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Background: Autophagy plays a vital role in cancer development. However, the
prognostic value of autophagy-related genes (ARGs) in low-grade gliomas (LGG) is
unclear. This research aimed to investigate whether ARGs correlated with overall
survival (OS) in LGG patients.

Methods: RNA-sequencing data were obtained from The Cancer Genome Atlas (TCGA)
TARGET GTEx database. Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes enrichment analysis of ARGs were performed by the “clusterprofile” R
package. Cox regression with the wald χ2 test was employed to identify prognostic
significant ARGs. Next, the receiver operator characteristic curves were established to
evaluate the feasibility of risk score (riskscore � h0(t)exp(∑n

j�1Coefj × Xj)) and other clinical
risk factors to predict prognosis. A nomogram was constructed. Correlations between
clinical features and ARGs were further verified by a t-test or Kruskal–Wallis test. In
addition, the correlations between autophagy and immune cells were assessed through
the single-sample gene set enrichment analysis (ssGSEA) and tumor immune estimation
resource database. Last, the prediction model was verified by LGG data downloaded from
the Chinese Glioma Genome Atlas (CGGA) database.

Results: Overall, 35 DE-ARGs were identified. Functional enrichment analysis showed
that these genes were mainly related to oxidative stress and regulation of autophagy. Nine
ARGs (BAX, BIRC5, CFLAR, DIRAS3, GRID2, MAPK9, MYC, PTK6, and TP53) were
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significantly associated with OS. Age (Hazard ratio (HR) = 1.063, 95% CI: 1.046–1.080),
grade (HR = 3.412, 95% CI: 2.164–5.379), histological type (HR = 0.556, 95% CI:
0.346–0.893), and risk score (HR = 1.135, 95% CI: 1.104–1.167) were independent
prognostic risk factors (all p < 0.05). In addition, BIRC5, CFLAR, DIRAS3, TP53, and risk
scores were found to correlate significantly with age and tumor grade (all p < 0.05).
Immune cell enrichment analysis demonstrated that the types of immune cells and their
expression levels in the high-risk groupwere significantly different from those in the low-risk
group (all p < 0.05). A prognostic nomogram was constructed to predict 1-, 3-, and 5-year
survival, and the prognostic value of sorted ARGs were verified in the CGGA database and
clinical samples.

Conclusion: Our findings suggest that the 9 DE-ARGs’ risk score model could serve as
diagnostic and prognostic biomarkers. The prognostic nomograms could be useful for
individualized survival prediction and improved treatment strategies.

Keywords: autophagy, low-grade gliomas (LGG), prognosis, bioinformatics analysis, TCGA TARGET GTEx, HADb

INTRODUCTION

Based on the 2016 World Health Organization (WHO)
Classification of Tumors of the Central Nervous System
(2016 CNS WHO), low-grade gliomas (LGG) are a diverse
group of primary brain tumors, which include
oligodendrogliomas and astrocytomas and are traditionally
defined as histological grade 1,2. Also, molecular parameters
are used to establish the diagnosis of brain tumors, such as 1p/
19q gene deletion and IDH status (Louis et al., 2016).
Considering the overlap in clinical and genetic characteristics
between IDH wild-type tumors and glioblastoma, the absence of
IDH wild-type tumors should be considered low grade (Yan
et al., 2009; Eckel-Passow et al., 2015). Researchers estimated
that the annual incidence of LGG is approximately 0.7 per
100,000, and that number is still rising now (Rasmussen et al.,
2017). It is more likely to occur in healthy people. The main
symptom of 80% of LGG patients is a seizure, accompanied by
symptoms of focal neurological dysfunction or increased
intracranial pressure (Rasmussen et al., 2017). Though
patients can benefit from surgical treatment, nearly half of
the patients die of recurrence or metastasis after surgery. In
recent years, great heterogeneity in prognosis has also been
observed (Darlix et al., 2017). Research on the molecular
characteristics of gliomas discovered many possible markers
including autophagy-related genes (ARGs) for glioma
classification, prognosis prediction, and treatment
recommendations (Xu et al., 2020; Chen et al., 2021).
Therefore, identifying innovative methods and biomarkers is
imperative for early detection and new treatment strategies.

Autophagy is a highly conserved cell catabolism process. It is
an important mechanism that involves the transport of denatured
and aging proteins and the removal of damaged organelles
(Ozinsky et al., 2000). Autophagy has recently been reported
to be highly associated with tumor incidence, inflammation,
therapeutic resistance, and cell death. The above processes are
all mediated by ARGs. Previous studies have identified more than

200 ARGs that are directly or indirectly involved in the process of
autophagy. At present, growing evidence shows a strong
association between autophagy and cancer pathogens. For
example, Kong J and Roesly HB et al. reported that autophagy
was associated with Barrett’s esophagus and gastroesophageal
reflux disease (GERD) (Roesly et al., 2012; Kong et al., 2016). Li C
et al. showed that TLR2 promoted the development and
progression of human glioma via enhancing autophagy (Li
et al., 2019). In addition, ARGs and proteins, including Beclin-
1 and p62, have also been studied in esophageal adenocarcinoma
(Akashi et al., 2017; Janser et al., 2018). Autophagy may impede
glioblastoma cell migration and invasion (Feng et al., 2019). For
instance, hyperactive PI3K due to either PTEN mutations or
GPR78 overexpression leads to ER stress-mediated cell-lethal
autophagy and Caspase3-related apoptosis (Louis et al., 2016;
Yi et al., 2020). Likewise, ROS-dependent ERK1/2 signaling leads
to glioma cells’ autophagic death via reduction ofMMP andGSH/
GSSG ratio (Pallichankandy et al., 2015). In addition, studies have
shown that some ARGs can be used as prognostic gene signatures
of cancer patients and are related to the survival of cancer patients
(Hou et al., 2020; Yang et al., 2020; Ren et al., 2021). However,
global expression patterns based on autophagy-related gene
signatures have not been previously constructed in LGG.

A better understanding of the link between autophagy and
LGG, and their relationships with survival in LGG patients, is
critical for future LGG diagnosis and therapy. In this study, we
aimed to investigate the ARGs’ expression profiles and their
values in the prognosis of LGG through bioinformatics
analysis. The prognostic value of the sorted ARGs was verified
in the Chinese Glioma Genome Atlas (CGGA) database.

METHODS

Patients’ Samples and Gene Extraction
The RNA-seq data of LGG tissue and normal brain tissue were
downloaded from the “TCGA TARGET GTEx” cohort of the UCSC
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Toil Recompute Compendium (Vivian et al., 2017) (https://
xenabrowser.net/datapages/?dataset=TcgaTargetGtex_gene_
expected_count). It is a compositive database containing a great
quantity of gene expression data derived from healthy people and
cancer patients. Transcript expression was quantified using RSEM,
and transcriptome alignment had been performed using STAR
(GRCh38), using transcripts present in the GENCODE
v23 genome annotation. At the transcription level, RSEM
expected counts, The Cancer Genome Atlas (TCGA) survival
data, and phenotypic data were obtained. (Erady et al., 2021).
RSEM expected counts provided by the UCSC Toil Recompute
Compendium were log2 (expected_count+1) transformed, and in
this analysis, this transformation was removed to produce raw
expected counts for us. (Erady et al., 2021). The expected count
matrix was used to sort differently expressed ARGs by
DESeq2 R package. Clinical data of LGG patients were
downloaded from TCGA database (https://portal.gdc.cancer.gov)
for prognostic analysis. The FPKM corrected RNA-seq data of
TCGA TARGET GTEx was downloaded from UCSC Xena
(https://xena.ucsc.edu/) to draw box plots and heatmap drawings.
The FPKM corrected RNA-seq data of the TCGA database was used
to perform Cox regression. All data processing was performed using
Perl software and R software. 232 ARGs were obtained fromHuman
Autophagy Database (HADb, http://www.autophagy.lu), which is a
public database providing comprehensive and abundant information
about ARGs from PubMed and other biological public databases
(Additional File 1: Supplementary Table S1). The expression level of
ARGs in the TCGA TARGET GTEx database and TCGA database
were extracted through their information in these databases.

Identification of Differentially Expressed
Autophagy-Related Genes
Differentially expressed autophagy-related genes (DE-ARGs)
were identified by the DESeq2 R package. The screening
criteria were as follows: false discovery rate (FDR) < 0.05, |
log2 fold change|≥1. To display these DE-ARGs, the heat map,
volcano plot, and box plot were drawn by R software.

Function Enrichment
Functional enrichment analyses of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
were analyzed on DE-ARGs by the clusterprofile R package. Top
results with the FDR < 0.05 were considered to be significant.

Univariate and Multivariate Cox
Proportional Hazard Regression
Univariate Cox proportional hazard regression analysis with the wald
χ2 test was used to evaluate the correlations between overall survival
(OS) of LGGpatients from theTCGAdatabase and sortedDE-ARGs.
To construct a multivariate Cox regression model, genes with a
p-value presented by the wald χ2 test less than 0.05 were applied.
Then, the multivariate Cox regression model was optimized by the
AIC value in a stepwise algorithm which worked in the “both”mode
of stepwise search. Next, these screened DE-ARGs were applied to
calculate risk scores based on their coefficient presented in the

multivariate Cox regression model. The risk score was calculated
by the following formula: risk score � h0(t)exp(∑n

j�1Coef j × Xj),
with Coefj representing the coefficient of each DE-ARG, Xj

representing the relative expression levels of each DE-ARG, and
h0(t) representing the baseline risk function (Tibshirani, 1997). Risk
score was applied to construct a prognosis prediction model with
other clinical factors by univariate and multivariate Cox regression
analysis. A risk score and agewere estimated as a continuous variables
with one unit change in the Cox regression model. Pathology grade,
histology type, and IDH1 mutation were involved in Cox regression
analysis as a binary variables.

Survival Analysis
Patients were divided into high-risk groups and low-risk groups
according to their risk scores. The OS of high-risk and low-risk
groups was compared by Kaplan–Meier analysis and log-rank test
with survival curve. Next, a risk plot, scatter plot, and prognostic
heat map were drawn according to the risk score of each patient.

Clinical Correlation Analysis
Clinical features including age, grade, histology type, and
IDH1 mutation were extracted from clinical data downloaded
from the TCGA database. The correlations between the
prognostic DE-ARGs or risk score and clinical features were
analyzed by the t-test or Kruskal–Wallis test. The distribution of
prognostic DE-ARGs between different categories in each clinical
feature was presented by a box plot.

Receiver Operator Characteristic Analysis
Time-dependent receiver operator characteristic (ROC) curve
was drawn to evaluate the sensitivity and specificity of survival
prediction of each independent risk factor in distinct years by the
survival ROC R package, which was designed for survival analysis
with censoring data. The area under the curve (AUC) values
range from 0.5 for models without any predictive ability to 1.0 for
models with perfect predictive ability.

Development and Validation of a
Nomogram
Independent prognostic factors sorted by Cox regression including
risk score and other clinical factors were applied to develop the
nomogram. It was validated by C-index and calibration curve to
figure out its calibration and discrimination. C-index was calculated
with a 100 bootstraps resample.

Immune Cells and Differentially Expressed
Autophagy-Related Genes
In order to explore the relationship between the infiltrating scores of
16 immune cells and the activities of 13 immune-related pathways, we
performed the single-sample gene set enrichment analysis (ssGSEA)
using the “GSVA” R package (Rooney et al., 2015). The annotated
gene set file was provided in Additional file 2: Supplementary Table
S2. Moreover, the relationship between immune cells and prognostic
genes was collected from the tumor immune estimation resource
(TIMER, https://cistrome.shiny apps. io/timer/).
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External Validation of Risk Score and
Nomogram
To validate the feasibility of the prognostic model and prognostic
prediction value of risk score, the RNA-seq data of LGG tissues with
their clinical data were downloaded from the CGGA database (http://
www.cgga.org.cn/). The risk score of LGG patients from the CGGA
databasewas calculated according to the formula constructed by LGG
samples’ RNA-seq data from the TCGA database and the expression
level of prognosis significant DE-ARGs of themselves. Next, patients
were divided into high-risk groups and low-risk groups according to
risk scores. Kaplan–Meier analysis with log-rank test was applied to
figure out the difference in OS rate between the two groups.
Univariate Cox regression and multivariate Cox regression were
performed to verify the prognosis value of risk score and other
available clinical features in the CGGA database. The nomogramwas
constructed with prognostic predictors including risk score and
validated by C-index and calibration curve.

Experimental Validation
To verify ARG expression levels in LGG and normal brain tissues,
we conducted the experimental validation in 15 LGG patients who
received surgical tumor resection at the Department of

Neurosurgery, Shanghai East Hospital. Ten normal brain tissues
were used as a control group. This study was approved by the
Internal Review Board of Shanghai East Hospital, Tongji University
School of Medicine.

Total RNA was isolated from LGG specimens and normal brain
tissues using RNAiso reagent (Takara, Dalian, China) and was
reverse-transcribed into first-strand cDNA with a PrimeScript®
RT Reagent kit. TB Green® Premix Ex Taq® II kit (Takara) was
used to detect the indicated RNA levels on the QuantStudio Real-
Time polymerase chain reaction (PCR) System (Applied Biosystem,
United States). ACTB was used as an internal control. The primers
were synthesized by GENEWIZ company, Suzhou, China. The
primers are listed in Additional file 3: Supplementary Table S3.

RESULTS

Differentially Expressed
Autophagy-Related Genes Between
Low-Grade Gliomas and Brain Tissues
In this work, we collected mRNA expression profiles and
clinical data with 1,148 normal and 520 LGG tissues from
the TCGA TARGET GTEx database. (The clinical data
including survival time of LGG patient was provided in
Additional file 4). Compared with the normal groups,
35 DE-ARGs were found in the LGG groups (Table 1).
Among these genes, 19 genes were down-regulated, and
16 genes were up-regulated in the tumor group compared
with the normal group. These DE-ARGs were displayed by a
heat map, volcano plot, and box plot in Figures 1A–C.

Function Enrichment Analysis
Biological process (BP), cellular component (CC), and molecular
function (MF) categories are important components of GO analysis.
Figure 2A showed the GO functional enrichment analysis. In the
aspect of BP, DE-ARGs were mostly enriched in the response to
oxidative stress and regulation of autophagy. In the aspect of CC, DE-
ARGs were mainly enriched in the autophagosome process. In the
MF, DE-ARGs were mostly enriched in ubiquitin-protein ligase
binding and ubiquitin-like protein ligase binding process. Besides,
KEGG analysis showed that DE-ARGs were mainly enriched in
autophagy (Figure 2B).

GO circle plot showed that these DE-ARGsweremainly enriched
in autophagy of mitochondrion. The circle plots of KEGG pathways
clearly showed that these genes were mainly involved in autophagy.
Many DE-ARGs exhibit other pathways related to autophagy, such
as mitophagy and apoptosis shown in the circle plots (Figures
2C,D). Corresponding heatmaps for GO and KEGG revealed that
DE-ARGs were enriched in the response to the oxidative stress
process and the development of some cancers (Figures 2E,F).

Prognosis-Related Differentially Expressed
Autophagy-Related Genes
Univariate regression analysis was used to eliminate genes that were
not associated with the prognosis of LGG. 12 ARGs were found to be

TABLE 1 | SD-ARGs expression levels in LGG and normal tissue.

Gene Base mean logFC lfcSE Stat p-Value FDR

FKBP1B 755.796 −2.728 0.054 −50.596 <0.001 <0.001
ATG9B 199.166 −2.565 0.060 −43.018 <0.001 <0.001
IFNG 1.502 −2.511 0.177 −14.207 <0.001 <0.001
TP53INP2 18,635.505 −2.477 0.076 −32.425 <0.001 <0.001
CAMKK2 7,862.672 −2.293 0.069 −33.441 <0.001 <0.001
DIRAS3 704.514 −2.023 0.109 −18.559 <0.001 <0.001
MAP1LC3A 2,544.961 −1.918 0.044 −43.260 <0.001 <0.001
ITPR1 3,175.201 −1.814 0.072 −25.201 <0.001 <0.001
DNAJB1 9,183.670 −1.572 0.082 −19.102 <0.001 <0.001
PPP1R15A 1996.842 −1.433 0.061 −23.651 <0.001 <0.001
ULK1 3,622.187 −1.347 0.041 −32.760 <0.001 <0.001
CFLAR 2,962.257 −1.239 0.042 −29.457 <0.001 <0.001
NKX2-3 0.433 −1.236 0.191 −6.479 <0.001 <0.001
ULK3 2,836.610 −1.202 0.041 −29.287 <0.001 <0.001
FAM215A 1.190 −1.157 0.122 −9.488 <0.001 <0.001
GABARAPL1 7,391.352 −1.126 0.041 −27.495 <0.001 <0.001
PTK6 40.775 −1.105 0.051 −21.670 <0.001 <0.001
MAPK9 3,558.256 −1.050 0.036 −29.462 <0.001 <0.001
NRG1 152.063 −1.003 0.077 −13.053 <0.001 <0.001
GRID2 501.808 1.004 0.062 16.117 <0.001 <0.001
MBTPS2 620.920 1.022 0.030 34.007 <0.001 <0.001
CCL2 480.185 1.038 0.111 9.358 <0.001 <0.001
BAX 735.789 1.075 0.031 34.999 <0.001 <0.001
DRAM1 226.342 1.098 0.050 22.007 <0.001 <0.001
MAP1LC3C 7.953 1.146 0.096 11.933 <0.001 <0.001
CCR2 7.752 1.300 0.105 12.410 <0.001 <0.001
RACK1 13,287.533 1.301 0.031 41.819 <0.001 <0.001
HIF1A 3,805.729 1.432 0.034 41.646 <0.001 <0.001
IL24 3.365 1.502 0.082 18.248 <0.001 <0.001
EIF4EBP1 298.147 2.048 0.054 37.765 <0.001 <0.001
TP53 720.593 2.445 0.048 51.168 <0.001 <0.001
CDKN2A 132.188 3.093 0.068 45.564 <0.001 <0.001
MYC 644.172 3.532 0.059 60.302 <0.001 <0.001
EGFR 7,014.602 3.910 0.066 59.331 <0.001 <0.001
BIRC5 137.762 4.146 0.079 52.220 <0.001 <0.001
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significantly associated with OS of LGG patients (shown in
Figure 3A). 9 ARGs (DIRAS3, CFLAR, BAX, TP53, GRID2,
BIRC5, MAPK9, PTK6, MYC) were selected (shown in Table 2
and Figure 3B) by multivariate Cox regression after model
optimizing by AIC value. Among these nine genes, DIRAS3,
CFLAR, TP53, and BIRC5 played risk roles in the survival of LGG
patients (HR > 1), while the other five genes (BAX, GRID2,MAPK9,
PTK6, and MYC) were potential protective factors for LGG patients
(HR < 1). The risk score of each patient was calculated according to
the expression level and coefficient of these prognosis significant
ARGs presented in the multivariate Cox regression model.
10 patients’ data in the TCGA database were waived because of
incomplete survival data or mismatch between RNA-seq data and
survival data. Next, themedian risk score value was applied as a cutoff
point for classifying the LGGpatients into a high-risk group (n= 255)
and a low-risk group (n = 253), respectively. The number of cases

differed between the two groups due to the lack of survival time of two
patients in the low-risk group. Patients in the high-risk group were
accompanied by lower OS than patients in the low-risk group
(median time = 4.34 vs. 11.19 years, p < 0.001, Figure 3C).

Performance of Risk Signature in
Low-Grade Gliomas From The Cancer
Genome Atlas
The risk score was calculated for each patient who suffered from
LGG. The patient whose risk score was higher than the median of
all the patients was defined as a high-risk group. On the contrary,
it was defined as a low-risk group. Patients with higher risk scores
were expected to demonstrate increased risks of death and poor
survival outcomes (Figures 4A,B). The risk heat map showed
PTK6, GRID2, MAPK9, and MYC were up-regulated in the low-

FIGURE 1 | Distributions of DE-ARGs. (A) heatmap of DE-ARGs. Green represented down-regulated genes and red represented up-regulated genes. (B) volcano
plot of SD-ARGs. Green dots represented 19 down-regulated genes; red dots represented 16 up-regulated genes. (C) box plot of DE-ARGs in normal brain tissues and
tumor brain tissues (all p < 0.05).
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risk group, andDIRAS3, CFLAR, BAX, TP53, and BIRC5were up-
regulated in the high-risk group (Figure 4C).

Independent Prognostic Prediction Factors
of Overall Survival
Univariate Cox andmultivariate Cox regressionwere used to analyze
the clinical features and the risk score for association with OS.

Variables with a p-value less than 0.05 in the wald χ2 test in Cox
regression were recognized as independent prognostic factors for OS
of LGG patients. The univariate Cox regression analysis showed that
age (HR = 1.063, 95% CI: 1.046–1.080), grade (G3 vs. G2, HR =
3.412, 95% CI: 2.164–5.379), histological type (Oligodendroglioma
vs. Astrocytoma, HR = 0.556, 95% CI: 0.346–0.893), and risk score
(HR = 1.135, 95%CI: 1.104–1.167) were significantly correlated with

FIGURE 2 | GO and KEGG enrichments of DE-ARGs (A,B) showed the GO and KEGG enrichment analysis respectively. The larger bubble and darker color
indicated themore significant enrichment process. (C,D) enrichment pathways in the GO and KEGG circle plots, respectively. The inner-circle indicated Z-score. The red
color represented the significant enrichment. The outer circle indicated the various pathways, in which the blue dots indicated down-regulated genes, and the red was
up-regulated genes. (E,F) heat maps of GO and KEGG enrichment, respectively. The red color represented the up-regulated genes, and purple represented the
down-regulated genes.
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OS (all p < 0.05) (Figure 5A). Multivariate Cox regression showed
that age (HR = 1.063, 95% CI: 1.043–1.083), grade (G3 vs. G2, HR =
2.107, 95% CI: 1.292–3.434), histological type (Oligodendroglioma
vs. Astrocytoma, HR = 0.529, 95% CI: 0.314–0.891), and risk score
(HR = 1.087, 95%CI: 1.051–1.125) were independent risk factors for
survival (all p < 0.05) (Figure 5B).

Clinical Correlation Analysis
The correlations between the prognosis-related ARGs and clinical
features were verified by the t-test or Kruskal–Wallis test based on
the number of categories of each clinical feature. Next, the results
showed that the expression level of GRID2 decreased with the
increased age and/or pathological grade. Also, a similar conclusion
can be drawn in the correlation analysis of PTK6, MAPK9, and

FIGURE 3 | Forest plots and Kaplan–Meier curve (A) forest plot of univariate Cox regression for 12 prognosis-related DE-ARGs; (B) forest plot of multivariate Cox
regression for 9 sorted prognosis-related DE-ARGs; (C) Kaplan–Meier curve for LGG patients’OS in the high-risk and low-risk groups when stratified by the autophagy-
related risk score (FDR correction had been used for differential genetic screening, and p-values in Cox regression were provided by the wald χ2 test, and no further FDR
correction is required.)

TABLE 2 | ARGs associated with prognosis.

Gene name Coefficient HR 95% CI P-value

DIRAS3 0.371 1.449 1.169-1.797 0.001
CFLAR 0.863 2.370 1.323-4.247 0.004
BAX −0.766 0.465 0.279-0.774 0.003
TP53 0.265 1.303 0.915-1.856 0.143
GRID2 −0.413 0.662 0.500-0.876 0.004
BIRC5 0.299 1.348 1.119-1.625 0.002
MAPK9 −0.715 0.489 0.272-0.879 0.017
PTK6 −0.532 0.588 0.349-0.990 0.046
MYC −0.215 0.806 0.642-1.013 0.065

Nine ARGs were related with OS and used to calculate the risk score to classify the tumor
patients into high and low risk groups. Risk score � h0(t)exp(∑n

j�1Coef j × Xj), h0(t) :
baseline risk function, exp.: ARGs expression level, n: quantity of significant DE-ARGs,
Coefj: coefficient of each DE-ARG, Xj: relative expression levels of each DE-ARG.
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MYC. On the contrary, the expression level of BAX, BIRC5,
CFLAR, DIRAS3, and TP53 showed upward trends with the
increase of age and/or pathological grade, which might indicate
their diverse roles compared with GRID2, PTK6, MAPK9, and
MYC in the development of LGG. Risk scores also increased with
the growth of age and ascending of pathological grade. The
expression level of BAX, MAPK9, and PTK6 was distinct in
different IDH1 mutation statuses. This information might be
helpful for the development of the targeted drugs. BAX, CFLAR,
DIRAS3, GRID2, MAPK9, MYC genes, and risk scores were
different in distinct pathological types, which revealed the clue
of the potential pathogenetic mechanism of each pathological type
respectively (all p < 0.05) (Figure 6A-AA, Table 3).

Development and Validation of Prediction
Model
In order to provide an approach to predicting the survival, we
constructed the 0.5-year, 1-year, 3-year, and 5-year ROC curves
using the independent risk factors associated with OS (age, grade,

histological type, and risk score), respectively. In addition, the
prediction feasibility of each independent risk factor was assessed
by the AUC. According to the ROC curve, the risk score showed a
better ability to predict the 1–5 years’ survival (1-year AUC= 0.872;
3-year AUC = 0.878; 5-year AUC = 0.811) than other indicators,
while the age showed better ability to predict the 0.5 year’s survival
(AUC = 0.791) (Figures 7A–D). Nomograms for OS prediction in
LGG patients were created with independent prognostic factors
including age, grade, histological type, and risk score. (Figure 8A).
The C-index of this nomogram is 8.373, which showed satisfactory
discrimination. In addition, the calibration curves for the
nomogram showed a favorable calibration ability of this
nomogram in both 1-, 3-, and 5-year. (Figures 8B–D).

Immune Cells Enrichment Analysis
To further explore the relationships between the risk scores and
immune cells and functions, we quantified the enrichment scores
of 16 immune cell subpopulations and their related functions
with the ssGSEA R package. The results showed that the types of
immune cells (such as B cells, CD8+ T cells, iDCs, macrophages,

FIGURE 4 | Risk score analyses of high and low-risk groups in tumor patients. (A) risk score scatters plot of high risk and low risk. Red dots represented the dead
patients and green represented the alive. With the increase in risk scores, more patients died. (B) dotted line indicates the individual inflection point of the risk score curve,
by which the patients were categorized into low-risk and high-risk groups. LGG patients were presented as red point (high-risk) and green point (low-risk). (C) risk score
heatmap of nine ARGs. The colors from green to red indicate the expression level of genes varies from low to high.
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neutrophils, NK cells, pDCs, T helper cells, Th1 cells, Th2 cells,
TIL, and Treg) in the high-risk group were significantly different
with those in the low-risk group (Figure 9A). Moreover, the
scores of all listed immune functions in Figure 9B were
significantly higher in a high-risk group, implying their
immunological functions associated with autophagy were more
active in the high-risk group.

To better understand the characteristics of immune cells and
their relations with ARGs, the TIMER database was used to
analyze the correlation between the abundance of immune cells
and the nine prognostic genes (BAX, BIRC5, CFLAR, DIRAS3,
GRID2, MAPK9, MYC, PTK6, and TP53). BAX, CFLAR, and
DIRAS3 were positively correlated with B cells, CD4 + T cells,
macrophages, neutrophils, and dendritic cells (Figures
10A,C,D), but PTK6 was negatively correlated with these
immune cells (Figure 10H). Likewise, BIRC5 and TP53 were
positively correlated with all immune cells (Figures 10B,I).
Positive correlations were found between GRID2, MYC
expression, and the infiltration of B cells (Figures 10E,G) and
negative correlations between MAPK9 expression and the
infiltration of B cells, CD4 + T cells, macrophages,
neutrophils, and dendritic cells (Figure 10F).

External Validation of Risk Score and
Nomogram
The RNA-seq transcriptome data and clinical information
from the CGGA database were verified to determine
whether the 9 DE-ARGs demonstrated similar prognostic

values in different populations. Results showed that the OS
rate was lower in the high-risk group (Figure 11A). Univariate
and multivariate Cox regression analysis showed that histology
type, age, and risk score were significantly correlated with the
OS of LGG patients, which were consistent with the result
drawn by data from the TCGA TARGET GTEx database
(Figures 11B,C). Nomogram constructed by risk score and
other clinical features was validated by C-index and calibration
curve (Figure 11D). The C-index was 7.388, and the
calibration curves were presented in Figures 11E–G.
According to the validation performed by data from the
CGGA database, the risk score calculated by our sorted
significant prognosis DE-ARGs can be recognized as an
independent prognosis prediction factor.

Experimental Validation
According to the screening and validation steps described above,
we selected the five most significant ARGs (BIRC5, CFLAR,
DIRAS3, TP53, MAPK9) from the 35 significantly different
genes, according to the p (<0.000001) and FDR values
(<0.000001), and ACTB was set as an internal reference. By
analysis, quantitative real-time PCR (qRT-PCR) results showed
the BIRC5, CFLAR, DIRAS3, and TP53 were up-regulated, and
MAPK9 was significantly down-regulated in LGG tissues (p <
0.001). The details of the five genes were visualized in Figure 12
A–E (Additional file 5 and 6).

DISCUSSION

Autophagy is one of the metabolic processes for eukaryotic cells
to maintain cellular homeostasis by eliminating damaged
organelles and proteins via autophagosomes (Mao et al., 2021).
Emerging evidence demonstrated that autophagy plays a crucial
role in the development of cancers (White et al., 2015; Amaravadi
et al., 2019; Li et al., 2020). At the early stage of tumor
progression, autophagy acts as a tumor suppressor, and in
advanced stages, autophagy promotes cancer survival (Kondo
et al., 2005). The effect of autophagy on cells is a “double-edged
sword” because if autophagy is maintained at a high level, it will
lead to autophagy death. We performed a bioinformatic analysis
using the available data on LGG focused on the differentially
expressed genes of the autophagy process. Then, functional
enrichment analysis was performed on DE-ARGs. It may help
explore the mechanism of origination of LGG with autophagy,
such as the signaling pathways activated during the development
of LGG or cell organelles involved in LGG development. Besides,
a nomogram was constructed to facilitate the verification and
employment in clinical practice.

In this study, we first identified 35 DE-ARGs based on the
TCGA TARGET GTEx database. Functional enrichment analysis
showed that these DE-ARGs were mainly enriched in GO and
KEGG pathways related to oxidative stress, regulation of
autophagy, and process utilizing autophagic mechanism,
providing strong evidence that autophagy plays a significant
role in the development of LGG. 9 ARGs, including DIRAS3,
CFLAR, BAX, TP53, GRID2, BIRC5, MAPK9, PTK6, and MYC,

FIGURE 5 | Forest plots of prognostic risk factors (A) univariate Cox
regression forest plot. (B) multivariate Cox regression forest plot of
independent risk factors.
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and significant correlations with the prognosis were found by
univariate and multivariate Cox regression analyses. BIRC5,
CFLAR, DIRAS3, and TP53 played a risk role in the survival
of LGG patients, which were verified in the risk score

heatmap. Researchers suggested that the high expression levels
of these four genes may be related to poor prognosis.

Several studies strongly supported the associations
between these DE-ARGs and cancers. BIRC5 (also named

FIGURE 6 | Correlations between ARGs and clinical features.

TABLE 3 | Clinical correlation analysis.

Gene Name Gender (p-value) Age (p-value) Grade (p-value) Histological Type
(p-value)

IDH1 Mutation
(p-value)

DIRAS3 1.876 (0.061) −3.873 (<0.001) −4.83 (<0.001) 73.647 (<0.001) 0.66 (0.510)
CFLAR 0.257 (0.798) −2.307 (0.022) −5.131 (<0.001) 13.416 (0.001) 0.885 (0.377)
BAX −0.12 (0.905) −2.576 (0.010) −6.106 (<0.001) 53.933 (<0.001) −2.481 (0.014)
TP53 0.795 (0.427) −1.951 (0.052) −4.586 (<0.001) 0.548 (0.760) −0.978 (0.329)
GRID2 0.698 (0.485) 6.542 (<0.001) 4.407 (<0.001) 13.685 (0.001) 1.464 (0.145)
BIRC5 0.718 (0.473) −2.534 (0.012) −9.517 (<0.001) 5.582 (0.061) 1.027 (0.305)
MAPK9 0.848 (0.397) 0.797 (0.426) 3.282 (0.001) 53.49 (<0.001) 2.348 (0.020)
PTK6 0.589 (0.556) 1.633 (0.103) 3.009 (0.003) 6.672 (0.036) −5.777 (<0.001)
MYC −1.012 (0.312) 5.487 (<0.001) 0.154 (0.878) 7.733 (0.021) −0.284 (0.777)
Risk score 1.103 (0.271) −5.936 (<0.001) −6.891 (<0.001) 40.573 (<0.001) 1.265 (0.207)
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survivin) is a well-known cancer therapeutic target. Shuhei
Suzuki et al. showed that survivin inhibitors could sensitize
glioma stem cells to osimertinib by reducing survivin
expression to prevent migration, proliferation, and
metastasis from gliomas (Suzuki et al., 2019). This research
indirectly proved that BIRC5 was a risk factor for LGG. BIRC5
interacts with Beclin1 to regulate the lipid kinase Vps-34
protein and promote the formation of Beclin1-Vps34-
Vps15 core complexes, thereby inducing autophagy. (Kang
et al., 2011). Many researchers in other directions also drew
consistent conclusions with us. CFLAR, encoded by the
CFLAR (Caspase 8 and FADD-like apoptosis regulator)
gene, is a regulator protein that induces apoptosis and is
structurally similar to caspase-8. Wang. J et al. reported
that in positive regulation of the I-κB kinase/NF-κB
signaling pathway (target gene CFLAR), CFLAR plays a
critical role in autophagy, necroptosis, and apoptosis
(Wang J. et al., 2017). In particular, higher CFLAR
expression has been associated with inferior survival in one
acute myeloid leukemia cohort 50 and chemotherapy
resistance in several tumor types51-53 (Supper et al., 2021).
Previous reports showed that the various isoforms of CFLAR
can control the threshold of autophagy when overexpressed in

cell lines. Another study by Simone Fulda revealed that
CFLAR participated in many cellular pathways like
autophagic cell death (Galluzzi et al., 2017). For
therapeutic purposes, targeting CFLAR might be a feasible
strategy. DIRAS3 (DIRAS family, GTP-binding RAS-like 3)
encodes a member of the ras superfamily. The encoded
protein, DIRAS3, plays role in autophagy in certain cancer
cells by regulating the autophagosome initiation complex.
Nutrient deprivation can cause transcriptional upregulation
of DIRAS3-mediated autophagy (Sutton et al., 2019). Next,
overexpression of DIRAS3 promotes LGG cell proliferation
and invasion via the EGFR-AKT signaling pathway (Wang
et al., 2020). Another study showed that DIRAS3 was
overexpressed in LGG and was positively associated with
adverse outcomes in LGG patients (Wang et al., 2020).
Therefore, silencing the expression of DIRAS3 may
demonstrate an inhibitory effect on LGG metastasis
accompanied by a long-lasting tumor suppression effect
theoretically. TP53 (tumor protein p53) responds to diverse
cellular stresses to regulate the expression of target genes,
thereby inducing cell cycle arrest, apoptosis, autophagy,
senescence, DNA repair, or changes in metabolism (Yin
et al., 2002). Mutations in this gene are associated with a

FIGURE 7 | ROC curves of predicting survival. (A) 0.5-year ROC curve (B) 1-year ROC curve (C) 3-year ROC curve (D) 5-year ROC curve AUC: area under the
curve. The larger AUC is, the more accurate it predicts.
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variety of human cancers, including LGG (Marcel et al., 2010).
The TP53 mutation is one of the most frequent genetic
alterations in LGG (Ohgaki and Kleihues, 2007), and
several studies reported associations between TP53
polymorphisms and LGG risk (Stacey et al., 2011; Shi et al.,
2012). Smita Bhatia et al. (Wang X. et al., 2017) identified an
association between SNP rs2909430 on the TP53 gene and
LGG risk. The R280T mutation in TP53 has been reported in
human glioma and is involved in promoting cell proliferation
(Lin et al., 2012). The above-mentioned studies are consistent
with our results.

Aside from autophagy, many other functions of ARGs have
been found and studied by the GO and KEGG pathways,
which include response to oxidative stress, apoptosis,
ubiquitin-like protein ligase binding process, and some
infections processes. Researchers documented that
autophagy could affect reactive oxygen species and
oxidative stress response, thus regulating the biological
properties of some metabolic factors (Ma et al., 2018).
Oxidative stress can lead to apoptosis through numerous
mechanisms, and apoptosis has been considered one of the

most important mechanisms for cell death. Several lines of
evidence suggest that autophagy may promote cell apoptosis,
and inhibition of the autophagy could decrease apoptosis
(Maiuri et al., 2007; Luo et al., 2019). Next, the intricate
details between autophagy and apoptosis trigger pivotal
crosstalk in tumor suppression (Macintosh and Ryan,
2013). The ubiquitin signal is thought to be the autophagy-
lysosome pathway’s target. Ubiquitin signals are essential
during autophagy to selectively integrate proteins,
organelles, and microbial intruders into autophagosomes
(Grumati and Dikic, 2018). Two ubiquitin-like binding
systems, particularly the combination of ATG12 and
ATG5, and the conversion of LC3 into a membrane-bound
form of phosphatidylethanolamine binding are involved in
autophagosome formation. (Mizushima, 2007). The interplay
of extracellular signals and autophagy is the most recent
development of research in proteoglycan signaling (Schaaf
et al., 2019). Proteoglycan promotes tumor cell migration and
survival, as well as the formation of blood vessels, by
activating or inhibiting angiogenesis and autophagy in
tumor parenchyma and surrounding stromal cells (Iozzo,

FIGURE 8 | Nomogram to predict the overall survival of patients who suffer from LGG. (A) nomogram to predict 1-, 3-, or 5-year OS. (B-D) calibration curve for
nomogram to predict 1-, 3-, or 5-year OS. The x-axis is nomogram-predicted survival, and the y-axis is actual survival. The reference line is 45◦ inclined and indicates
perfect calibration.
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2005; Iozzo and Sanderson, 2011; Wight, 2018). Christine Z
et al. reported that autophagy operated as an antiviral process
during human cytomegalovirus (HCMV) infection, thus
demonstrating a protective effect to the organism.
(Zimmermann et al., 2021). Overall, these prognostic ARGs
may contribute to early detection and may be an effective
strategy for increasing survival chances.

When LGG patients were divided into two groups
according to the risk score calculated by the nine ARGs’
signatures, a remarkable diversity can be seen in the
Kaplan–Meier survival curve between the high-risk and
low-risk patients. Also, we evaluated the relations between
ARGs and patients’ clinical features. The results showed the
expression level of BIRC5, CFLAR, and DIRAS3, and TP53
showed upward trends with the tumor stage and grade
increased, which indicated that ARGs were involved in the
progression of LGG. Further investigation found that risk
score was also one of the independent prognostic factors via
multivariate Cox regression analysis, which suggested that the
autophagy gene could serve as an accurate survival indicator.
Risk scores could distinguish between high-risk and low-risk
patients for guiding individualized treatment. Furthermore,
time-dependent ROC showed that risk score demonstrated a

relatively higher prognostic accuracy in predicting survival of
LGG patients in the first, third, and fifth years than other
clinical features in our study, implying its great potential as a
new class of biomarkers in cancer. Whereas, clinical concerns
about age only demonstrated a relatively higher prognostic
accuracy in the first half-year. The reason for the relatively
high accuracy of the age factor in predicting only 0.5 years of
survival in LGG patients may be related to the treatment
modality of LGG patients. Research showed that
radiotherapy, chemotherapy, and surgery were used for
LGG patients, and younger patients demonstrated better
tolerance to these treatments (Delgado-López et al., 2017;
Nunna et al., 2021). Nomograms, as a predictive tool,
provide an individualized risk score for a given patient,
which facilitates the development of a more precise
treatment strategy (Iasonos et al., 2008). In recent years,
nomogram has become increasingly popular due to its
ability to use different variables to construct statistical
prediction models (Brockman et al., 2015; Ma et al., 2019;
Cui et al., 2020). The calibration curve showed that the
predicted value of the nomogram was in good agreement
with the real value. Our model can provide a new
orientation for prognostic risk assessment and
individualized treatment strategy selection for LGG patients.

The immune microenvironment of cancer cells plays an
instrumental role in tumor development (Deng et al., 2019).
Our results demonstrated that the immune status was
significantly different between the low-risk and high-risk LGG
patients. In addition, the scores of all listed immune functions,
including APC coinhibition, cytolytic activity, T cell coinhibition,
and type I IFN response et al., were significantly higher in the
high-risk group, indicating the complexity between autophagy
and immunity.

Further analysis and external validation of our study
showed that risk score was an independent risk factor of
prognosis, which suggested that autophagy genes could
serve as an accurate survival indicator. At last, a smaller
cohort of 15 clinical samples (LGG tissues) and 10 normal
brain tissues were collected to verify the above findings. Results
showed that BIRC5, CFLAR, DIRAS3, and TP53 were up-
regulated, and MAPK9 was significantly down-regulated in
LGG tissues (p < 0.001), which were in agreement with the
model predictions.

The strength of our study is that we performed a systematic
analysis of autophagic genes from the national database, which
provided robust statistical support. It was different from previous
research (Qu et al., 2020; Chen et al., 2021) in that we succeeded in
not only identifying the autophagy-related gene signature in LGG
patients but also validating the results by external validation and
RT-qPCR data obtained from clinical samples. Also, double
validation made our conclusions more reliable. This study still
exhibits some limitations. First, a small number of LGG samples
and limited clinical information in the TCGA database limited the
accuracy of the prognosis predictive model. Detailed information
about neuroimaging and treatment methods was not recorded in
the nomogram. Second, the prediction model needs further
validation in multicenter and large-scale clinical trials. Third,

FIGURE 9 | Comparison of the ssGSEA scores between the high-risk
and low-risk groups. The score of 16 immune cells (A) and 13 immune-related
functions (B) are displayed in boxplots. DCs: dendritic cells; iDCs: immature
DCs; pDCs: plasmacytoid dendritic cells; TIL: tumor-infiltrating
lymphocyte; CCR: cytokine-cytokine receptor; APC: antigen-presenting cells.
Adjusted p-values were shown as the following: ns, not significant; *p < 0.05;
**p < 0.01; ***p < 0.001.
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FIGURE 10 | Relations between immune cells and prognostic genes. (A) BAX expression level and immune cells in low-grade glioma; (B) BIRC5 and immune cells;
(C) CFLAR and immune cells; (D) DIRAS3 and immune cells; (E) GRID2 and immune cells; (F) MAPK9 and immune cells; (G) MYC and immune cells; (H) PTK6 and
immune cells; (I) TP53. TPM: transcripts per kilobasemillion. The red color in the correlation coefficient represents a positive correlation, and the green color represents a
negative correlation.
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the molecular mechanism of autophagy affecting the prognosis of
LGG patients and its significance for clinical translational therapy
need to be further studied. Notwithstanding its limitations, this
study provides a comprehensive overview of the ARGs profile in
LGG. These issues may be addressed if a larger study is to be
conducted.

CONCLUSION

In conclusion, a risk prediction model based on BAX, BIRC5,
CFLAR, DIRAS3, GRID2, MAPK9, MYC, PTK6, and TP53 was
constructed, which could predict the prognosis of LGG patients

and provide therapeutic targets for clinical treatment. The
prognostic nomogram offers the possibility for individualized
survival prediction and improvement of treatment strategies.
These biomarkers could be further applied to clinical
assessments to validate our findings.
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