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Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has become a pandemic. The cellular receptor for SARS-CoV-2 entry is the angiotensin-
converting enzyme 2, a membrane-bound homolog of angiotensin-converting enzyme. Henceforth, this has brought the 
attention of the scientific community to study the interaction between COVID-19 and the renin–angiotensin system (RAS), 
as well as RAS inhibitors. However, these inhibitors are commonly used to treat hypertension, chronic kidney disorder, and 
diabetes. Obesity is a known risk factor for heart disease, diabetes, and hypertension, whereas diabetes and hypertension may 
be indirectly related to each other through the effects of obesity. Furthermore, people with hypertension, obesity, diabetes, 
and other related complications like cardiovascular and kidney diseases have a higher risk of severe COVID-19 infection 
than the general population and usually exhibit poor prognosis. This severity could be due to systemic inflammation and 
compromised immune response and RAS associated with these comorbid conditions. Therefore, there is an urgent need to 
develop evidence-based treatment methods that do not affect the severity of COVID-19 infection and effectively manage 
these chronic diseases in people with COVID-19.
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Introduction

In December 2019, a new coronavirus (2019-nCoV) caus-
ing severe acute respiratory syndrome (SARS-CoV-2) was 
reported in Wuhan, China, and the world has witnessed a 
subsequent outbreak of this disease, known as COVID-19 
(Coronavirus Disease 2019). By January 30, 2020, a transi-
tion of this localized outbreak led the World Health Organi-
zation (WHO) to declare it as public health emergency of 
national concern (PHEIC) and later as a pandemic by March 
11, 2020. As of August 5, 2020 [1], there have been over 

18,000,000 of total confirmed cases of infection and more 
than 700,000 deaths due to COVID-19 worldwide. Coun-
tries around the world are suffering from an unprecedented 
burden to health care and the overall economy. COVID-19 
manifestations range from asymptomatic to severe or critical 
type with the need for hospitalization or intensive care unit 
(ICU) [2, 3]. The common clinical features include fever 
and respiratory symptoms like cough, dyspnea [4, 5], and 
in severe cases, sepsis, multiple organ dysfunction including 
cardiac injury or kidney failure can develop [3, 6]. Clini-
cal data have suggested a correlation between the severity 
of COVID-19 infection outcome with advanced age and 
several comorbidities including hypertension, obesity, and 
diabetes [5, 7–9]. The severity of complications and a need 
for hospitalization are more when COVID-19 infection is 
associated with underlying comorbid complications [5, 7, 
9–11]. The prevalence of hypertension, obesity, and diabetes 
among hospitalized COVID-19 patients is much more than 
nonhospitalized COVID-19 patients [9, 12]. Hypertension, 
obesity, and diabetes are closely linked to each other, and 
these comorbidities are associated with an elevated risk of 
recurrent infection due to underlying impairments in the host 
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defense system [13]. As an efficient and integrated immune 
defense system is necessary for the body’s response to infec-
tion, a compromised immune response makes the host more 
vulnerable to infection and related severe complications.

This review is aimed at highlighting why conditions of 
hypertension, obesity, and diabetes increase the risk for 
infections, and more particularly how preexistence of these 
metabolic diseases in patients with COVID-19 causes severe 
manifestations and clinical outcomes. The available infor-
mation about this novel COVID-19 pandemic is based on 
limited clinical data and information from similar previous 
infections including H1N1 influenza, severe acute respira-
tory syndrome-coronavirus (SARS-CoV), and Middle East 
respiratory syndrome (MERS). Currently, there are no vac-
cines or reliable treatments available for the prevention or 
treatment for CoV-2 infection; therefore, it is important 
to understand its mechanism of infection and higher risk 
among individuals with obesity, diabetes, and hypertension 
to possibly reduce the morbidity and associated mortality.

Hypertension, obesity, and diabetes: 
coexistence of the triumvirate 
with an increased risk for respiratory 
infections

The rising prevalence and disease burden of obesity have 
received significant attention globally over the past three 
decades. Many epidemiological studies have suggested 
a high body mass index (BMI) as a risk factor for many 
chronic diseases, including diabetes, cardiovascular disease 
(CVD), chronic kidney disease, hypertension, and infections. 
Hypertension, obesity, and diabetes are interconnected with 
an elevated risk of renal complications and cardiovascular 
diseases, and the coexistence of these diseases increases the 
disease-associated mortality. Considering the multifactorial 
and complex nature of these conditions, including the com-
bination of environmental, genetic, behavioral, and lifestyle-
related factors, we are yet to clarify all driving forces linking 
this triumvirate [14].

Viral infections including H1N1 influenza, SARS-CoV 
(severe acute respiratory syndrome-coronavirus) and MERS-
CoV (middle eastern respiratory syndrome-coronavirus) 
cause respiratory infections, and the coexistence of vari-
ous comorbidities like hypertension, obesity, and diabetes 
has been linked with severe illness among these patients. 
SARS-CoV and MERS-CoV were first reported in 2002 
and 2012, respectively [15, 16]. Hyperglycemia and known 
history of diabetes were reported as an independent predic-
tor of mortality and morbidity among SARS patients [17]. 
Similarly, systemic analysis of MERS-CoV infection cases 

showed that diabetes and hypertension were equally preva-
lent in 50% of patients and obesity was prevalent in 16% of 
the patients. Additionally, these underlying comorbidities 
were found to be associated with severe illness and mortality 
in MERS-CoV patients [18]. In 2008–09, H1N1 influenza 
A virus transmitted from swine to human, later developing 
into a human to human transmission, caused a pandemic 
and is currently the predominant strain for seasonal human 
influenza [19]. During the influenza viral infection, the 
presence of obesity and related comorbidities showed an 
increased incidence of morbidity and mortality [20, 21]. A 
systematic review and meta-analysis study showed the asso-
ciation between obesity with a higher risk of ICU admission 
and mortality among H1N1-infected patients [22]. Taken 
together, these data suggest that people with obesity are 
more susceptible to increased risk of influenza-related hos-
pitalization, morbidity, and mortality.

Limited availability of clinical data about the outcomes 
of H1N1 infection in diabetes patients makes it nonconclu-
sive [23–25]. A study conducted with non-Hispanic Black 
and White US adults, to assess the impact of diabetes in 
influenza-related mortality, found that irrespective of race, 
sex, or socioeconomic status, people with diabetes are 
more likely to have higher medical consultation, morbidity, 
mortality, and hospitalization compared to the nondiabetic 
subjects [26]. However, the worse outcomes among diabe-
tes patients with H1N1 infection could be a consequence 
of related underlying comorbidities including obesity and 
cardiovascular diseases but not diabetes itself alone [27].

In hypertension, the increased sympathetic nervous sys-
tem (SNS) activity and decreased parasympathetic nervous 
system (PNS) increase the blood pressure and promote acti-
vation of innate immunity via Toll-like receptors (TLRs), 
which can induce oxidative stress and inflammation. These 
events promote disease progression and lead to organ dam-
age [28]. Obesity is associated with low-grade systemic 
inflammation which leads to elevated circulatory pro-
inflammatory cytokines [29]. Excessive overload of nutri-
ents induces oxidative stress, increases infiltration of mac-
rophages, and further leads to activation of inflammatory 
processes [30–32]. Moreover, in diabetes condition, immune 
response to infection is compromised [33]. Impaired gly-
cemic control is also associated with alteration in various 
immune mechanisms against viral infections [34]. Therefore, 
the compromised host immune defense makes them vulner-
able to infection. The increased incidence of morbidity and 
mortality with respiratory infections in the presence of 
obesity and related comorbidities suggests possible similar 
risks of severe outcomes for individuals with these underly-
ing conditions during the current global pandemic with the 
novel SARS-CoV-2 virus.
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SARS‑CoV‑2 infection and COVID‑19

SARS-CoV-2 and SARS-CoV both belong to subgenus 
Sarbecovirus, genus Betacoronavirus, and family Corona-
viridae [35]. The SARS-CoV was reported for the first time 
over 17 years ago in Guangdong Province, China [36], which 
was also responsible for causing a new disease called Severe 
Acute respiratory syndrome (SARS). SARS-CoV infected 
8098 individuals and caused 774 deaths in 29 countries [37]. 
Similarly, A novel coronavirus (SARS-CoV-2) has emerged 
with effective human-to-human transmission and leading to 
pneumonia-like outbreak first reported in December 2019 in 
Wuhan, China [38, 39]. Both viruses can lead to life-threaten-
ing respiratory illnesses in humans.

Genomic characterization revealed around 80 percent simi-
larity between SARS-CoV-2 and SARS-CoV [40]. Moreover, 
protein sequence analysis showed that both viruses share the 
same seven conserved nonstructural domains suggesting a 
relationship between these two coronaviruses [40]. The entry 
of coronavirus in the cell is complex. The first step in the entry 
process, the virus-cell fusion, requires receptor binding and 
proteolysis of the receptor-binding domain (RBD). Structural 
proteins of CoV are classified into four categories of proteins, 
which include nucleocapsid (N), envelope (E), membrane (M), 
and spike (S) proteins [41]. Ectodomain segment of spike con-
sists of a receptor-binding subunit S1 and membrane-binding 
subunit S2, which together are needed for virus entry to allow 
viral genome to enter the cell [42–44]. Membrane fusion and 
binding of receptors are crucial steps for coronavirus infection. 
Biochemical [45, 46] and structural studies [47–49] showed 
that the RBD of SARS-CoV-2 interacts with ACE2 for cellular 
entry, similar to SARS-CoV [50, 51]. The binding affinity of 
S protein of virus and ACE2 appeared to be a major deter-
minant for virus replication rate and severity of the disease 
[42, 46, 52]. However, RBD of SARS-CoV-2 is less exposed 
and has a higher affinity for its human ACE2 (hACE2) recep-
tor compared to the RBD of SARS-CoV, suggesting efficient 
immune surveillance evasion and cellular entry, respectively 
[53]. Additionally, Priming of S protein and proteolytic cleav-
age of a spike by TMPRSS2, a Serine protease, and Furin, a 
proprotein convertase are required for the membrane fusion 
and subsequent viral entry via the endosomal pathway [42, 
43]. After entry, the virus multiplies, and mature virions are 
transported to the cell surface and released via exocytosis 
(Fig. 1).

COVID‑19 and comorbidities

Due to the lack of a well-designed cohort study for COVID-
19 in patients with various comorbidities like hyperten-
sion, obesity, and diabetes, it is not clear whether these 

comorbidities are risk factors for SARS-CoV-2 infections. 
However, currently available data indicate an association of 
these comorbidities with severe outcomes in patients with 
COVID-19 (See Table 1 for studies that show the effect 
of comorbidities like hypertension, obesity, and DM with 
SARS-CoV-2 infection).

Hypertension

Prevalence of hypertension in COVID-19 seems higher in 
patients with high severity, which includes the use of pri-
mary composite endpoint (i.e., intensive care unit, use of 
mechanical ventilation), ARDS, or death. Recently, Guan 
et al. [11] reported that 23.7% of subjects with hyperten-
sion as one of the coexisting illnesses had a more severe 
course of COVID-19 disease compared with 13.4% subjects, 
who had a nonsevere disease. Similarly, another study from 
China [10] showed that nearly 58% of COVID-19 patients 
who required intensive care had hypertension, whereas only 
21.6% of total COVID-19 patients who did not require the 
use of ICU had hypertension. Two other studies [4, 54] also 
reported that 48% of COVID-19 patients who died had an 
underlying condition of hypertension. However, it is impor-
tant to note that these associations did not account for age 
in the analysis and may be confounded by the higher inci-
dence of hypertension in older people. As people age, they 
exhibit severity of disease including a high risk of acute 
respiratory distress syndrome (ARDS) and a high mortality 
rate compared to younger people [10, 54–57]. Hyperten-
sion may also present with other cardiovascular risk fac-
tors such as diabetes, hypertension-mediated heart damage, 
and other cardiovascular-related complications. These risk 
factors show an increasing prevalence with age [58]. This 
indicates that this association is possibly confounded by age 
and other comorbidities [59].

Control of blood pressure in patients with hypertension 
has been considered as one of the important concerns to 
lessen the disease burden regardless of its effect on SARS-
CoV-2 infection [60]. Besides, in COVID-19 patients with 
coexisting hypertension, high blood pressure was indepen-
dently associated with hospitalization, mortality, and heart 
failure [61]. The mechanistic relationship between hyperten-
sion and COVID-19 may be explained by the use of ACE2 
(angiotensin converting enzyme 2) as a receptor for SARS-
CoV-2 entry [42, 46]. ACE2 is an important element of the 
RAS (renin–angiotensin system), which regulates vasodila-
tion and vasoconstriction and thereby plays an essential role 
in the pathogenesis of hypertension [62]. In severe forms of 
hypertension, blood angiotensin II levels are high and signif-
icantly correlated with diastolic blood pressure [63]. Angio-
tensin II is an essential mediator of tissue inflammation by 
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increasing vascular permeability, recruiting inflammatory 
cells, and oxidative stress [64, 65]. Angiotensin II has been 
shown to induce lung edemas, impaired lung function, and 
lung inflammation in pneumonia [66]. Moreover, the SARS 
spike protein binding to ACE2 showed elevated angiotensin 
II levels along with severe acid-induced pneumonia. This 
pathology was rescued by an angiotensin II type 1 recep-
tor antagonist, losartan, suggesting the inflammatory role 
of angiotensin II [67]. ACE2 is a negative regulator of RAS 
that inactivates angiotensin II. Coronavirus infection causes 
downregulation of ACE2 [68], and probably, in the case of 
SARS-CoV-2, that may cause elevation of angiotensin II 
and tissue inflammation. Several reports suggested elevated 
levels of angiotensin II in COVID -19 patients with high 
disease severity [69, 70]. Altogether, these indicate that 
hypertensive individuals are more vulnerable to COVID-19 
disease severity.

In early phase of COVID-19 pandemic, it was suggested 
that the use of RAS inhibitors (i.e., ACE inhibitors (ACEIs) 
and angiotensin II receptor blockers (ARBs)) may be det-
rimental to COVID-19 patients [71] as some experimental 

studies suggested a compensatory increase in ACE2 upon 
the use of above-mentioned inhibitors [72–74]. A compre-
hensive review [75] on assessing the risk of RAS inhibitors 
in COVID-19 suggested inconsistency in the effect of ARB 
and ACEI on ACE2 expression in animals. However, human 
studies suggest no significant effect on ACE2 by RAS inhibi-
tors. A study from NYU Langone system reported no sig-
nificant increase in the propensity of detecting positive for 
SARS-CoV-2 infection or in the risk of severe infection cor-
related with various antihypertensive medications including 
ACEI and, ARB [76]. A retrospective cohort study from 
Denmark reported that prior use of ACEI or ARBs is nei-
ther associated with COVID-19 diagnosis nor with mortality 
or disease severity among patients with hypertension [77]. 
Another large population-based study from Italy suggested 
no association for the use of antihypertensive medications 
with the risk of developing COVID-19 and related severe 
outcomes [78]. Hence, although there is an underlying con-
cern for the effect of RAS inhibitors on ACE2 and subse-
quent increase in susceptibility or severity of COVID-19 
infection, there is no justification for the preemptive change 

Fig. 1  Schematic diagram of SARS-CoV-2 infection cycle. S protein 
priming facilitates the binding of the virus with angiotensin convert-
ing enzyme—2 (ACE2) and thereby fusion of viral and cellular mem-
brane occurs. This, in turn, releases a viral genome inside the cell. 
The next step is translation of the viral replicase gene followed by 
RNA replication to produce genomic RNA and subgenomic RNAs. 

Subgenomic RNAs are then translated into proteins, and genomic 
RNA is packaged with N proteins and along with all other struc-
tural proteins (i.e., N, E, S, M). The assembly of the virus occurs in 
various steps by Endoplasmic Reticulum and Golgi network. Mature 
virion inside the vesicle then released from the cell
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in using these inhibitors in people who are at risk or having 
COVID-19 infection, unless clinically advised [79]. Many 
renowned societies including the European society of hyper-
tension, American society of hypertension, and American 
heart association are in agreement with this position [59, 

79, 80]. Though theoretically high expression of ACE2 
may suggest high chances of infection, it is also important 
to note that viral entry requires proteolytic degradation by 
TMPRSS2 [42]. Hence, increased ACE2 expression may 
affect the tissues that coexpress both ACE2 and TMPRSS2. 

Table 1  List of studies that show the effect of comorbidities like hypertension, diabetes, and obesity with SARS-CoV-2 infection

ICU, intensive care unit, ARDS, acute respiratory distress syndrome, NR, not reported
# N value is not reported
$ p value for risk of hospitalization

Study Details
[Authors, Country]

Comorbidities *p values

Hypertension (HT)
n/N (%)

Diabetes 
(Db)
n/N (%)

Obesity 
(Ob)
n/N (%)

[Use of ICU or Disease Severity or Survival—n/N (%)]*

Chen et al. [4]
China

93/274 (34%)
[Survivor—39/161 (24%)
Non-Survivor -54/113 (48%)]

47/274 (17%)
[Survivor—24/161 (21%)
Non-Survivor—23/113 (14%)]

NR NR

Huang et al. [5] China 6/41 (15%)
[ICU—2/6 (33.3%)
Non-ICU—4/6 (0.67%)]

8/41 (20%)
[ICU—1/8 (0.13%)
Non-ICU—7 /8 (0.88%)]

NR HT—p = 0.93
Db—p = 0.16

Richardson et al. [8]
USA

3026 (56.6%)# 1808 (33.8%)# 1737/4170 (41.7%) NR

Petrilli et al. [9]
USA

2256/5279 (42.7%)
[Not Hospitalized—557/2538 

(21.9%)
Hospitalized—1699/2741 (62%)]

1195/5279 (22.6%)
[Not Hospitalized—245/2538 

(9.7%)
Hospitalized—950/2741 (34.7%)]

1865/5279 (35.3%)
[Not Hospital-

ized—781/2538 
(30.7%)

Hospital-
ized—1084/2741 
(39.5%)]

HT, Db, Ob—p < 0.001$

Wang et al. [10]
China

43/138 (31.2%)
[ICU—21/36 (58.3%)
Non-ICU—22/102 (21.6%)]

14/138 (10.1%)
[ICU—8/36 (22.2%)
Non-ICU—6/102 (5.9%)]

NR HT—p < 0.001
Db—p = 0.009

Guan et al. [11]
China

165/1099 (15%)
[Severe—41/173 (23.7%)
Non-severe—124/926 (13.4%)]

81/1099 (7.4%)
[Severe—28/173 (16.2%)
Non-severe—53/926 (5.7%)]

NR NR

Grassilli et al. [12]
Italy

509/1043 (49%)
[Died—195/309 (63%)
Discharged—84/212 (40%)]

180/1591 (17%) NR HT—p < 0.001

Zhou et al. [54]
China

58/191 (30%)
[Survivor—32/137 (23%)
Non-survivor—26/54 (48%)]

36/191 (19%)
[Survivor—19/137 (14%)
Non-survivor—17/54 (31%)]

NR HT—p = 0.0008
Db—p = 0.0051

Wu et al. [55]
China

39/201 (19.4%)
[ARDS—23/84 (27.4%)
No ARDS—16/117 (13.7%)]

22/201 (10.9%)
[ARDS—16/84 (19%)
No ARDS—6/116 (0.05%)]

NR HT—p = 0.02
Db—p = 0.002

Zhang et al. [56]
China

42/140(30%)
[Severe—22/58 (37.9%)
Non-severe—20/82 (27.4%)]

17/140 (12.1%)
[Severe—8/58 (13.8%)
Non-severe—9/82 (11%)]

NR HT—p = 0.85
Db—p = 0.615

McMicheal et al. [57]
USA

74/167 (44.3%) 38/167 (22.8%) 37/167 (22.2%) NR

Shi et al. [101]
China

127/416 (31%)
[With cardiac injury—49/82 

(59.8%)
Without cardiac injury—78/334 

(23.4%)]

60/416 (14.4%)
[With cardiac injury—20/82 

(24.4%)
Without cardiac injury—40/334 

(12%)]

NR HT—p < 0.001
Db—p = 0.008

Bean et al. [102]
UK

150/205 (51.2%) 62/205 (30.2%) NR NR
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However, it is unknown whether only elevated ACE2 expres-
sion affects viral infection. Although all observational stud-
ies provide important assurance about the safety of RAS 
inhibitors during the COVID-19 pandemic, their confirma-
tion in randomized controlled trials will provide a greater 
degree of assurance to patients and doctors.

Obesity

Several reports are suggesting an association between obe-
sity and the severity of COVID-19 infection and mortality. 
Clinical data for COVID-19 infection from China found a 
86% and 142% higher association for overweight and obe-
sity, respectively, with high severity of infection compared 
to normal-weight individuals when adjusted for multiple 
potential confounders [81]. Another study from China 
showed increased odds of severe SARS-CoV-2 infection in 
obese patients [82]. A study from USA showed obesity as 
the second comorbidity (41.7%) after hypertension (56.6%) 
among hospitalized patients following COVID-19 infection 
[8]. Similarly, obesity was also the significant independ-
ent predictor of hospitalization, after old age, among over 
5000 patients with COVID-19 infection in New York City 
[9]. Furthermore, a small study from France reported data 
from 124 patients with COVID-19, suggesting an associa-
tion of the need for invasive mechanical ventilation with a 
BMI ≥ 35 kg/m2, independent of other comorbidities [83].

Certain underlying parameters may mediate this high 
risk, including various pathophysiological characteristics of 
obesity like impaired respiratory functions, declined respira-
tory muscle strength, and low lung capacity [84]. Transcrip-
tomics data from the studies of mice with diet induced obe-
sity indicate ACE2 upregulation in the lungs of obese mice 
compared to lean mice [85], which may promote CoV-2 
infection. Besides, adipose tissue in obese individuals may 
act as a reservoir for more extensive viral replication due to 
ACE2 expression. The higher amount of adipose tissue may 
lead to increased viral shedding and immune activation and 
subsequent severe complications [86]. Liraglutide, which is 
used to treat obesity [87], has also been shown to upregu-
late ACE2 expression in diabetic rats [88]. It remains to be 
determined whether using liraglutide as treatment during 
COVID-19 infection may be a concern. Moreover, obesity 
is also associated with a high risk for complications, devel-
opment of ARDS, and need for hospitalization with the use 
of primary composite endpoint [89, 90]. During obesity, 
angiotensin II and angiotensinogen are elevated [91, 92]. 
RAS activation and angiotensin II production are involved 
in obesity-associated inflammation [93, 94]. Higher expres-
sion of angiotensin II leads to inflammation and fibrosis in 
the lung, thereby enhancing lung injury and ARDS [95, 96]. 

Hence, obesity-associated inflammation and ARDS may 
even worsen COVID-19 disease severity.

On the contrary, research on how obesity can affect 
outcomes of critical illness is still controversial and some 
reports suggest an inverse relationship between obesity and 
mortality [97]. This is known as the obesity survival para-
dox. Additionally, mortality rates are less in obese patients 
with pneumonia [98]. This protection could be due to obe-
sity-mediated low-grade inflammatory processes creating 
protective environment to limit a detrimental effect of sec-
ond hit (e.g., infection), more aggressive medication, and 
some other unidentified factors [98, 99]. However, obesity 
is found to be associated with increased disease severity 
in COVID-19 patients. It is possible that limited available 
resources during this pandemic may limit early admission 
of these patients to intensive care for monitoring purposes 
[100]. Hence, healthcare personnel should consider taking 
preventive measure and extra care to avoid disease severity 
in obese individuals.

Diabetes

Diabetes, hypertension, obesity, and age are associated with 
a higher risk of morbidity and mortality among COVID-19 
patients [5, 8–10, 38, 54–57, 83, 101, 102]. Diabetes was 
also considered as a major predictor of the severity of dis-
ease during the MERS-CoV [18]. Patients with SARS also 
showed a strong association with DM and blood glucose lev-
els [103]. Likewise, blood glucose is represented as a predic-
tor of severe outcomes and death in patients with COVID-19 
[104]. Recently, a retrospective study from the USA with 
451 patients of COVID-19 with diabetes and/or hypergly-
cemia reported that uncontrolled hyperglycemia is associ-
ated with longer hospital stay and higher mortality compared 
to people without diabetes or uncontrolled hyperglycemia 
[105]. Similarly, Zhu and colleagues [106] suggested that 
diabetes increased the requirement of medical interven-
tions and mortality risk for COVID-19 infected patients. A 
meta-analysis reported higher mortality risk and higher risk 
of ICU admission in COVID-19-diagnosed patients with 
diabetes [107]. On the contrary, well-controlled diabetes 
is linked with improvement in outcomes for patients with 
COVID-19 [106]. Previously, hyperglycemia was considered 
to be the link for the association between diabetes and viral 
infections, which influences viral growth and inflammation, 
thereby exacerbating mortality and morbidity in patients 
[108]. Severe infections may cause difficulty in manag-
ing blood glucose levels. However, the causal relationship 
between control of glucose level and disease severity is yet 
to be established.
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There could be different mechanisms, which may favor 
COVID-19 infection in a patient with diabetes. The virus 
enters the cell via the ACE2 receptor, which is an important 
element of the system involved in blood pressure manage-
ment and inflammation [42]. Various diabetic animal models 
have demonstrated an increased expression level of ACE2 in 
the pancreas, kidney, liver, and serum [109, 110]. Recently, a 
phenome-based mendelian randomization study on diabetes 
indicated that enhanced ACE2 expression in lungs may be 
causally linked with diseases or traits [111]. Insulin adminis-
tration in nonobese diabetic (NOD) mice downregulates ACE2 
expression in lungs [109], whereas pharmacological drugs for 
glycemic control like glucagon-like-peptide-1 (GLP-1) agonist 
(e.g., liraglutide), and Pioglitazone, upregulate ACE2 expres-
sion in lungs of STZ-induced diabetic rats and in insulin-sen-
sitive tissues of high-fat diet-fed rats, respectively [88, 112]. 
In addition, elevated circulating furin, which is required for 
proteolytic cleavage of viral spike protein for cellular entry of 
COVID-19 [113], has been observed in patients with diabetes 
[114]. Delay in SARS-CoV-2 clearance was also reported in 
patients with diabetes [115]. A recent observational study with 
COVID-19 patients with diabetes suggests insulin infusion as 
an effective method to improve glycemic control and reduce 
disease severity [116]. Moreover, some metabolic complica-
tions of preexisting diabetes including ketoacidosis have been 
observed with COVID-19 patients [117–119]. Collectively, 
these studies support the hypothesis that patients with dia-
betes are at a higher risk of COVID-19 infection and severe 
outcomes.

Many leading diabetes researchers suggest a bidirectional 
relationship between COVID-19 and diabetes [120]. The 
ACE2 is expressed in key metabolic organs (i.e., muscle, liver, 
pancreas, and adipose tissue), which plays an important role in 
glucose homeostasis [121]. In vitro and humanized mice study 
suggests that human liver and pancreatic islets are highly per-
missive for SARS-CoV2 infection [122]. SARS-CoV infection 
damaged various metabolic organs including the endocrine 
part of pancreas and leads to acute insulin-dependent diabetes 
[123]. Similarly, few reports also indicate pancreatic injury in 
patients with COVID-19 [124–126]. However, careful inves-
tigation is needed to determine impairment of endocrine func-
tion of pancreas in COVID patients. Moreover, in COVID-19, 
elevated levels of inflammatory cytokines known as cytokine 
storm have been linked in multiorgan failure with severe dis-
ease condition [127]. Hence, it is possible that COVID-19 may 
cause impairment of insulin secretory function by damaging 
pancreas or by inflammation-induced acute insulin resistance 
to trigger pleiotropic effects that impairs glucose metabolism 
and exacerbate preexisting diabetes or may even cause tran-
sient diabetes.

COVID‑19 and other associated 
complications related to triumvirate

Several reports indicated the threat of COVID-19 for 
patients with cardiovascular disease (CVD) and renal 
complications [128, 129] that are also associated with 
this triumvirate. Obesity is closely associated with CVD 
with a high propensity of mortality and morbidity [130]. 
Similarly, high blood pressure is one of the most critical 
risk factors for developing cardiovascular complications 
[131, 132]. Data of clinical studies indicate that outcomes 
of COVID-19 in CVD patients are linked with disease 
severity, and a high prevalence of preexisting CVD has 
been associated with mortality in COVID-19 patients 
[7, 133–138]. Also, several reports showed the develop-
ment of cardiovascular disorders in COVID-19 patients 
[139–141]. These data suggest a bidirectional relation-
ship between COVID-19 and cardiovascular diseases. 
There are two possible explanations for this relationship. 
First, induction of “cytokine storm” and elevated systemic 
inflammation in COVID-19 may accelerate the cardiovas-
cular system’s complications. A significant linear corre-
lation between high troponin (a marker for myocardium 
injury) levels and C-reactive protein (an inflammatory 
marker) has been observed in COVID-19 patients [141], 
suggesting an association between inflammation and injury 
of the myocardium. Second, ACE2, a receptor for SARS-
CoV-2, is a part of RAS that is involved in the mainte-
nance of blood pressure. In COVID-19, elevated levels of 
angiotensin II have been observed [69, 70]. High levels 
of angiotensin II can elevate blood pressure and damage 
the myocardium by inducing acute ischemia, ventricular 
hypertrophy, oxidative stress, and proinflammatory cas-
cade [142, 143] that may worsen cardiovascular complica-
tions in COVID-19 patients.

Patients with diabetes are vulnerable to infection due to 
impaired immune function [144]. It is estimated that 30–40% 
of diabetes patients develop kidney infections. Also, diabe-
tes kidney disease is associated with disease severity and 
mortality in diabetic patients [145]. Reports suggest that 
COVID-19 patients have a high incidence of kidney dys-
function (high levels of blood urea nitrogen (BUN), serum 
creatine, D-dimer), and acute kidney injury (AKI) [128, 
146–148]. Also, AKI is associated with severe outcome 
and mortality in COVID-19 patients [147–150]. Kidney 
expresses ACE2 [151], and SARS-CoV-2 was detected in 
patients’ urine and kidney samples [128]. Moreover, viral 
structure and protein and RNA of the SARS-CoV-2 are 
found in kidney of COVID-19 patients [152, 153]. This 
suggests that SARS-CoV-2 can directly damage the kid-
ney. However, mechanism of kidney disease in COVID-19 
patient requires further investigation.
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Conclusion and future directions

The current COVID-19 pandemic imposes an alarming 
condition in the world in an unprecedented way. Chronic 
preexisting metabolic conditions during viral infection 
increase disease severity and mortality. The altered meta-
bolic environment and impaired immune system reinforced 
by hypertension, obesity, and diabetes may exacerbate the 
severity of the disease among infected patients. However, 
the current understanding of the connection between 
the triumvirate—hypertension, obesity, and diabetes—
and related cardiovascular and renal complications with 
COVID-19 is evolving. Various studies have highlighted 
the role of ACE2 receptor expression and systemic inflam-
mation in promoting SARS-CoV-2 infection and disease 
severity. Although several pharmacological interventions 
for these chronic metabolic disorders also seem to affect 
ACE2 expression (Fig. 2), it is not clear whether they have 
any role on the disease severity. Therefore, while research 
and rapid efforts are being made to develop treatments or 
vaccines for COVID-19, it is important to identify and 
investigate alternative clinical treatments that effectively 
manage the preexisting metabolic perturbations during the 
COVID-19 pandemic and reduce disease severity.
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