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Abstract

Background: Integrative analysis between dynamical modeling of metabolic networks and data obtained from high
throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and
dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated
elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we
present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the
general dynamical mechanisms emerging for a slightly perturbed metabolic network.

Methodology/Principal Findings: This paper presents a statistic framework capable to study how and how fast the
metabolites participating in a perturbed metabolic network reach a steady-state. Instead of requiring accurate kinetic
information, this approach uses high throughput metabolome technology to define a feasible kinetic library, which
constitutes the base for identifying, statistical and dynamical properties during the relaxation. For the sake of illustration we
have applied this approach to the human Red blood cell metabolism (hRBC) and its capacity to predict temporal
phenomena was evaluated. Remarkable, the main dynamical properties obtained from a detailed kinetic model in hRBC
were recovered by our statistical approach. Furthermore, robust properties in time scale and metabolite organization were
identify and one concluded that they are a consequence of the combined performance of redundancies and variability in
metabolite participation.

Conclusions/Significance: In this work we present an approach that integrates high throughput metabolome data to
define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having
information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to
analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore
the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic
information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or
pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to
characterize and identify (dis)functional stages.
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Introduction

Constraints-based modeling represents a paradigm in systems

biology with a broad scope of applications ranging from

bioengineering to cellular evolution [1,2,3,4,5,6,7,8,9]. Briefly,

constraints-based models is a bottom-up scheme that use the

successive imposition of constraints (such as mass conservation,

fundamental thermodynamic and enzymatic capacity) to delimit

the functional space of a metabolic network. Mathematically,

functional space is entirely obtained by the stoichiometric matrix

when one assume that all metabolic fluxes do not change in time, it

means all reactions conforming the network obey the steady-state

condition.

Parallel to these in silico modeling, the data supplied from high

throughput technologies has triggered the development of

deductive top-down procedures, in order to complement and

verify biological predictions obtained from constraints-based

models [10,11].

Even though constraints-based in silico models have provided a

successful method for accomplishing the integrative task between

high throughput data and genome scale models, the steady-state

assumption may oversimplify cellular behavior such that its

description is valid only at certain time scales. In order to deal

with metabolic mechanism away from a steady-state, it is

imperative to develop new genome scale in silico models capable

to provide a temporal description of the cell activity and relay it

with its physiological behavior [12,13,14].

For instance, a paradigm linking dynamic and physiological

behavior is clearly manifested in human red blood cell metabolism

(hRBC) [15,16]. Thus, modeling hRBC metabolism has permitted

us to explore the dynamic effects produced by the lack of certain

enzymatic activity, for example glucose 6-Phosphate dehydroge-
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nase, and to correlate this metabolite deficiency with enzymo-

pathies at various clinical stages [15,17,18]. Unfortunately,

detailed dynamical studies, such as those carried out for hRBC

cannot be extended to other cell metabolisms mainly because of

the lack of specific kinetic information. Even though a number of

databases storing kinetic data are currently being assembled

[19,20,21], this fundamental constraint reveals the need to develop

novel approaches for estimating kinetic parameters and explore

dynamic properties in genome scale metabolic reconstructions

[9,14,22,23,24,25].

In this work I suggest a statistical framework to analyze

dynamical properties of a metabolic network when its metabolite

concentrations are slightly perturbed around a steady-state. To

overcome the lack of kinetic parameters, this approach uses high

throughput metabolome data for obtaining a kinetic library

conformed by all the kinetic parameters which dynamically ensure

the existence of a steady-state solution. Subsequently, through this

kinetic space, one constructs a library of dynamical models, all of

them characterized by the same metabolic network but predicting

dynamic behavior with different kinetic parameters. As this paper

suggests, a statistical analysis applied over the library of dynamical

models allows us to survey general properties even in the absence

of accurate kinetic information. The library of dynamical models

constitutes a fundamental space required to explore two

immediately questions: how and how fast a metabolic network

reaches its steady-state after a slightly external perturbation has

occurred. The workflow of the method is such that it integrates

three main components: metabolome data [26,27], the stoichio-

metric matrix (holding the metabolic biochemical reactions in the

organism) and the classical theory of modal analysis [28]. A

schematic overview of the approach is depicted in Figure 1.

The solution space of feasible kinetic parameters, defined as the

k-cone, has been calculated considering three requirements: 1) All

biochemical reactions obey law mass action, 2) Steady-state

metabolite concentrations are known quantities and potentially

obtained from metabolome data [29], and 3) All kinetic

parameters defining the k-cone are such that they dynamically

ensure the existence of a steady-state solution, see methods section.

Figure 1. General overview. A) Based on metabolome data and reconstructed metabolic network, we obtain the feasible set of kinetic parameters,
k-cone. A point in this space represents a vector whose dimension is given by the number of reactions in the metabolic network. B) To explore the
relationship between physiology and dynamic behavior for a perturbed metabolic network where kinetic parameters is lacking, we construct a
Jacobian library taking into account the k-cone space. A point in Jacobian library represents a square matrix with dimension determined by the
number of metabolites. C) In turn, for each Jacobian we obtain a modal matrix, we called this new space the Modal library. D) In order to analyze the
variability for each of the modes along the ensemble we define i-th metabolic pool library, a subspace of the entire modal library. E) We calculate the
average properties, the dispersion for the time scales and the metabolic pools generated along the library. F) The statistical analysis of the time scales
and the metabolic organization are interrelated to infer metabolites with potential physiological meaning.
doi:10.1371/journal.pone.0004967.g001
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Having defined k-cone, the statistical nature of this framework

emerges when one constructs two additional libraries, Jacobian and

Modal [28,30], whose components are matrices with information

referring how and how fast the system reaches a steady-state.

More specifically, given certain kinetic parameters, Jacobian

matrix defines the times scales and the Modal matrix specify how

metabolites organize to reach its steady-state. As this paper

supports, statistical analysis accomplished in both libraries can

potentially guide us to identify: 1) robust dynamical properties

inherent to the biological systems, 2) scrutinize how dynamic

properties depend on specific kinetic parameters, and 3)

potentially associate dynamical with functional behavior in cell.

In order to illustrate the scope of our method we will apply this

to the Human Red Blood Cell (hRBC) metabolic network. In this

paper, hRBC metabolic reconstruction is conformed by 33

metabolites participating in 68 biochemical and transport

reactions, see Table S1 and Table S2 in supporting information. Overall,

I believe this approach, schematically represented in Figure 1, can

act as a guide for exploring the relationship between dynamics and

physiology behavior in metabolic networks where the kinetics is

partially or completely unknown.

Results

Building kinetic and dynamical libraries
K-cone analysis is a formalism useful to determine a space

containing all candidate values for kinetic parameters of a metabolic

network [29]. K-cone space for hRBC metabolic network was obtained

taking into account the stoichiometric matrix and a set of metabolite

concentrations defining a steady-state condition [29]. As described in

method section, two assumptions were applied during the analysis.

Firstly, the concentration of all the metabolites at a steady-state was

supposed to be known, see Table S1 in supporting information. This

assumption particularly encourages to use accurate data obtained

from high throughput metabolome technology [26]. Secondly, we

have considered that all metabolic reactions are governed by the law

of mass action. Even though this latter assumption may limit the

practical kinetic scope, this method can immediately be extended to

include crowding effects through applying a generalized mass action

[29]. These assumption and mass conservation can be combined to

obtain Equation 2, see method section, whose solution is conformed

by a myriad of vectors that inside a multidimensional cone, the called

k-cone space, see Figure 1 A.

Thus, a point inside this space represents a vector with 68

entries, each one defining a kinetic parameter corresponding for

the 68 biochemical reactions included in hRBC metabolic

network. Having identified k-cone space, one proceeds to construct

a kinetic library simply by randomly selecting some points inside k-

cone space. Mathematically, random sampling procedure was

accomplished by applying an Artificial Center Hit and Run

algorithm [31,32] selecting 19000 points and storing those (12586)

that ensure the existence of a steady-state coinciding with the

known steady-state metabolite level, see method section. As a result,

numerical distributions associated with the kinetic parameter for

each metabolic reaction were obtained. The resulting ranges of

values for each biochemical reaction are reported in Table S3 at

supporting information.

Once kinetic library was obtained, one can proceeded to survey

how and how fast the metabolites reaches the steady-state after a

slightly perturbation. In general, biochemical reactions integrating

metabolic networks occurs over a broad spectrum of time scales,

such that some of them are faster than others depending on its

kinetic parameters and presumably on its physiology relevance

[33]. For a given set of kinetic parameters, time scale

decomposition for hRBC metabolic network was classically

obtained through the Jacobian matrix, see methods section. In essence

the entries in this matrix indicate how fast a metabolic flux

changes when the concentration of certain metabolite changes too.

Subsequently, a library of feasible time scales was constructed by

evaluating each component on kinetic library in the Jacobian matrix,

and proceeding as described in methods section, the time scale proper

for each set of kinetic parameters were calculated. The resulting

distribution of hierarchical time scale was gathered for construct-

ing a hierarchical time scale library. Furthermore, in order to reveal

how the metabolites organize between them for recovering its

steady-state, we used a modal matrix analysis which was directly

obtained from the Jacobian library, see method section and

Figure 1.

Modal matrix analysis is formalism for identifying the metabo-

lites that coordinately moves at a specific time scale, called

metabolic pools. According to modal theory, for each one Jacobian

matrix (J) it is possible to find a Modal matrix (M) whose rows

supply information of the metabolic pools at each time scale, see

methods section. Thus, as we did before, a modal library was

constructed by storing all Modal matrices obtained for each

element inside the Jacobian library, see methods and Figure 1.

Based on a statistical analysis applied to the hierarchical time scales

and modal library, next section is devoted to show that one can

tackle two interesting issues: to uncover global properties in

dynamic metabolic networks and to survey the proper metabolic

organization required to induce adequate physiological functions.

An overview of the methodology and the relationship between its

libraries is schematically represented in Figure 1.

Robustness in time scale decomposition
To uncover the role that kinetic parameters have onto time

scale profiles, a statistical analysis over the hierarchical time scale

library was accomplished. Thus, proceeding as described in methods

section (Equation 6), the average and the standard deviation for the

inverse of each time scale obtained from Jacobian library were

calculated and plotted in Figure 2A Two relevant results emerge

from this result. Firstly, inverse of times scale reveals a low

dispersion respect to the average, thus indicating the presence of

robust statistical properties on kinetic parameters, see Figure 2A,

left panel. Furthermore, repeating the same statistical analysis now

directly over the profile of time scales, one obtain that robustness

prevails for all time scales, except for the last three slowest ones,

indicating its sensitivity to kinetic parameters, see Figure S1 in

supporting information. Robustness is a property that has been

reported in a variety of biological systems [34,35]. In this paper,

we present evidence to indicate that time scale associated with a

perturbed metabolic networks is statistical robust to kinetic

parameters for most time scales, and only in the case of slow

time regimens they can have a considerable influence on

dynamics. To evaluate the robustness of this result and

heuristically evaluate the dispersion intrinsic of the network and

the coming from sampling artifact, I have explored how the

statistical properties of the eigenvalues and time scales vary at

different k-cone sample sizes. Figure 3A shows the average and

standard deviation (both in log10 scale) for the eigenvalues and

time scales obtained when one select 4, 600 and 12586 points in k-

cone space. Particularly, we note that in all cases the average and

dispersion converge according the number of sample size increase.

Notably, this approach allows to identify time scales that are

closely similar to those obtained by using a detail kinetic model for

hRBC [15,18], see Figure 3B.

In summary, fast and intermediate time scales tend to be

statistically robust to kinetic parameter variations. Robustness, in

Dynamic Modeling Metabolisms
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this case, may be a consequence that the metabolic network

compensates an altered kinetic property by using an equivalent

functional metabolic pathway. Conversely, the last three slow time

scales are sensitive to variations in kinetic parameters and it may

be caused by a reducing number of alternative pathways to replace

the effects of kinetic variations. Based in this hypothesis, we

postulate that robustness in time scale can be correlated with the

number of equivalent functional metabolism pathways. In order to

justify this idea, we proceed to explore and quantify the variety of

mechanisms underlying the robustness inherent in each time scale.

For this purpose, all the possible metabolic organization to reach

the steady-state encrypted in the modal library was classified

separately at each time scale as described in the next section.

Aggregate variables: Pools of metabolites and their
statistical variability

Experimental measurements on perturbed metabolic networks

have revealed that some metabolites, called metabolic pools, move in

a coordinated fashion along time scales [24]. Surprisingly, there is

evidence that this temporal organization plays an important role in

terms of establishing proper physiological conditions in cells

[15,18,24]. From a mathematically perspective, these metabolic

pools are defined by the row vectors along the modal library in such a

way that first row of a modal matrix identifies the metabolic pools at

the first time scale; the second row is associated with the second time

scale, and so on. Continuing with our analysis, the modal library was

statistically analyzed to survey the metabolic organization by which

the cells respond to changes in kinetic parameters. The central aim is

to survey the extent to which each metabolite participates in defining

metabolic pools and whether some metabolites participate to an

equal extent in spite of the selected kinetic parameters. Behind this

analysis, I have hypothesized that the metabolites having a robust

participation on metabolic pools can be potentially assigned certain

fundamental physiological role. With this in mind, we defined two

matrices (Mave and N) supplying information referring to the

average and the dispersion for each entry along the entire modal

library, see Figure 1.

Entries of these matrices Mi,j(Ni,j) identify the average

(dispersion) contribution that the j-th metabolite have to define

Figure 2. Time scale and metabolic pools for human Red Blood Cell metabolism. Figure (A) shows the distribution of the eigenvalues
(log10) obtained from the Jacobian library. Coefficient of variation (CV) calculated for the resulting eigenvalues distribution is depicted at the right
side of the plot. Figure (B) depicts the average modal matrix. At slow times scales it is possible to identify metabolic pools that correlate with
physiological functions [15]. The metabolites are denoted by: 13dpg ,1,3-Diphosphoglycerate; 23dpg, 2,3-Diphosphoglycerate; 2pg, 2
Phosphoglycerate; 3pg, 3-Phosphoglycerate; and, Adenine; adp, Adenosine diphosphate; amp, Adenosine monophosphate; atp, Adenosine
triphosphate; dhap, Dihydroxyacetone phosphate; e4p, Erythrose-4-phosphate; f6p, Fructose-6-phosphate; fdp, Fructose-1,6-diphosphate; g3p,
Glyceraldehyde 3-phosphate; g6p, D-glucose 6-phosphate; hxan, Hypoxanthine; imp, Inosine monophosphate; ins, Inosine; k, Potassium; lac-D, D-
lactate; na1, Sodium; nadh, Nicotinamide adenine dinucleotide; pep, Phosphoenolpyruvate; prpp, 5-Phospho-alpha-D-ribose-1-diphosphate; pyr,
Pyruvate; r1p, alpha-D-Ribose 1-phosphate; r5p, alpha-D-Ribose 5-phosphate; ru5p-D, D-Ribulose 5-phosphate; s7p, Sedoheptulose 7-phosphate;
xu5p-D, D-Xylulose 5-phosphate.
doi:10.1371/journal.pone.0004967.g002
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the metabolic pools at i-th time scale, see methods section. For

instances the entry M 3,1
ave represents the average contribution of

glucose 6 phosphate (g6p) at the third time scale, see Figure 2B. A

similar explanation is given for the dispersion matrix N.

Visual inspection of Mave reveals the formation of physio-

logical metabolic pools emerging at slow time scales, see

Figure 2C [15,18]. Particularly, one can observe that at slow

time scales the glucose 6-phosphate and the fructose 6-

phosphate equally contribute to metabolic pools such that they

move in a coordinated fashion starting from the 24nd time scale.

It indicates that at that time scale the reaction g6p = f6p driven

by glucose 6-phosphate isomerase is at thermodynamic equilib-

rium. Equivalently, other metabolic pools suggesting an

organized movement on its metabolite concentration were

identified at subsequently time scales see Figure 2B bottom

panel.

On the other hand, Figures 4A shows the resulting N matrix. As

previous interpretation, i-th row represents the dispersion of the

metabolic pool formed at the i-th time scales and the columns

quantify the dispersion of each metabolite. Figure 4A highlights in

green-yellow the metabolites whose dispersion was lower than the

unit, they assigned as potential metabolites that invariantly

participates in metabolic pools independent of the used kinetic

parameters. In addition, a statistical analysis accomplished for

rates between some of these reveals the presence of additional

robust properties, see Figure 4B. Based in these results one

concludes that the organization of some metabolites to responds

under changes in kinetic parameters tends to be robust at slow

time scales.

Redundancy on modal library
Robustness in metabolic networks has been attributed to a set of

factors, with redundancy representing one of the most recognized

[36]. In order to verify whether a kind of redundancy exist in modal

library, we classify all the i-th rows along each matrix in modal library

to construct a new sub-space called the i-th metabolic pool library. This

sub-space have special relevance due that contains informative data

referring to the degree of variation of metabolic pools in modal

library. For example, the 3rd metabolic pool library is conformed by the

collection of all metabolic pools identified at the 3rd time scale along

all modal library, so if redundancy does exist it should be hidden in

that subspace. This classification allows us to construct 33 subspaces,

each one consisting of 12586 rows corresponding to each time scale

identified in previous section see Figure 1D.

Having performed this classification, we studied the metabolic

composition for each i-th metabolic pool library by applying a

hierarchical cluster analysis, whose visual representation reveals

the degree of metabolite participation, redundancy and (dis)sim-

ilarily between them. For instance, Figure 5A and 5B show the

cluster analysis accomplished for the 6th and 32nd metabolic pool

library respectively. In both cases, this graphical representation

allows to identify conservative patterns through the space. Thus,

for the 6th metabolic pool library, we note that sedoheptulose 7-

phosphate (r7p) participates over the pool formation in most of the

situations. The inverse situation occurs with D-glucose 6-

phosphate (g6p), fructose-6-phosphate (f6p), Fructose-1,6-diphos-

phate (fdp), dihydroxyacetone phosphate (dhap) and glyceralde-

hyde 3-phosphate (g3p) whose participation in metabolic pools

would appear to be a function of kinetic parameters. Similarly,

Figure 3. Convergence and accuracy of the algorithm. Figure (A), upper panel, shows the average time scale and the corresponding standard
deviation obtained for three different kinetic sample sizes. Equivalently, the same procedure was accomplished for the eigenvalues, see Figure (A) at
bottom panel. Panel (B) shows the range of time scale deduced from the statistic method (with 12586 points in k-cone) and the reported by a detail
kinetic model [15].
doi:10.1371/journal.pone.0004967.g003
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pyruvate (pyr), 2 phosphoglycerate (2pg) and phosphoenolpyr-

uvate (pep) represent the predominant metabolites participating in

the 32nd metabolic pool library.

From a global analysis accomplished over the 33 metabolic pool

libraries, one note that metabolites participation vary depending of

the selected subspace. However, a frequency study accomplished

over each metabolic pool library allows us to identify the potential

metabolites that invariantly participate without reference on its

kinetic parameters. Proceeding as described in methods section,

for each i-th metabolic pool library we identify those metabolites that

have contribute with at least with 80% over all the cases, the result

is shown in Figure 5C. Overall, Figure 5 reveals a redundant

pattern on the metabolic profile obtained form each i-th metabolic

pool library. For these metabolites, redundancies may postulate

them as key components to induce a proper physiological function,

a hypothesis that should be experimentally verified through

metabolome technology [26,27].

Variability of modal library
Previous section has revealed valuable information concerning

the redundant participation of metabolites along each i-th metabolic

pool library, however it is needed to know how (dis)similar are the

elements conforming each i-th metabolic pool library in order to have

a better appreciation of the variability along the entire space. In

order to quantify how similar are the elements of each i-th metabolic

pool library, we applied Principal Component Analysis (PCA) [37].

Given a set of random variables, the central idea behind PCA is to

calculate the minimal number of independent vectors, called

principal components, required to reproduce the entire statistical

properties prevailing in the original data set. Having applying

PCA to each i-th metabolic pool library, one concludes that the

number of independent variables present in the space can be

accurately represented by a reduced set of principal components.

In fact, the first five principal components are capable to

reproduce between the 72%–100% of the complete variability

along the metabolic pool libraries, see Figure 6. Detailed information

concerning the percentage of i-th metabolic pool coverage achieved

by the first five principal components for all the 33 libraries of

metabolic pools is presented in Figure 6B.

In summary, along these last sections two observations stand

out. Primarily, we have identified some metabolites that play part

metabolic pools without reference to of kinetic parameters, this

Figure 4. Dispersion in modal matrix. (A) Dispersion modal matrix shows those metabolites whose participation is robust to changes in kinetic
parameter. In green-yellow we denote the metabolites whose dispersion was less than 1. B) Coefficients of variation obtained for some ratio of
metabolites. As Figure shows, metabolites with robust participation in metabolic pools can be potentially identified at slow time scales. As in (A),
these appear mainly at slow time scales.
doi:10.1371/journal.pone.0004967.g004
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indicating a degree of redundancy of metabolic mechanisms to

recover the steady-state condition, see Figure 5C. Secondly,

statistical properties in terms of metabolic pools spaces can be

largely be recovered (72%–100%) using five principal components

indicating the reduced global variability nature for all the i-th

metabolic pool libraries, see Figure 6.

Discussion

The advent of high throughput technology and the increasing

number of reconstructed metabolic networks constitutes essential

components that have encouraged the development of in silico

procedures capable of explaining how the metabolism in cell

responds to external perturbations. Despite significant advances on

dynamic theory [33], their practical counterpart to model genetic

and metabolic circuits have been reported for some cases where

kinetic parameters are experimentally known [38]. In order to

analyze the physiological capabilities inherently associated with

genome scale metabolic reconstructions, computational approach-

es capable to overcome this lacking of kinetic information are

required. In this work, we have presented a new methodology for

discovering dynamical mechanisms induced by a small perturba-

tion in a metabolic network, where kinetic information is lacking.

The workflow inherent to this method naturally integrates data

from high throughput metabolome technology, in order to define

the feasible space of kinetic parameters, the k-cone. Instead of

following a deterministic description with well defined kinetic

parameters, we have opted to consider a statistical procedure

which leads to the construction of dynamic libraries for

quantifying how and how fast the metabolic networks reached

its steady-state, see Figure 1. This procedure can easily be applied

to genome scale metabolic reconstructions and, as an example, we

have applied it to study the human red blood cell metabolism. In

this case, the range of time scales describing how and how fast the

network reaches its steady-state were in agreement with those

estimated using a detailed kinetic model [15]. This result makes

possible the estimation of time scales associated with other

available metabolic reconstructions, using their metabolome data

and without necessarily requiring a complete knowledge of kinetic

parameters. Furthermore, our statistical methodology can con-

Figure 5. Redundancy in modal library. Figure (A) and (B) show a hierarchical cluster applied for the 6nd and 32nd th-metabolic pool library
respectively. The presence (absence) of metabolites along the library is immediately observed by green/red (black) regions. From this Figure,
metabolites with a redundant participation along the pools are identified. The degree of participation for each metabolite in each i-th metabolic pool
library is depicted in (C). Green squares show the metabolites that participate at least 80% over the entire th-metabolic pool library.
doi:10.1371/journal.pone.0004967.g005
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tribute to reveal the presence of robustness properties on

metabolism.

As this paper shows, robustness, redundancy and variability were

properties identified at different stages in perturbed metabolisms, all

of them combined to give the global phenomenological effect. In

general we conclude that robustness in time scale is caused by two

types of metabolites: redundant and context dependent. The first

classification confers redundancy to metabolic pools, and they are

conformed by metabolites that always participate on the mechanics

governing the relaxation toward a steady-state independently of the

selected kinetic parameters. Conversely, context dependent metab-

olites are sensible to kinetic parameters and they supply variability to

regulate the activity metabolites required to select the specific answer

depending on the environment. From a systems biology perspective,

there is evidence that different sort of robustness emerges inherently

with network complexity [35], in this paper we report evidence of

temporal robustness obtained from a genome scale metabolic

analysis.

Overall, our method constitutes a framework for exploring

dynamic behavior of slightly perturbed metabolic networks, where

precise knowledge of kinetic information is lacking. Contrasting

with others approaches, this method has been constructed such

that data from high throughput metabolome technology [27] and

genome scale metabolic reconstructions are fundamental elements

to establish the integrative task between top-down and bottom up

schemes [1].

Finally, I expect that this methodology can provide guidance in

a future for exploring the relationship between dynamic and

physiological behavior on other metabolic reconstructions. For

instances, we envisage that it will contribute to design therapeutic

targets in areas such as pharmacogenomics and genome medicine

[36,39,40], where the estimation of feasible time scale and the

identification of metabolic pools may be crucial for defining

(dis)functional states. Particularly, exploring the relationship

between high throughput technology and dynamic behavior on

metabolic pathways directly associated with human diseases will

thus constitute a mayor research target in future.

Materials and Methods

Human Red Blood Cell Metabolic Network
The metabolic network of Human Red Blood Cell (hRBC)

analyzed in this paper is integrated by 33 metabolites participating

in 68 internal and exchange reactions. These reactions integrate

glycolysis, pentose phosphate pathway, Rapoport-Liubering and

the nucleotides metabolism pathways. A graphical representation

of this metabolic network can be found elsewhere [15,30] and a

more detail description of its properties is given in Table S1 and

Table S2 in supporting information. In order to develop comparative

studies and validate our predictions we use the same independent

metabolites as reported in previous works [15,18]. Metabolite

concentrations defining the steady-state were estimated from the

Figure 6. Variability in modal library. In order to quantify the variability on i-th metabolic pool library, Figure 1D, Principal Component Analysis
was accomplished. Figure (A) shows the cumulative fraction of the complete space as a function of the number of principal components included in
the description. As one appreciates the complete statistical behavior for all the libraries can be reproduced by a few numbers of principal
components. Figure (B) depicts the variability fraction of the data covered by the five main principal components along the 33 metabolic pool spaces.
The range of coverage goes from 72% to 100%.
doi:10.1371/journal.pone.0004967.g006
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same sources [18]. A detailed description of the biochemical

reactions, metabolites nomenclature and parameters used along

the analysis is included in Table S1 and Table S2 at supporting

information.

k-cone formalism
K-cone analysis is a useful framework for estimating potential

candidates of kinetic parameters underlying a metabolic network

and ensuring the existence of a steady-state solution [29,41].

Briefly, given a metabolic network with m metabolites and n

reactions governed by law of mass action, the set of kinetic

parameters (k) that ensure a steady state behavior are defined by

S:diag Cð Þ:k~0 ð1Þ

Where S is the stoichiometric matrix, diag(.) represents a diagonal

matrix and C is a <m vector whose i-th entry is the product of the

reactant concentration at steady-state corresponding to the i-th

reaction, i.e.

Ci~Px
S{

i,jj j
i ð2Þ

Here S2
i,j denotes the stoichiometric coefficients of reactants in

the j-th reaction, in addition xi represents the known steady-

state concentration for the i-th metabolite participating as

reactant in the j-th reaction. In order to compare the results

obtained with the statistical approach presented in this paper

with the reported obtained from a detail kinetic model, we

have used the same metabolite concentration at the steady-

state as in previous reports [18], see Table S1 in supporting

information. Given that in general the number of reactions is

greater that the number of metabolites, the kinetic solution of

Equation 2 is determined by a myriad of points inside the null

space of the matrix

Q~S:diag Cð Þ ð3Þ

Solution space forms a cone in a multidimensional space that

integrate all the kinetic parameters potentially describing the

biochemical network [29].

Monte Carlo sampling of k-cone space
The identification of kinetic parameters integrating the k-cone

was accomplished by an Artificial Center Hit and Run

Algorithm (ACHR) [32,42]. Basically, this algorithm defines

an initial point along the null space of Q. Once defined this

point the algorithm calculate ‘‘warm-up’’ points from this initial

point by an iterative procedure. These warm-up points are

stored in a matrix W by which a centroid xc is calculated.

Finally the sample points are calculated by selecting one point

yn in the W matrix and moving in the direction vector given by

(xc - y). The new vector yn+1 is substitute by the previous point

yn in W. The centroid is recalculated and this process continues

iteratively until a desired number of sample points are reached.

ACHR was done using the COBRA tool box [43] selecting

19000 randomly distributed points with 1000 iterations between

each sampled point. For the purpose of ensuring that dynamical

behavior temporally converges to a steady-state, those kinetic

parameters producing at least one positive eigenvalue from the

Jacobian matrix were neglected. Overall, from the 19,000

sampled points in k-cone only 12586 were considered for all

the statistic analysis.

Dynamic analysis: Time Scales and Metabolic Pools
Linear perturbation theory considers the eigenvalues of the

Jacobian matrix (li) as the informative parameters to estimate how

fast a perturbed dynamical system reaches its equilibrium state

[33,44]. Thus, given a Jacobian matrix with rank m, one can deduce

m time scales, ti, calculated by ti = 21/li , i = 1..m. Thus,

hierarchical time scale library was reconstructed by consecutively

calculating the eigenvalue distribution for all matrices integrating

the Jacobian library. For each realization, we ranked the

eigenvalues, going from higher to lower magnitudes (faster to

slower time scales) and the corresponding time scale was

calculated. Average and standard deviation for the eigenvalues

and the time scales along the entire distribution were calculated.

On the other hand, in order to explore how the metabolite

relaxation occurs toward steady-state, a similarity transformation

was applied to Jacobian matrix J. This subtle transformation allows

to write the original systems of coupled differential equation into a

set of uncoupled differential equations whose new variables

identify groups of metabolites that coordinately moves at each

time scales, it means

_pp~Lp ð4Þ

With

L~M:J:M{1

p~M{1:x
ð5Þ

Where L is a diagonal matrix whose entries are the eigenvalues

of J, M21 is the modal matrix and p is a vector defining

the metabolic pools. Software implementation to obtain the time

scale and the modal matrix was accomplished using Mathematica

5.2.

Statistical analysis of modal matrices
Based on the Jacobian library and Equation 5, the modal library

was obtained by storing 12586 different modal matrices.

Consequently, a normalization procedure was implemented in

each modal matrix by dividing in each row by the higher

numerical absolute value. Having normalized, the average and the

dispersion of the distribution obtained for each entry Mi,j were

obtained through Equation 6

Mi,j~SMi,jT

Ni,j~
SD M2

i,j

h i
SM2

i,jT

ð6Þ

Where Mi,j and Ni,j are components of the average and the

dispersion modal matrix respectively. Brackets and SD[..] denotes

average and standard deviation over the modal library respectively.

Redundancy on modal library
In order to verify whether a kind of redundancy exist in modal

library, we classify all the i-th rows along each matrix in modal

library to construct a new sub-space called the i-th metabolic pool

library. This sub-space have special relevance due that contains

informative data referring to the degree of variation of metabolic

pools in modal library. Thus, in order to discover the redundant

participation of metabolites in metabolic pools, we proposed a

function proper to this aim. Lets denote by Ri,j
z as the j-th
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metabolite contributing to the i-th row at the z-th metabolic pool

library, see main text and Figure 1. Then, we defined a coefficient

of participation quantifying the contribution that j-th metabolite

have on the z-th metabolic pools as

gz
j ~

P12567

i~1

Rz
i,j

��� ���
P33

j~1

P12567

i~1

Rz
i,j

��� ���
� � ð7Þ

Where |..| denotes the absolute value and z = 1,2,..33. This

function essentially represents a normalized frequency of metab-

olite participation. The metabolites highlighted in Figure 5C are

such that its coefficient of participation in i-th metabolic pool library is

higher than 80% of the cases, gk
j.0.8.

Principal Component Analysis
With the aim to explore the degree of variability in modal library,

Principal component analysis, PCA [37], was applied over each

one of the 33 i-th metabolic pool libraries. As described in text, each

subset i-th metabolic pool library was constructed by gathering all the

modes identified at i-th time scale along the entire modal library.

Minimal set of principal components was selected as five, it was

justified considering that they were enough to reproduce between

72%–100% of the statistical variability presented along the 33

modal libraries, see Figure 6, right panel.

Supporting Information

Figure S1 Time scale distribution for Human Red Blood Cell

metabolism. Figure (A) shows the average time scales obtained

from the statistical analysis. The coefficient of variation associated

with each time scale is depicted in (B).

Found at: doi:10.1371/journal.pone.0004967.s001 (1.06 MB EPS)

Table S1 Metabolite concentrations. Metabolite concentrations

at the selected steady state condition. These data were estimated

from references [15] and [18].

Found at: doi:10.1371/journal.pone.0004967.s002 (0.21 MB

RTF)

Table S2 Biochemical Network for Red Blood Cell Metabolism.

Biochemical reactions included in the Red Blood Cell metabolic

network.

Found at: doi:10.1371/journal.pone.0004967.s003 (0.28 MB

RTF)

Table S3 Range of Kinetic parameters. Range of the kinetic

parameters obtained from k-cone space.

Found at: doi:10.1371/journal.pone.0004967.s004 (0.30 MB

RTF)
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