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Abstract
Purpose of Review Evaluating the environmental health impacts of urban policies is critical for developing and implementing 
policies that lead to more healthy and equitable cities. This article aims to (1) identify research questions commonly used 
when evaluating the health impacts of urban policies at different stages of the policy process, (2) describe commonly used 
methods, and (3) discuss challenges, opportunities, and future directions.
Recent Findings In the diagnosis and design stages of the policy process, research questions aim to characterize environ-
mental problems affecting human health and to estimate the potential impacts of new policies. Simulation methods using 
existing exposure–response information to estimate health impacts predominate at these stages of the policy process. In 
subsequent stages, e.g., during implementation, research questions aim to understand the actual policy impacts. Simulation 
methods or observational methods, which rely on experimental data gathered in the study area to assess the effectiveness of 
the policy, can be applied at these stages. Increasingly, novel techniques fuse both simulation and observational methods to 
enhance the robustness of impact evaluations assessing implemented policies.
Summary The policy process consists of interdependent stages, from inception to end, but most reviewed studies focus on 
single stages, neglecting the continuity of the policy life cycle. Studies assessing the health impacts of policies using a multi-
stage approach are lacking. Most studies investigate intended impacts of policies; focusing also on unintended impacts may 
provide a more comprehensive evaluation of policies.

Keywords Healthy cities · Urban policy · Environmental health · Impact evaluation · Policy process

Introduction

A compelling body of evidence has demonstrated the influ-
ence of environmental exposures—such as air pollution, 
noise, heat, and green space—on human health in urban 
areas. Urban areas can be defined as built environments 
where large concentrations of the human population live, 
communicate, and exchange services. Policies are necessary 

to regulate the level of exposures to these environmental 
pathways affecting health [1••]. Policies can be defined as 
government-driven processes happening over time or events 
occurring at specific time points, which cause changes in 
urban infrastructure and/or human behavior and, as a con-
sequence, impact environmental pathways and health out-
comes at street, street network, neighborhood, city, or met-
ropolitan region levels. These impacts can be direct—when 
policy and impact take place on the same urban environmen-
tal feature (e.g., a congestion pricing scheme that charges a 
fee to motor vehicles driven in an urban area acts on traffic 
to reduce congestion [2])—or indirect—when the policy acts 
on an environmental feature but impacts a different one (e.g., 
a congestion pricing scheme impacting air pollution [3]). 
Additionally, impacts can be intended (e.g., low-emission 
zone impacts on reducing air pollution [4]) or unintended 
(e.g., gentrification due to greenery enhancement [5]). At a 

This article is part of the Topical Collection on Methods in 
Environmental Epidemiology

 * Jaime Benavides 
 jap2312@cumc.columbia.edu

1 Department of Environmental Health Sciences, Mailman 
School of Public Health, Columbia University, 722 West 
168th Street, New York, NY 10032, USA

/ Published online: 7 April 2022

Current Environmental Health Reports (2022) 9:183–195

http://orcid.org/0000-0002-1851-5155
http://crossmark.crossref.org/dialog/?doi=10.1007/s40572-022-00349-5&domain=pdf


1 3

temporal level, impacts can be short term (e.g., air quality 
warnings on respiratory health admissions [6]) or long term 
(e.g., reduced indoor fine particulate matter  (PM2.5) concen-
tration levels on premature mortality [7]).

Assessing a policy’s impacts across different stages of 
the policy process, from inception to end, is important for 
achieving progress toward more healthy and equitable cities. 
The results can be used to raise awareness about the policy’s 
potential or actual efficacy and to inform the decision-mak-
ing process to modify their design, if and when necessary, 
toward improving urban health [8–12]. In this article, we 
reviewed the scientific literature on methods to quantify the 
urban environmental health impacts of policies at different 
stages of the policy process given research questions. We 
note that government entities and other organizations con-
duct impact evaluation studies that may not be published 
in scientific journals and may be worth discussing, but we 
focused on peer-reviewed scientific works in this review. We 
prioritized articles published in the last 5 years and included 
some relevant older and classic papers to illustrate specific 
knowledge that complements the reviewed works. While 
we focused on impacts in urban settings, we also included 
some studies at larger scales that illustrate novel approaches 
not yet applied at the urban scale. Most of the studies we 
reviewed quantitatively assessed impacts of policies instead 
of using qualitative information in their evaluations. Given 
the diversity of health impact evaluation studies, we separate 
our discussion by policy stage, following the policy process: 
diagnosis, design, pilot, implementation, operation, and dis-
mantling. In the diagnosis stage, the need for a policy is first 
identified. Then, the policy is designed and may be piloted, 
before being implemented. After full implementation, the 
policy may be in effect for a period of time, defined as the 
operation stage, and finally, it may be dismantled. During 
each stage, different goals and objectives, and thus differ-
ent research questions, may be relevant for health impact 
evaluation.

Frameworks for Evaluating Environmental 
Health Impacts of Policies

Several frameworks have been proposed to provide a struc-
ture for conceptualizing environmental health impacts of 
policies [9, 13]. Currently, two of the most prominent frame-
works are (a) the framework on the relationship between 
urban planning, environment, and health proposed by Nieu-
wenhuijsen [1••] and (b) the framework for accountability 
research on air pollution and health by the Health Effects 
Institute (HEI) in collaboration with other organizations and 
scientists [12, 14]. The first framework links policy, urban 
environment, and health by taking into account multiple 
environmental exposures, their determinants (e.g., built 

environment, personal behavior), and how these exposures 
affect health. The second framework connects policies aim-
ing to reduce air pollution with health impacts derived by 
their implementation, adding a feedback loop between the 
results of the impact evaluation and the policy to inform 
decision-making about the policy’s actual efficacy. Figure 1 
shows the first framework, incorporating an impact evalua-
tion layer, representing the focus of this review and provid-
ing an analytical perspective of the impacts of the policy 
process at different stages. The impact evaluation layer is 
linked to the policy by the feedback (i.e., learning) phase 
from the second framework. In the learning phase, intended 
and unintended impacts resulting from the evaluation are 
communicated to policymakers involved in the policymak-
ing process, who integrate this information and adapt the 
policy to be more effective in attaining its objectives. We 
note that policy processes result from a nonlinear com-
plex interplay between politics, regulatory mandates, and 
bureaucratic processes, among other factors. We provide this 
framework, along with the different policy process stages, 
as a conceptual guide to contextualize the scientific works 
dealing with environmental health impacts of urban poli-
cies discussed in this review. Toward that end, we simplify 
the presentation of the policy process following a linear 
representation.

Commonly Used Methods for Policy Impact 
Evaluation

In general, quantitative policy impact evaluation involves 
predicting or estimating the impact of a policy on one or 
more outcomes, ranging from urban design features to 
public health (Fig. 1), e.g., the difference in air pollution 
exposure(s) under a policy versus a reality without policy. 
However, for studies examining implemented policies, both 
scenarios cannot occur at the same time, and for studies 
examining unimplemented policies, the policies and their 
impacts are unobservable. Therefore, researchers face a 
missing data problem—what would the outcome be under 
the unobserved policy scenario(s)? [15]. To overcome this 
challenge, researchers can estimate the potential outcomes 
of unobserved (i.e., counterfactual) scenarios [16]. Broadly, 
researchers have developed/used methods to facilitate the 
estimation of potential outcomes using either simulations of 
policy scenarios or observational evidence of policies that 
were at least partially implemented; studies may employ one 
[2, 17] or both strategies [18]. Several studies have reviewed 
the scientific literature on environmental health impacts of 
policies in recent years and provided general and methodo-
logical recommendations as summarized in Table 1.

Broadly, simulations can be characterized by how the 
relationship between the policy and the outcome of interest 
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is modeled; process-based models use externally derived 
mathematical relationships (e.g., physical laws [25]), 
whereas data-driven approaches employ statistical and/or 
machine learning models (e.g., gradient boosting machine 
[26]) trained on researcher-provided data. Simulation stud-
ies start by estimating the policy impact on a single or 
multiple environmental exposures, which are assumed to 
be related to and impacted by the policy. For example, 
Baghestani and colleagues [2] estimated the impact of 
different congestion pricing scenarios on vehicle volume 
and speed over New York City, United States (US), with a 
transportation model and assessed emissions of air pollut-
ants using a vehicle emission model. To isolate the impact 
of the COVID-19 lockdown on  NO2 concentrations from 
coincident meteorological changes, Petetin and colleagues 

[26] simulated the hypothetical  NO2 concentrations under 
the same weather conditions, assuming no lockdown, via 
a machine learning algorithm (gradient boosting machine) 
trained on historical data from Spanish cities. Research-
ers can subsequently use exposure–response relationships 
(ERRs) already published in the literature to translate 
behavioral or exposure impacts (i.e., difference between 
scenarios) into anticipated health impacts [27, 28]. A 
strength of simulations is that researchers can reproduce 
the state of the urban environment to isolate the effect of 
the policy [26, 29]. Simulations, thus, are often used dur-
ing the design stage (Table 2). A major challenge, how-
ever, is building models that accurately describe the often-
complex relationship between the policy and outcome of 
interest [30].

Fig. 1  Impact evaluation of 
policies on urban environment 
and health at different stages of 
the policy process

Table 1  Summary of general and methodological recommendations for future studies from recent examples of previously published reviews of 
policy-related health impact evaluations

Type Category Recommendation(s)

General Climate change To integrate climate change mitigation and health co-benefits and disbenefits [12, 19]
Health equity To disaggregate population into vulnerable groups to characterize inequities [20••]
Multi-exposure To move from single exposure models to integrate several environmental exposures [19, 21, 22]
Policy monitoring To measure impact over time to inform policy modifications [9, 11]

Methods Confounding In observational studies, to use control un-intervened populations and before/after policy com-
parisons [12, 23]

Uncertainty To quantify uncertainty to provide a confidence estimate [21]
Robustness To use multiple methods in each study and conduct sensitivity analyses [23, 24]
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Observational studies evaluate the impact of already-
implemented policies by comparing observed and counter-
factual scenarios, which are based on historical data, from 
a specific spatio-temporal context in which a policy took 
effect [12]. A commonly used approach is the difference-in-
differences design (DiD), which compares the change in an 
outcome in a group affected by a policy (“treated”) to the 
change among an unaffected group (“untreated”), assum-
ing there are no other group-specific outcome trends [31]. 
For example, He and colleagues [32] evaluated the impact 
of COVID-19 lockdowns on air quality by comparing the 
change in air pollution in locked-down Chinese cities to the 
change in non-locked-down Chinese cities, which represents 
the hypothetical change that the locked-down cities would 
have experienced without lockdown. Interrupted time series 
(ITS) is another widely used approach in observational stud-
ies. In ITS, the trend in outcome in the post-policy period is 
compared to the trend in outcome in the pre-policy period, 
assuming that outcome trends pre-policy would have con-
tinued in absence of the policy implementation [31]. ITS 
requires sequential data with a clear trend in the outcome 
and a well-defined change point that corresponds to the 
introduction of a policy. For instance, Mason and colleagues 
[6] used ITS to estimate the impact of implementing an air 
quality alert warnings program on respiratory-related hospi-
talizations in Hong Kong, China, by leveraging hospitaliza-
tion trends from 3 years prior and post implementation. In 
both DiD and ITS cases, recent methods have been devel-
oped to address residual confounding if the assumptions are 
not met (please see the “Main Challenges and Future Direc-
tions” section for examples). Several other methods have 
also been applied in observational studies (Table 2). Overall, 
a major advantage of observational studies is the use of his-
torical data from the observed reality. However, disentan-
gling policy-related changes from other time-varying factors 
remains a challenge and hinders a reliable quantification of 
the impacts attributed to the policy implementation [12].

Research Questions by Policy Stage

We have reviewed common methods that researchers use to 
evaluate health impacts of urban policies. Next, we discuss 
common research questions that employ these methods to 
evaluate policies. Figure 2 shows an example of a policy 
impact evaluation from inception to end. As can be seen in 
the figure (black and red lines), a shift in typical counterfac-
tuals occurs throughout the policy process: in the diagnosis 
and design stages, counterfactual exposure levels represent 
pollution standards and simulated exposure reductions from 
a hypothetical policy. In contrast, in the pilot, implemen-
tation, operation, and dismantling stages, counterfactual 
exposure levels represent a scenario without policy and may a  Po
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come from actual experimental data or complex simulations. 
The research question determines which methods and coun-
terfactuals are chosen to evaluate the policy. Below, we dis-
cuss the research questions typically used for health impact 
evaluation in each policy stage and give key examples from 
the literature.

Diagnosis

Researchers usually identify the need for a policy during 
the diagnosis stage. However, it is rare that environmen-
tal health directly drives urban policies. The environmental 
health-relevant research questions of this stage are charac-
terized by health impact evaluations that investigate if envi-
ronmental health issues exist, their extent, and their main 
causes. Policymakers can apply the results of these analyses 
to understand if a policy is required to potentially ameliorate 
environmental health [9]. Often, these studies compared the 
current observed exposure levels with a counterfactual sce-
nario representing recommended exposure levels (e.g., the 
WHO guideline for the annual mean  PM2.5 [33••]). Studies 
commonly used existing ERRs from the scientific literature 
to compare health burdens between the observed exposure 
and the counterfactual recommended scenarios [33••, 34, 
46–49]. Common research questions for this policy stage 
include:

(1a) What is the health burden for exceeding interna-
tional/national/local exposure guidelines for an environ-
mental pollutant?
(1b) Are the health burdens from exceeding international/
national/local exposure guidelines for an environmental 
pollutant distributed equitably by social factors (e.g., 
race/ethnicity, economic income, etc.)?

(1c) What are the predominant environmental causes of 
a health burden or health disparity?

As an example of research questions 1a and 1b, 
Khomenko and colleagues [34] assessed the impact of 
various environmental pathways (air pollution, road traffic 
noise, heat, physical activity) and an urban design feature 
(green space) on premature mortality in Vienna, Austria. 
The authors compared the existing premature mortality bur-
den from the observed exposures with the counterfactual 
mortality burden that would have occurred had air pollution, 
noise, heat, green space, and physical activity recommen-
dations been met. This study used existing ERRs from the 
literature and considered health disparities by investigating 
the distribution of premature mortality by socioeconomic 
status (SES). For research question 1c, Zhao and colleagues 
[46] determined the source-specific contribution of various 
chemicals (e.g.,  NH3,  SO2,  NOx, and others) to mortality in 
the Beijing-Tianjin-Hebei Chinese region. They first esti-
mated the impact of hypothesized emission reductions on 
population exposure using the extended response surface 
model, which combines scenarios simulated using chemi-
cal transport models with statistical techniques, and then 
estimated mortality impacts with ERRs.

Design

In the design stage, policymakers plan and potentially 
test the elements and details of a proposed policy. Health 
impact evaluations in this stage may estimate the potential 
health impacts of new policies or compare the potential 
health impacts of various iterations of a proposed policy 
(e.g., decreases in asthma hospitalizations after setting a 
new road toll to $10 vs. $25). In this stage, the unobserved 

Fig. 2  Example of observed and counterfactual exposures along with 
methods to assess health impacts at different stages of the policy pro-
cess. Simulation methods, represented by light blue-colored squares, 
are used across all stages of the policy process, while observational 
methods (brown-colored dots) are used once the policy takes effect. 
Observed reality (black line) represents exposure measurements that 
can be observed directly, and are typically higher, as they may prompt 
the development of a policy. The red line is the counterfactual expo-

sure level that is being compared; in the diagnosis phase, it could be 
the exposure level recommended by government guidelines; in the 
design phase, it could be the lower level achieved by a hypothetical 
intervention; after implementation begins, it represents the business-
as-usual scenario without the policy. The modeled counterfactual in 
the design stage might be higher than recommended values because 
the designed policy may only partially address the environmental 
health issue
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counterfactual represents the theoretical condition(s) that 
would occur after the policy is implemented (Fig. 2, sec-
ond panel) and is often compared to the observed exposure 
levels (i.e., without policy). Similar to the diagnosis stage, 
most studies use ERRs from the literature to compare health 
impacts between different exposure scenarios [2, 7, 36••, 37, 
50, 51]. Common research questions for this policy stage 
include:

(2a) What is the potential impact of the proposed policy 
on exposure levels and health outcomes?
(2b) What are the potential health impacts and tradeoffs 
of different policy scenarios or objectives?
(2c) What are the costs and benefits of a proposed policy?
(2d) What are the health and climate mitigation co-bene-
fits of a proposed policy?

Research question 2a was the most common among the 
articles we selected to review; Mueller and colleagues pro-
vide a useful example [36••]. They estimated the potential 
health impact of implementing the Superblock Model—an 
innovative policy aiming to reclaim public space for people, 
reduce car dependency, and promote sustainable mobility 
and active lifestyle—across Barcelona, Spain, in two main 
steps. First, the authors applied simulation methods to esti-
mate potential impacts on  NO2 concentrations, road traf-
fic noise, green space, heat, and transport-related physical 
activity. Second, they calculated attributable health impact 
fractions for premature mortality, life expectancy, and eco-
nomic impact of the policy. While research question 2b was 
less frequently observed in the literature, it is an important 
research question for this policy stage because it can help 
fine-tune design elements of the policy and identify pre-
ferred objectives. Thondoo et al. [50] provide a great exam-
ple of the latter. In that paper, the authors compare the health 
and economic impacts of three different transport scenarios 
(worse, good, ideal) with the current baseline scenario in 
Port Louis, Mauritius. They used qualitative and quantita-
tive methods to construct the different scenarios, focusing on 
potential changes in car trips, walking, motorcycle use, and 
public transport use, and estimated the health and economic 
impact of each scenario.

Pilot

In the pilot stage, government entities partially implement 
the policy for testing purposes. The partial implementation 
can be spatial (i.e., over reduced areas) or temporal (i.e., spe-
cific periods), and not all policies are piloted. Experimental 
data are typically gathered to answer questions regarding the 
actual impact of the pilot on behavior [52], environmental 
pathways [3], and health [38] (Fig. 1), occasionally includ-
ing qualitative information on citizens’ perception of the 

pilot [53]. Common research questions for this policy stage 
include:

• (3a) What is the impact of the pilot implementation on 
environmental pathways and health outcomes?

• (3b) What is the public perception/acceptability of the 
policy?

Johansson and colleagues’ analysis of Stockholm’s con-
gestion charge pilot implementation [38] in Sweden is an 
instructive example of question 3a. The Stockholm conges-
tion charge was implemented at city scale for a 6-month 
period to assess its efficacy on reducing traffic conges-
tion and air pollution. The authors measured and modeled 
changes in road traffic as a result of the pilot implemen-
tation, and then propagated traffic decreases to air quality 
changes using a dispersion model. Finally, the authors used 
ERRs to estimate health benefits [38]. Other evaluations of 
the Stockholm trial [3, 53] assessed citizen perspectives on 
acceptability and equity of the policy (question 3b).

Implementation

The implementation policy stage refers to the time period 
from the pilot stage (if existent) to the full implementation 
of the policy. This is the period during which the policy is 
being rolled out. Given that it can take many years for a 
policy to be fully implemented, studies may evaluate the 
impact of a policy on behavior [41], environmental pathways 
[39, 40••], and health outcomes even before full implemen-
tation has been completed. The results can then be used to 
justify continuing the rollout, halt the rollout, or may be used 
more like that of a pilot study, to tweak the policy as it is 
being implemented. Common environmental health-relevant 
research questions for this policy stage include:

• (4a) What is the actual efficacy of the policy on envi-
ronmental pathways and health outcomes at the current 
implementation state?

• (4b) What is the level of implementation of the policy 
targets related to environmental health and how does that 
level impact health outcomes?

The majority of reviewed studies evaluating policies at 
this stage focused on question 4a. For example, Aldred and 
colleagues [39] investigated the impact of an urban design 
policy on active mobility levels in London, UK, using a 
longitudinal survey design. The authors defined control 
and intervention groups based on residential location to 
distinguish between low- and high-exposure areas. Regres-
sion models were then applied to investigate if the policy 
had an impact on resident behavior, attitude, and percep-
tion, adjusting for SES characteristics. Research question 
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4b directly incorporates implementation into the analysis, 
but there were far fewer studies that addressed this ques-
tion. For example, Lowe and colleagues [40••] investigated 
the capacity of existing policies to equitably attain their 
livability targets using a set of spatial indicators to assess 
level of policy implementation in the four largest Aus-
tralian cities. The authors first conducted a policy review 
and identified policies whose implementation levels could 
be assessed using available spatial data. For instance, for 
policies targeting public open space, they analyzed distance 
from all residential addresses within each city to public open 
spaces based on street network analysis. The authors of the 
study recommended the creation of consistent indicators for 
healthy city policies, to allow for levels and inequities in 
policy implementation to be assessed across different geo-
graphic locations.

Operation

At this stage, the policy is under full operation and evalu-
ation studies aim to understand its actual impact on envi-
ronmental pathways [26, 43] and health [6, 17, 42, 44••]. 
The counterfactual represents what would have happened 
had the policy not occurred, assuming that everything else 
continued to be the same. Simulated or measured exposures 
from the observed reality (i.e., with policy) are compared 
to counterfactual scenarios (Fig. 2, fifth panel). Common 
research questions for this policy stage include:

• (5a) What are the impacts of the policy on urban design, 
behavior, pathways, and/or health?

• (5b) Are the impacts of the policy on exposures or health 
distributed in an equitable manner?

• (5c) What is the cost-effectiveness of the policy?

Most studies we reviewed addressed research questions 
5a and 5b, often together. As an example, we highlight an 
analysis by Cesaroni and colleagues [54] of the air qual-
ity and health effects of two low-emission zones in Rome, 
Italy. The study used emission and dispersion models com-
bined with existing ERRs from the literature and evaluated 
the policy impact across SES levels to check for potential 
social inequalities. For an instructive example of cost-effec-
tiveness analysis (question 5c) that incorporates multiple 
pathways and health outcomes, we refer the readers to Gu 
et al. [55], who evaluated the cost-effectiveness of bike lane 
construction in New York City, US, in two phases. First, 
they estimated the impact of increasing bike lane miles on 
bike ridership using regression analysis. In the second phase, 
the authors assessed the cost-effectiveness of bike lane con-
struction by simulating the injury risk, ridership, physical 
activity, and air pollution under a no-construction scenario 
via a Markov model. As health-related effects, the authors 

considered impacts on risk of injury, ridership, physical 
activity, and air pollution.

Dismantling

In the dismantling stage, a policy is no longer in effect or has 
been removed. However, despite no longer being in effect, 
the policy might still have residual impacts on human health 
even many years after its deployment and dismantling [9]. 
It should be noted that not all policies have a dismantling 
stage. Evaluation studies at this stage aim to investigate 
the remaining impact of a dismantled policy. A common 
research question for this stage is:

• (6a) What is the impact of a historic policy on present 
day urban design, environmental pathways, and health?

For example, the historical redlining classification 
(a racist mortgage appraisal process that systematically 
denied loans to people of color) of more than 200 cities in 
the US during the 1930s was investigated by Nardone and 
colleagues [45, 56]. The authors evaluated the impact of 
redlining on current urban design (green space) [56] and 
health outcomes (birth weight) [45] using propensity score 
matching and regression models. They found that redlin-
ing exacerbated racial segregation and was associated with 
reduced greenspace and adverse health outcomes [45, 56].

For more examples of studies that evaluate the health 
impact of policies, at each of the six policy stages, please 
see Supplemental Table 1.

Main Challenges and Future Directions

This review has described some of the methods and research 
questions used to evaluate environmental health impacts of 
urban policies at different stages. Building on this structure 
and the recommendations from previous reviews (Table 1), 
we draw on the most recent studies to discuss the main 
challenges and future directions, exemplified by significant 
developments addressing these challenges.

We identified several challenges related to the scope of 
the formulated research questions. A common challenge 
derived from the life cycle perspective of the policy pro-
cess in this review is the scarcity of studies assessing the 
health impacts of policies using a multi-stage approach. 
Most studies statically investigate impacts at a single stage 
of the policy, during a specific time frame. Urban infrastruc-
ture, population, and behavior in cities change over time [10] 
and, as a consequence, the impact of a policy is not static. 
Thus, the results of policy impact evaluations depend on 
the time frame considered [9]. In addition, impact evalu-
ations would benefit from connecting evaluations of the 
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impacts at several stages to develop comprehensive evalu-
ations across the policy process. As an illustrative example 
of this need, Holman and colleagues [4] reviewed studies 
analyzing the intended impacts of low-emission zones on 
air quality in European cities. The authors concluded that 
simulation studies conducted during the design stage of the 
policy estimated much larger benefits than observed during 
the operation stage. In this case, connecting both design and 
operation impact evaluations by updating the design-stage 
modeling efforts whenever relevant information becomes 
available (e.g., real-world emission factors from diesel vehi-
cles [30]) may be helpful to refine the estimated impacts of 
the implemented policy. This iterative process, including the 
adjustment of policies to reflect the updated knowledge (i.e., 
learning phase in Fig. 1), represents an essential component 
of adaptive management [10].

Another challenge is the limited research into unintended 
impacts of urban policies. Most studies investigated the 
policy’s intended impacts on environmental pathways and 
human health. Studies also assessing unintended impacts, 
such as green gentrification [44••] or redistribution of traffic 
emissions and air pollution levels that may be the conse-
quence of traffic calming policies [57], may provide a more 
complete analysis of the policy impacts. Unintended impacts 
can particularly affect environmental justice communities 
[44••] that may be excluded from the initial design process. 
Additionally, a common challenge related to health equity 
is that while a number of studies measure the distribution 
of health impacts by socioeconomic groups, there has been 
limited research into root causes of inequities as identified 
by Buse and colleagues [20••]. These include root causes 
of environmental health inequities as well as inequities in 
potential benefits/harms from a policy. Buse and colleagues 
[20••] concluded that such research can inform how a policy 
can exacerbate or ameliorate environmental health dispari-
ties. We recommend that researchers broaden their research 
questions to develop comprehensive evaluations of the full 
policy life course, including unintended impacts.

A common methodological challenge of simulation 
and observational studies is to assess health impacts due 
to changes in multiple exposures and environmental path-
ways. The reviewed simulation studies addressing multiple 
exposures and pathways give a broad view of the potential 
impacts in isolation, without including interactions between 
exposures and pathways, so they should be interpreted with 
caution (e.g., [27, 37, 46]). Some observational studies are 
starting to consider multiple exposures in relation to air 
pollution, as exemplified by Mason and colleagues [6], but 
still tend to exclude other environmental pathways. Hybrid 
approaches, using both simulations and observational 
methods, are a promising approach to account for syner-
gistic effects of multiple pollutants. For example, Nethery 
and colleagues [18] combined air pollution levels from a 

process-based atmospheric chemistry model with matching 
and machine learning methods to estimate the cumulative 
health impacts attributable to policy (i.e., the 1990 Clean 
Air Act Amendment) changes on several air pollutant con-
centrations in the US. Their approach, which assumes that 
the entire study area is affected by the policy, may be useful 
for evaluations dealing with policies affecting an entire city 
or metropolitan area, where the chances of finding an un-
intervened population are limited [58].

A second methodological challenge is the need to char-
acterize the spatio-temporal uncertainty associated with 
exposure assessment and propagate it into the estimated 
health effects. This challenge increases in complexity with 
the increasing number of exposures considered in a health 
impact study. Errors in exposure levels might depend on 
spatio-temporal conditions (e.g., variation across streets or 
seasons), which could be wrongly attributed to other fac-
tors that vary in a similar manner. Recent works estimating 
health burden and assessing a policy’s efficacy in cities have 
characterized the confidence of health impacts [33••, 59]. 
For instance, Khomenko and colleagues [33••] compared 
current air pollution levels with levels complying with rec-
ommended guidelines in 969 European cities and propagated 
uncertainty estimates from the input variables (e.g., ERRs, 
exposure levels) to the health impact analysis using Monte 
Carlo simulations. A complementary robustness test for 
policy evaluation is to conduct sensitivity analyses aiming 
to understand how environmental health impacts are affected 
when certain parameters (e.g., physical activity [27]) are 
perturbed from a set of potential values.

Another methodological challenge when assessing the 
impact of existing policies is to build counterfactuals avoid-
ing confounding (i.e., rival explanations). Recent develop-
ments in the causal inference field tackle this challenge, 
allowing more robust impact evaluations. For instance, 
in both DiD [60, 61] and typical regression models [45], 
researchers have matched units (e.g., census tracts) on their 
propensity scores, which capture the probability that a unit 
would receive the intervention [62]. Researchers can protect 
against misspecification of the propensity score model by 
using doubly robust methods, i.e., adjusting for confound-
ers in the main model, after matching by propensity score 
[61]. Machine learning approaches, such as neural networks 
and regression trees, can be used to flexibly model the rela-
tionship between predictors and treatment likelihood [63]. 
Traditional DiD involves comparing a treated unit to one 
or more control units, though none of the control units may 
be exactly comparable to the treated unit. One approach to 
loosen the assumptions of the matching is to create syn-
thetic controls, which are a weighted average of the poten-
tial controls, weighted by their similarity to the treated unit 
[64]. Ben-Michael and colleagues [65] recently proposed 
the ridge augmented synthetic control approach to address 
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residual bias from imprecise matching on units, which was 
subsequently applied by Cole and colleagues [44••] to esti-
mate the air quality and health impacts of the COVID-19 
lockdown in Wuhan, China.

For policies acting upon reduced spatio-temporal con-
texts, conducting impact evaluations may be challenging. In 
these cases, using robust designs and evaluation methods has 
been useful to investigate small-scale policy effectiveness 
[66, 67]. For instance, Benton and colleagues [66] conducted 
an observational study to evaluate the impact of green space 
enhancements along an urban canal on physical activity and 
other wellbeing behaviors in Manchester, UK. The authors 
matched two comparison sites to the intervention site using 
a five-step process, based on eight physical activity variables 
at both the site and neighborhood levels. Then, the authors 
compared intervened and un-intervened matched outcomes 
using multilevel mixed-effects regression models. In addi-
tion, collaborations between policymakers and researchers 
in the design of the policy and its evaluation component can 
enhance the learning process about the policy effectiveness 
and potentially inform extension of these practices, as exem-
plified by Macmillan and colleagues [68]. The authors devel-
oped a controlled before-after intervention to investigate the 
physical activity and equity impacts of an urban design’s 
intervention with the aim of fostering physical activity in 
deprived areas in Auckland, New Zealand.

Another challenge is that many of the reviewed articles 
analyzed a policy’s impacts on environmental pathways 
without assessing health impacts. For example, applica-
tions using process-based simulations (e.g., air pollution 
from dispersion models) and new causal inference meth-
ods, such as Bayesian structural time series models [69], 
are growing but often do not continue to quantify health 
impacts [70, 71]. In general, for a comprehensive evaluation 
of a policy, the impact on several health outcomes should 
be evaluated. We encourage researchers to incorporate more 
environmental health analyses in policy impact evaluation. 
Integrating team members with a solid background on health 
impact evaluations would be beneficial in those cases. In 
addition, implementing data sharing standards (e.g., FAIR 
protocol [72]) could allow for reusing the results of impacts 
on environmental pathways for health analysis in subsequent 
studies if adequately documented and, ideally, accompanied 
with uncertainty estimates. For instance, this could enable 
intercomparison of health impact evaluations from different 
research groups and over different spatio-temporal contexts 
answering different research questions (e.g., impact of pol-
icy-derived changes on chronic vs. acute health outcomes).

Lastly, a general challenge that may limit the usefulness 
of evaluation studies is that many cities often do not include 
evaluation efforts as part of the policies aiming to promote 
public health [1••, 73, 74]. Such policies require an evalu-
ation component that explicitly incorporates estimation of 

environmental health impacts at multiple policy process 
stages aiming to monitor and improve the effectiveness of 
the policies [75]. Enabling collaborations between policy-
makers and researchers embedded within the policy pro-
cess over the long term may contribute to developing more 
effective interventions, as suggested by Lowe and colleagues 
[76]. For instance, the INTERACT program is a collabora-
tion of researchers, urban planners, and citizens assessing 
the effectiveness of built environment changes on health in 
four Canadian cities through observational studies [77, 78].

Conclusions

Policies are required to enhance equitability and health 
in cities; impact evaluations can be useful to monitor and 
improve the effectiveness of urban policies. In this narra-
tive review, we investigated the most recent methods and 
research questions from health impact evaluations of poli-
cies at different stages, from the diagnosis of environmental 
problems affecting human health to the design, pilot, imple-
mentation, operation, and dismantling of the policy. This 
life cycle perspective allowed us to identify the scarcity of 
studies assessing the health impact of policies at multiple 
stages. The predominant approach in the literature of stati-
cally assessing impacts at single stages of the policy, during 
a specific time frame, is insufficient for fully understanding 
the impact of a policy. We recommend that researchers con-
nect evaluations of the impacts of a policy at multiple stages 
in order to develop comprehensive impact evaluations of the 
full policy life course.
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