
ing (p < 0.05). EQTL analysis revealed 2 relevant tissues and 10 targeted genes associated with the Child Obesity trait.

In addition, Red Blood Cells (RBC), Hemoglobin (HB), and Package Cell Volume (PCV) have overlapping variants. In 
particular, the PIM1 variant occurred inside the HB Motif region 37,174,641–37,174,660, and LUC7L3 variant occurred 
inside RBC Motif region 50,753,918–50,753,937.
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Background
A microRNA (miRNA) is a single-stranded, non-coding 
RNA that regulates gene expression. miRNAs can inter-
act with the 3’ untranslated regions (3’UTR) of the tar-
geting messenger RNA (mRNA) and repress protein 
production by inhibiting translation, a process where 
genetic information from DNA is transported to the 
ribosome for protein synthesis [1]. Because of the abil-
ity of miRNA to regulate gene expression by controlling 
development and differentiation, mutations affecting 
miRNA function could be detrimental. It is widely sug-
gested that mutated miRNAs play a crucial role in human 
diseases [2].

Genetic variants, such as single nucleotide polymor-
phisms (SNPs), contribute to diversity among individuals 
by affecting gene expression. SNPs within the 3’UTR of 
target mRNAs can influence gene regulation by chang-
ing the binding affinity of miRNAs, thus SNPs and their 
target sites play a significant role in the development of 
complex traits and diseases [3]. Today, many functional 
annotation tools and sequencing methods enable con-
venient and deeper analysis of genetic variation. For 
example, genome-wide annotation of variants (GWAVA) 
supports prioritization of noncoding variants and helps 
predict the functional impact of non-coding variants [4]. 
Different pathway analysis tools accelerate generation of 
sequencing data and facilitate identification of function-
ally relevant variants [4, 5].

Genome-wide association studies (GWAS) uncover 
thousands of genetic variations associated with diverse 
human traits and diseases. However, it is difficult to anno-
tate disease influence of non-coding variants (e.g., 3’UTR 
variants) reported from GWAS studies and explain their 
impact on binding miRNAs. Recent significant studies 
that identified GWAS SNPs alter binding sequences have 
been published. The SMDB database stands out by iden-
tifying both losses and gains of important somatic motifs 
[6]; The updated SomamiR 2.0 database includes somatic 
mutations for miRNA target recognition [7]. We applied 
MIGWAS (miRNA–target gene networks enrichment on 
GWAS), a pipeline to systematically estimate specific tis-
sue enrichment over the association of miRNA and tar-
get gene networks, to analyze genetics of diverse human 
traits and provide a better understanding of the effects of 
miRNA on human diseases [8, 9].

The GTEx database contains whole-genome sequences 
and tissue samples from donors, helping researchers 
study the relationship between genetic variation and gene 
expression. The expression quantitative trait loci (eQTL) 
provided by GTEx explains gene expression variation 
and provides a better understanding and interpretation 
of GWAS results. As it is challenging to distinguish reac-
tive and causal expression changes, incorporating eQTL 
analysis of GWAS data can help identify causal variants 
that are more prevalent in individuals with a certain trait, 
as well as find molecular changes within complex traits 
[10]. It is valuable that cis and trans-eQTLs are identified 
to find the position of the locus controlling expression of 
the target gene.

The goal of this study is to analyze patterns of GWAS 
functional variants located in 3’UTRs across 31 traits 
selected from our previous study [11] about their rel-
evance in the context over the network between hosting 
genes and targeting miRNAs, and elucidate the asso-
ciation between the genes harboring these variants and 
genetic traits. Due to the large amounts of GWAS vari-
ants, it is often difficult to process and analyze the data 
efficiently by hand. In our study, we have created a bioin-
formatics pipeline that annotates GWAS files automati-
cally by quantifying the number of variants in different 
categories for any given trait and identifying and charac-
terizing common variants across multiple different traits.

Materials and methods
ANNOVAR, a software tool, is used to efficiently anno-
tate genetic variants by examining their functional 
importance on genes and different variant regions [12]. 
By using gene-miRNA target pairs for 31 traits from 
MIGWAS, in which miRNA-gene target pairs were iden-
tified in our other study [11], we annotated variation for 
every trait using ANNOVAR to report functional impor-
tance of the targeted genes. We categorized the variants 
and checked for the prevalence of the 3’UTR variant cat-
egory for each trait. Specifically, genetic variants located 
in the 3’UTR region could alter the interactions of the 
UTRs and the miRNAs. To normalize the proportion, we 
divided the occurrences of 3’UTR by the unique genes as 
a measurement matrix for comparison.

By utilizing the annotation tool DAVID, we conducted 
a Gene Ontology analysis on 15 targeted genes harboring 

Conclusion:  Variants located in 3’UTR can alter the binding affinity of miRNA and impact gene regulation, thus war-
ranting further annotation and analysis. We have developed a bioinformatics bash pipeline to automatically annotate 
variants, determine the number of variants in different categories for each given trait, and check common variants 
across different traits. This is a valuable tool to annotate a large number of GWAS result files.
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3’UTR variants for Child Obesity traits, which we found 
had the highest 3’UTR prevalence among the 31 traits. 
DAVID is a web-accessible program that utilizes a multi-
tude of tools that enables users to translate genome-scale 
datasets by converting the data into biological meaning 
[13, 14].

In addition, in order to have deeper insights about 
GWAS data, we applied eQTL analysis to GWAS Child 
Obesity results. All tested gene-SNP pairs and significant 
eQTL pairs in the GTEx cohort (version 8) were down-
loaded from the GTEx portal. The GTEx dataset includes 
581 Adipose Subcutaneous samples and 469 Adipose 
Visceral Omentum samples with available genotype and 
gene expression data. The GTEx eQTL mapping results 
were filtered Storey Q-value < 0.05 and SNPs with minor 
allele frequency (MAF) > 0.05 in each tissue respectively. 
A total of 12,795 eGenes in the GTEx Adipose Subcu-
taneous samples and 10,410 eGenes in the GTEx Adi-
pose Visceral Omentum samples were retained with this 
filtering.

We also performed GO and KEGG pathway enrich-
ment analyses to investigate the biological function 
among the 16 miRNA target genes (ZNF566, RC3H1, 
KCTD15, FTO, ARSJ, GMEB1, CEP120, PIGN, ETV7, 
ZBTB40, ETV7, NFIX, WDR55, C1orf173, FAM114A1, 
ARSJ, CD59, CLVS1) identified by MIGWAS for the Child 
Obesity trait [11]. We employed the g:GOSt tool (https://​
biit.​cs.​ut.​ee/​gprof​iler/​gost) available on the web-based 
software g:Profiler [15] and considered all annotated 

genes as background. We used the default option g:SCS 
method in g:Profiler for multiple testing correction in our 
analysis.

We then extracted 3’UTR sequences and locations for 
all genes in the traits from Ensembl Biomar and searched 
for motifs of each gene using MEME (Multiple EM for 
Motif Elicitation), a popular tool used to identify signals, 
or motifs, in genetic DNA/proteins [16]. We compared 
the motif region to the variant positions identified and 
reported from ANNOVAR, which elucidates the func-
tional significance of miRNA binding. Variants located 
in the motif regions of genes likely play a functionally 
important role in miRNA binding. The matched motifs 
regions are reported and visualized through various for-
mats like position.

The detailed workflow of identifying variants in 3’UTR 
regions of miRNA-targeted genes for 31 traits is shown 
in Fig. 1.

Results
GWAS variants annotation pipeline (TACG‑Var)
Our developed bioinformatics pipeline named as TACG-
Var: Tool for Annotation and Classification of Genes and 
Variants efficiently annotates large numbers of variants 
files and is available at https://​github.​com/​JuDon​g1214/​
Pipel​ine/​blob/​main/​README.​md. The pipeline includes 
4 python scripts and 1 bash script, which calls 3 of the 
python scripts: 3’UTR Variant Prevalence.py, Common 

Fig. 1  Workflow of elucidating variants in 3’UTR region

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://github.com/JuDong1214/Pipeline/blob/main/README.md
https://github.com/JuDong1214/Pipeline/blob/main/README.md
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Genes.py, and Common Variants.py. The detailed pipe-
line calling process is shown in Fig. 2.

The ANNOVAR python calling script annotates traits 
and reports functional importance in ANNOVAR for-
mat. The other 3 python scripts, 3’UTR Variant Preva-
lence.py, Common Genes.py, and Common Variants.py. 
can be run by the bash script under the same directory. 
Under a Unix system, one can run the python calling 
bash script to efficiently run all python scripts on all files 
under the same directory.

The 3’UTR Variant Prevalence.py script finds the prev-
alence of 3’UTR regions in each trait. This script takes in 
ANNOVAR formatted.csv files and counts the number 
of unique regions (intergenic, intronic, ncRNA_intronic, 
UTR3, exonic, downstream, upstream, ncRNA_exonic, 
UTR5, upstream;downstream, splicing, ncRNA_splicing, 
and UTR5;UTR3) in each ANNOVAR formatted trait 
file. By utilizing the bash script to automate this process 
for all traits, the outputs are stored in a created output 
file.

The Common Variants.py script is used to find the 
common variants between two individual traits. The bash 
script runs this script multiple times and automatically 
compares all the variant files under the same directory. 

This python script takes in ANNOVAR formatted.csv 
or.xlsx files, and outputs in standard output format when 
run alone.

The Common Genes.py script is used to find the com-
mon genes between two individual traits. Similar to the 
process of the common variants script, the bash script 
runs this script multiple times and automatically com-
pares all the variant files under the same directory. This 
python script takes in.txt files with a gene name in each 
line, and outputs in standard output format when run-
ning this script alone.

To top off the pipeline, the bash script is needed to 
automate the 3’UTR Variant Prevalence.py, Common 
Genes.py, and Common Variants.py script for all the 
traits. By utilizing this bash script, all outputs from the 4 
python scripts can be stored in created output files.

Overlap analysis of MIGWAS traits
Since some variants can be shared across multiple traits, 
we used the miRNA targeted gene list from multiple 
traits to check overlap across traits. We found that Red 
Blood Cells (RBC), Hemoglobin (HB), and Package Cell 
Volume (PCV) all have high overlaps in variants for 
miRNA targeted genes among the three traits (shown 

Fig. 2  Pipeline calling process of annotating variants for the large number of GWAS traits
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in Fig. 3). In addition, we found that the Height trait had 
overlaps with 22 out of the 30 traits. The common vari-
ants between 31 MIGWAS traits based on ANNOVAR 
annotation results are reported in Additional file 1.

Our study found that these three traits have four com-
mon genes: TFPI, HBS1L, MED1, PIK3R3. TFPI encodes 
a Kunitz-type serine protease inhibitor that initiates the 
extrinsic pathway of blood coagulation [17]. The inter-
genic region of HBS1L and the MYB gene control fetal 
hemoglobin level. Additionally, this region influences 
erythrocyte, platelet, erythrocyte volume and hemo-
globin content [18].

Prevalence of 3’UTR variants and functional enrichment 
and eQTL analysis on genes associated with child obesity
Comparing the prevalence of 3’UTR variants in each 
trait, we identified that Child Obesity had the highest 
percentage of variants (75%) out of total unique genes 
occurring in the 3’UTR region (shown in Fig.  4). The 
detailed number of gene and variants in 3’UTR for 31 
MIGWAS traits based on the ANNOVAR results are 
reported in Additional file 2.

The DAVID analysis discovered that genes 
ETV7, GMEB1, NFIX, ZNF566, ZBTB40 with term 

DNA-binding have significant association with Child 
Obesity (p-value < 0.05).

The result of the list of miRNA targeted genes for Child 
Obesity trait with significant associated GO term identi-
fied as the top cluster by DAVID is shown in Table 1. The 
detailed DAVID results are reported in Additional file 3.

We also used eQTL to find the overlap between tar-
get genes with eGenes in GTEx v8 eQTL for Child Obe-
sity trait. We discovered that there are 10 target genes 
in eGenes of Adipose_Subcutaneous and 9 target genes 
in eGenes of Adipose_Visceral_Omentum. Adipose is a 
widely studied tissue in child obesity [19, 20]. The over-
lapping eGenes for two tissues are shown in Table 2. The 
detailed eQTL results are reported in Additional file 4.

We also conducted the functional enrichment analyses 
using the g:GOSt tool to identify GO and KEGG path-
ways among the 16 miRNA targeted genes reported for 
Child Obesity trait. We identified a significantly enriched 
GO Term (GO:0,008,484 sulfuric ester hydrolaseactivity) 
with an adjusted p-value < 0.05. This GO:0,008,484 sulfu-
ric ester hydrolase activity term is enriched in brown adi-
pose tissue (BAT) [21], and two genes (ARSJ and PIGN) 
associated with this term are found to be in the set of 
intersections. Significant terms and associated genes 
related to human phenotype ontology (HP) with adjusted 

Fig. 3  Number of common variants shared between 31 studied traits
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p-values were identified and reported in Additional file 5. 
Interestingly, PIGN, FTO, and CEP120 associated with 
HP were also identified through the eQTL analysis as 

eGenes for Adipose Subcutaneous and Adipose Visceral 
Omentum tissues.

Variants in motif region for traits HB and RBC
After matching the motifs regions from MEME with the 
variants positions from ANNOVAR, we discovered that 
the PIM1 variant (C > T) occurred at location 37,174,646 
inside the HB Motif region 37,174,641–37,174,660 
(Fig.  5), and LUC7L3 variant (T > C) occurred at loca-
tion 50,753,923 inside RBC Motif region 50,753,918–
50,753,937 (Fig.  6). PIM1 is a threonine kinase often 
overexpressed in gastric cancers [22], potentially caus-
ing HB to be lower than usual. LUC7L3 is a gene associ-
ated with Type 1 Diabetes and codes for a protein that 
localizes with a speckled pattern in the nucleus [23]. The 
variant locations inside the Motif region are reported in 
Additional files 6 and 7.

Discussions
In our study, we use several bioinformatics tools (MIG-
WAS, ANNOVAR, MEME, DAVID, eQTL) to eluci-
date and pinpoint functional variants located in 3’UTRs 

Fig. 4  Percentage of genes and variants occurring in the 3’UTR region for 31 traits

Table 1  Genes and GO terms in the top cluster with a p-value less than 0.05 identified by DAVID

Genes Term Category Fold Enrichment P-value

ETV7, GMEB1, NFIX, ZNF566, ZBTB40 DNA-binding UP_KEYWORDS 3.346504065 0.044

Table 2  Targeted genes for tissues Adipose Subcutaneous and 
Adipose Visceral Omentum

eGenes Adipose_Subcutanous Adipose_
Visceral_
Omentum

ZNF566 yes yes

KCTD15 yes yes

FTO yes yes

CEP120 yes yes

PIGN yes yes

ETV7 yes yes

WDR55 yes yes

FAM114A1 yes yes

CD59 yes yes

CLVS1 yes no



Page 7 of 9Song et al. BMC Genomics          (2022) 23:360 	

across 31 traits from GWAS. MIGWAS reported miRNA 
enrichment over the target gene network for the 31 
traits. ANNOVAR annotated the variants harbored by 
genes associated with the traits and reported the num-
ber of variants in the 3’UTR category. MEME provided 
the motifs regions of the targeted genes, which we used 
to compare to the variants locations. DAVID was used 
to conduct pathway analysis on the Child Obesity Trait. 
eQTL was applied to find tissues relevant to Child Obe-
sity Trait.

In our study, we discovered that Child Obesity had the 
highest prevalence of variants inside the 3’UTR region. 
Obesity is strongly tied to distribution of adipose tissue, 
which mainly accumulates in the intra-abdominal site, 
which is visceral fat surrounding the omentum, and sub-
cutaneous site [19]. Obesity can also be interpreted as a 
low-grade inflammatory state with adipose tissue gen-
erating large quantities of pro-inflammatory molecules, 
thus underlying a relationship between the immune sys-
tem and adipose tissue. For children, obesity is the most 
common cause of abnormal growth. In addition, children 
with obesity have higher mortality rates. People who 
experienced Child Obesity were more susceptible to cor-
onary disease and atherosclerosis.

MiRNAs can regulate gene expression through tar-
geting 3’UTR regions of mRNAs. There were 14 miR-
NAs (hsa-mir-320c-2, hsa-mir-10b, hsa-mir-4694, 
hsa-mir-574, hsa-mir-4458, hsa-mir-653, hsa-mir-3682, 
hsa-mir-4284, hsa-mir-4297, hsa-mir-4652, hsa-
mir-4517, hsa-mir-4421, hsa-mir-4721, hsa-mir-576) 
targeting into 3’UTR regions of candidate genes contain-
ing variants identified by MIGWAS for Child Obesity 
trait. A complete list of targeting miRNAs for all traits 
reported from MIGWAS can be found in our previously 
published study [11]. Indeed, it has been reported that 
miRNA seed region could be a key factor to drive the reg-
ulation change [6]. The mutation that occurs at miRNA 
seed and/or binding region could have a serious cascad-
ing effect on miRNA’s regulation function on its targeting 
mRNAs/genes.

The five genes identified by DAVID (ETV7, GMEB1, 
NFIX, ZNF566, ZBTB40) that have significant associa-
tions with Child Obesity belong to the term DNA-Bind-
ing, which refers to proteins that bind to DNA sequences 
in order to modify the DNA or regulate gene expression 
[24]. Among the 10 genes associated with Child Obe-
sity and the two adipose tissues identified by eQTL, we 
noticed that ETV7 and ZNF566 were also reported by 

Fig. 5  A variant of PIM1 annotated by ANNOVAR falls within the motif region identified by MEME for Hemoglobin levels (HB) trait

Fig. 6  A variant of LUC7L3 annotated by ANNOVAR falls within the motif region identified by MEME for Red Blood Cell count (RBC) trait



Page 8 of 9Song et al. BMC Genomics          (2022) 23:360 

DAVID. ETV7 is a member of the ETS family of tran-
scription factors that is involved in oncogenesis and 
plays an important role in a variety of cellular processes 
throughout development and differentiation [25]. The 
protein encoded by this gene is predominantly expressed 
in hematopoietic tissues [26]. GMEB1 is a transcriptional 
factor that is essential for parvovirus DNA replication 
and modulates the transactivation of the glucocorticoid 
receptor [27]. NFIX is a member of a family of CCAAT-
binding transcription factors that can initiate transcrip-
tion of both vertebrate and viral genes [28]. Malan et al. 
(2010) reported that there is a nearly ubiquitous expres-
sion of NFIX in the central nervous system and the 
peripheral nervous system. Their study of distal femoral 
growth plates of 1- to 5-week-old mice and human fetus 
revealed strong NFIX expression in bone and in pre-
hypertrophic chondrocytes [29].

Our study has several limitations. Firstly, since our 
method is based on GWAS results, if GWAS misreports, 
such as only reporting a single variant of the trait instead 
of the whole genetic region, our results could be affected. 
Secondly, our pipeline also has many limitations, espe-
cially with regards to the format of input files. The files 
that take ANNOVAR format input require the headings 
of the graphs to be exactly written as the original ANNO-
VAR file. Moreover, the output files produce results in 
text format, so conversion into excel file will have to be 
done manually.

Conclusions
Variants located in 3’UTR can often impact gene regu-
lation by altering the binding affinity of miRNA. There-
fore, it is important to annotate the functional important 
variants and see how they are related to their harboring 
genes and traits. Our study aimed to pinpoint GWAS 
functional variants located in 3’UTRs across 31 traits 
selected from our previous study in order to elucidate the 
association between the genes harboring these variants 
and genetic traits. The bioinformatics bash pipeline we 
developed is a valuable tool to annotate a large number of 
GWAS result files. Lastly, our analysis expands our knowl-
edge on the disease causativeness annotation and provides 
clarification of non-coding variants’ effect on genetic traits 
and paves the way for future human disease studies.
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