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Acute myeloid leukemia (AML) is one of the most common hematopoietic

malignancies and exhibits a high rate of relapse and unfavorable outcomes.

Ferroptosis, a relatively recently described type of cell death, has been reported

to be involved in cancer development. However, the prognostic value of

ferroptosis-related genes (FRGs) in AML remains unclear. In this study, we

found 54 differentially expressed ferroptosis-related genes (DEFRGs) between

AML and normal marrow tissues. 18 of 54 DEFRGs were correlated with overall

survival (OS) (P<0.05). Using the least absolute shrinkage and selection operator

(LASSO) Cox regression analysis, we selected 10 DEFRGs that were associated

with OS to build a prognostic signature. Data from AML patients from the

International Cancer Genome Consortium (ICGC) cohort as well as the First

Affiliated Hospital of Wenzhou Medical University (FAHWMU) cohort were used

for validation. Notably, the prognostic survival analyses of this signature passed

with a significant margin, and the riskscore was identified as an independent

prognostic marker using Cox regression analyses. Then we used a machine

learning method (SHAP) to judge the importance of each feature in this 10-

gene signature. Riskscore was shown to have the highest correlation with this

10-gene signature compared with each gene in this signature. Further studies

showed that AML was significantly associated with immune cell infiltration. In

addition, drug-sensitive analysis showed that 8 drugs may be beneficial for

treatment of AML. Finally, the expressions of 10 genes in this signature were

verified by real-time quantitative polymerase chain reaction. In conclusion, our

study establishes a novel 10-gene prognostic risk signature based on

ferroptosis-related genes for AML patients and FRGs may be novel

therapeutic targets for AML.
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Introduction

Acute myeloid leukemia (AML) is characterized by a

heterogenei ty of molecular abnormal i t ies and the

accumulation of immature myeloid progenitors in the bone

marrow and peripheral blood and represents the most

common type of acute leukemia in adults (1, 2). Despite novel

treatment options over the last years, the 5-year survival rate of

AML patient remains unsatisfactory (3). 40%~70% of AML

patients relapse and become treatment-refractory, ultimately

leading to treatment failure and even death. Therefore, there is

an urgent need to develop novel prognostic biomarkers to

monitor the prognosis of AML patients.

Ferroptosis is an iron-dependent form of regulated cell death

driven by a lethal increase of lipid peroxidation (4, 5).

Ferroptosis has been shown to play a key role in the

suppression of tumorigenesis by removing the cells deficient in

key nutrients in the environment or damaged by infection or

ambient stress (6). Targeting ferroptosis is considered as a

promising way for cancer patients, especially for malignancies

that are resistant to traditional treatments (7, 8). Several

signatures with ferroptosis-related genes have been established

to predict the prognosis of patients with cancer (9). However, the

role of FRGs in the prognosis of AML remains unclear.

In this study, we constructed a prognostic signature of 10

ferroptosis-related differentially expressed genes (FRDEGs)

based on the transcriptomic and clinical data of AML patients

from The Cancer Genome Atlas (TCGA). Then, this FRDEGs

prognostic signature was validated by International Cancer

Genome Consortium (ICGC) and the First Affiliated Hospital

of Wenzhou Medical University (FAHWMU) cohorts. Using

functional enrichment analysis and correlation analysis, we

further explored the potential molecular mechanisms in our

signature. Finally, we performed a drug sensitivity analysis to

explore potential gene targets.
Materials and methods

Data collection

The RNA sequencing (RNA-seq) and clinical data of two

AML cohorts were downloaded from public database, including

130 tumor samples (bone marrow) of AML patients from TCGA

(https://portal.gdc.cancer.gov) and 92 tumor samples (bone

marrow) of AML patients from ICGC (https://dcc.icgc.org/

projects/LIRI-JP). Besides, RNA-seq data of 70 normal marrow

samples were obtained from Genotype-Tissue Expression

Project (GTEx) (https://www.genome.gov/). All the expression

data from the three databases were normalized using the perl,

respectively. The current research follows the TCGA and ICGC

data access policies and publication guidelines. A total of 60
Frontiers in Oncology 02
FRGs utilized in this study were obtained from the previous

literature (Supplementary Table 1) (7).

In addition, we collected 57 tumor samples (bone marrow)

of AML patients from the FAHWMU as validation data.
Construction of a prognostic
10-gene signature

The “limma” R package was used to identify the DEGs

between tumor samples from TCGA and normal samples from

GTEx with a false discovery rate (FDR)< 0.05 (Supplementary

Table 2). Moreover, with the help of the “survival” R package, we

assessed the prognostic values of 60 FRGs and calculated their

FDRs using the Benjamin–Hochberg (BH) method. Protein-

Protein Interaction Networks (PPI) and correlation networks of

the intersecting 18 genes were generated using the STRING

database (STRING: functional protein association networks

(string-db.org)). Least absolute shrinkage and selection

operator (LASSO) Cox regression was performed using the

“glmnet” R package. The independent variable in the

regression was the normalized expression matrix of candidate

prognostic differentially expressed genes, and the response

variables were overall survival (OS) and status of patients in

the TCGA cohort. The optimum penalty parameter (l) for the
model was determined by 10-fold cross-validation following the

minimum criteria (i.e. the value of l corresponding to the lowest

partial likelihood deviance). The riskscore of the patients was

calculated according to the normalized expression level of each

gene and its corresponding regression coefficients. The formula

was established as follows:

score ¼  esum ðexpression level of each gene ñ corresponding coefficientÞ

Patients were stratified into the high- or low-risk groups

based on the median value of their risk score. Patients in the

ICGC were also stratified into the high- and low-risk groups

based on the values derived from this formula.
Validation of a prognostic
10-gene signature

Based on the expression levels of genes in the signature, we

carried out Principal Component Analysis (PCA) using the

“prcomp” package. Besides, t-distributed Stochastic Neighbor

Embedding (t-SNE) was performed to explore the clustering of

different groups using the “Rtsne” R package. Univariate and

multivariate Cox regression analyses were used to identify

independent prognostic factors. Receiver Operating Characteristic

(ROC) curve analysis was used to predict OS with the R package

“pROC”. All statistical analyses were carried out using the R

software, with P< 0.05 being considered statistically significant.
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Machine learning method analysis for
10-gene signature

SHapley Additive explanation (SHAP) was used to explore

the importance of 10 genes and riskscore for the 10-gene

signature. SHAP (10) is a game theory method that interprets

machine-learning model and understands the decision-making

process through quantifying the contribution that each feature

brings to the prediction made by the model.
Functional enrichment and
correlation analysis

The “clusterProfiler” R package was utilized to conduct Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses based on DEGs (Supplementary Table 3,

|log2FC| ≥ 1, FDR< 0.05) between the high- and low- groups

from TCGA cohort. P values were adjusted using the BH method.

Moreover, we estimated the infiltration score of 16 immune cell

types and the activity of 13 immune-related pathways using single-

sample gene set enrichment analysis (ssGSEA) in the “gsva” R

package. Besides, based on the Expression data (ESTIMATE)

algorithm, we estimated the proportion of infiltrating immune

cells and stromal cells to get immune, stromal and ESTIMATE

score for each AML patient. Using CIBERSOFT algorithm, the

relative content score of 22 TICs in every AML patient was

calculated. CIBERSOFT is a gene-based deconvolution algorithm

that infers 22 human tumor immune infiltrating cell types and

quantifies (11). The Cancer Stem Cell (CSC) correlation analysis

and tumor microenvironment correlation analysis were conducted

using the “limma” and “estimate” R packages.
Drug sensitivity analysis

The CellMiner website (https://discover.nci.nih.gov/

cellminer/) was used to analyze the NCI-60 database (12, 13).

The target gene expression status and z-score for cell sensitivity

data were retrieved from the website and analyzed using Pearson

correlation analysis to evaluate the relationship between target

gene expression and drug sensitivity.
Quantitative real-time PCR analysis

The bone marrow samples of AML patients (n=20) as well as

healthy donors (n=20) were collected from the FAHWMU.

Total RNA was isolated from AML patients as well as healthy

donors using the Tiangen RNA extraction reagent kit. Each

sample was reversely transcribed into complementary DNA

(cDNA) using a reverse-transcription (RT) reagent kit (Takara

Biotechnology Co., Ltd., Dalian, China). Then, Real-time PCR
Frontiers in Oncology 03
was performed using SYBR Premix ExTaq (Takara). GAPDH

was used as endogenous controls for mRNAs. The primer

sequences for 10 genes were shown in Supplementary Table 4.
Statistical analysis

R software (version 4.0.3) and GraphPad prism 9 were used

to complete all statistical work and plot drawing. The Spearman

correlation method was employed to calculate the correlation

between two variables. Survival plots were created using the

Kaplan–Meier method. Two sets of data for qRT-PCR were

analyzed using Student’s t-test. To examine the relationship

between OS and riskscore as well as clinical feature, univariate

or multivariate Cox regression analysis was performed. The

hazard ratio (HR) and 95% confidence interval (CI) were

calculated to identify genes associated with OS. P< 0.05 was

considered statistically significant.
Results

Flow chart and clinical data

The flow chart of this study was shown in Figure 1. Data

from a total of 130 AML tumor samples from the TCGA cohort

and 92 ICGC tumor samples derived from AML patients were

used. Detailed clinical characteristics of patients were

summarized in Table 1.
Identification of prognostic 18 FRDEGs in
the TCGA cohort

We found that the majority of FRGs were differentially

expressed between TCGA tumor samples and GTEx normal

samples (54/60, 90%). Eighteen of these FRDEGs (Figures 2B, C)

were associated with OS in univariate Cox regression analysis

(p<0.05, Figure 2A). Using PPI network construction, we

identified the hub genes including SLC7A11, G6PD, GPX4,

HMOX1, and FTH1 (Figure 2D). The correlation among 18

FRDEGs was shown in Figure 2E.
10 FRDEGs were selected and 10-gene
signature was constructed in the
TCGA cohort

10 of 18 prognostic FRDEGs, which were determined by

LASSO Cox regression analysis, were selected for the next

analysis (Supplementary Figures 1A, B). A riskscore was

calculated using mRNA expression levels and relevant

coefficients of 10 genes with the following formula:
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Riskscore ¼  (-0:548 ∗CD44) + 0:371 ∗CHAC1ð Þ +
(0:629 ∗CISD1) + (0:399 ∗DPP4) +

(-0:849 ∗NCOA4) + (0:299 ∗ SAT1) +

(0:485 ∗ SLC7A11) + (0:280 ∗AIFM2) +

(1:391 ∗G6PD) + (0:955 ∗ACSF2)
Survival analyses of this 10-gene
signature in TCGA, ICGC and
FAHWMU cohorts

Patients in the TCGA, ICGC or FAHWMU cohort were then

divided into the high- or low-risk groups according to the median

cut-off value. The results of Kaplan-Meier curve indicated that
Frontiers in Oncology 04
patients in the low-risk group exhibited a significantly better OS

than those in the high-risk group in TCGA (Figure 3A, P<0.001),

ICGC (Figure 3C, p<0.001) and FAHWMU cohorts (Figure 3E,

P<0.05). The predictive performance of this riskscore for OS was

evaluated by time-dependent ROC curves. In the TCGA cohort,

the area under the curve (AUC) reached 0.841 for 1st year, 0.811 for

2nd year, and 0.849 for 3rd year (Figure 3B). In the ICGC cohort,

the AUC was 0.634 for 1st year, 0.680 for 2nd year, and 0.678 for 3rd

year (Figure 3D). The AUC of 10-gene signature in the FAHWMU

cohort was 0.772 for 1st year and 1.000 for 2nd year, respectively

(Figure 3F). The t-SNE and PCA plots, mapped based on the risk

score of each patient, were shown in Figures 4A–F. The red point

means patient in the high-risk group, while blue point means

patient in the low-risk group (Figures 4A-D). It was found that the

red points clustered in one part, while the blue points clustered in
FIGURE 1

Flow chart of the data collection and analysis.
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another part. Results of this outcome suggest that our 10-gene

signature may contribute to better prognosis prediction of

AML patients.
Identification of independent
prognostic value

Univariate and multivariate Cox regression analyses were

carried out among the available variables to determine whether

the riskscore was an independent prognostic predictor for OS. In

TCGA cohort, the riskscore was significantly associated with OS

in both the univariate Cox regression analyses (HR = 3.563, 95%

CI = 2.513-5.051, P< 0.001) (Figure 5A) and multivariate Cox

regression analyses (HR = 3.517, 95% CI = 2.420-5.112, P< 0.001)

(Figure 5B). Similar results including both univariate Cox

regression analyses (HR = 2.136, 95% CI = 1.370-3.330, P<

0.001) (Figure 5C) and multivariate Cox regression analyses

(HR = 1.969, 95% CI = 1.250-3.100, P = 0.003) (Figure 5D)

were also found in the ICGC cohort. Except for the riskscore, age

is another character that was identified as the independent

prognostic factors (P<0.05)
TABLE 1 Clinical characteristics of AML patients used in this study.

TCGA cohort ICGC cohort

No.of patients 130 92

Age (median,range) 56 (21-88) 62 (18-88)

Gender (%)

male 70 49

Female 60 43

Stage (%)

M0 12 (9.2%) NA

M1 30 (23%) NA

M2 32 (24.6) NA

M3 14 (10.8%) NA

M4 27 (20.8) NA

M5 12 (9.2%) NA

M6 2 NA

M7 1 NA

Survival status (%)

Alive 52 (40%) 0

Dead 78 (60%) 92 (100%)

Survival time (median) 364 days 303 days
NA, Not Applicable.
A B

D EC

FIGURE 2

Identification of prognostic FRDEGs in the TCGA cohort. (A) Heat map of the 54 DEGs (T: tumor sample; N: normal sample). (B) Forest plots
showed the results of the univariate cox regression analysis between gene expression and OS (p < 0.05). (C) Venn diagram identified FRDEGs.
(D) The PPI network revealed the hub genes. (E) The correlation network among the 18 DEFRGs genes. Different colors represent the
correlation coefficients.
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Machine learning method determines the
importance of each feature

In order to judge the importance of each feature in our 10-

gene signature, we used SHAP method. As shown in Figure 6A,

riskscore had the highest correlation with this 10-gene signature
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compared with each gene in this signature. In addition, AIFM2

was found to have high contribution. Riskscore was positively

correlated with our 10-gene signature and AIFM2 was shown to

be negatively associated this signature (Figure 6B). As indicated

by Figure 6C, our riskscore was shown to have a good predictive

effect on the patient’s survival status.
A B

D

E F

C

FIGURE 3

Identification of ten optimal FRGs. (A) Kaplan-Meier curves for the OS of patients in the high-risk and low-risk groups in the TCGA cohort.
(B) AUC of time-dependent ROC curves verified the prognostic performance of the riskscore in the TCGA cohort (C) Kaplan-Meier curves in the
ICGC cohort. (D) AUC of time-dependent ROC curves in the ICGC cohort. (E) Kaplan-Meier curves in the FAHWMU cohort. (F) AUC of time-
dependent ROC curves in the FAHWMU cohort.
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GO and KEGG analysis of DEGs in the
high- and low-risk groups

GO analysis (Figure 7A) showed that DEGs were significantly

involved in the biological processes of extracellular structure

(matrix, external side of plasma membrane collagen, cell−cell

adhesion), the cellular components that occur in cytoplasmic

lumen and some immune-related function (leukocyte
Frontiers in Oncology 07
chemotaxis, leukocyte chemotaxis, immune receptor, cytokine).

The pathways of the KEGG database (Figure 7B) indicated that

DEGs were significantly involved in the immune and stromal

related-pathway (phagosome, chemokine, viral protein

interaction with cytokine and cytokine receptor, ECM−receptor

interaction). The results of GO and KEGG revealed that DEGs

may play a key role in the prognosis and immune-related

response in AML patients.
A B

D

E F

C

FIGURE 4

PCA and t-SNE analysis. tSNE (A) and PCA (B) dimension reduction analysis of the high- and low-risk groups based on the riskscore in TCGA
cohort. tSNE (C) and PCA (D) dimension reduction analysis of the high- and low-risk groups based on the riskscore in ICGA cohort. tSNE (E) and
PCA (F) dimension reduction analysis of the high- and low-risk groups based on the riskscore in FAHWMU cohort. (high: high-risk group; low:
low-risk group).
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A B

DC

FIGURE 5

Independent prognostic value of the 10-gene signature. Forest plots of univariate cox regression analyses (A) and multivariate cox regression
analyses (B) in TCGA cohort. Forest plots of univariate cox regression analyses (C) and multivariate cox regression analyses (D) in the ICGC cohort.
A B

C

FIGURE 6

SHAP for 10-gene signature. (A) A score calculated by SHAP was used for each input feature. (B) The contribution of each input feature in the
overall model. When the SHAP value is positive, if the Future value is mainly red, this feature is a positive correlation. (C) The performance of the
riskscore in AML prognosis was assessed by SHAP. The abscissa is to sort each patient according to the riskscore from low to high, and the
ordinate is the SHAP value for each patient. Blue represents patient survival and red represents patient death.
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Immune infiltration was associated with
the riskscore of 10-gene signature

The scatter plots were used to explore the association

between the tumor microenvironment and the riskscore. As

shown in Figure 8F, the immune score was positively correlated

with riskscore (p<0.0001; R=0.43). GSEA analysis indicated that

the top 10 pathways of DEGs between the high- and low-risk

groups were involved in the biological processes of immune

response (antigen processing and presentation, B cell receptor

signaling pathway, chemokine signaling pathway, cytokine-

cytokine receptor interaction, Fc gamma r mediated

phagocytosis, natural killer cell mediated cytotoxicity, NOD-

like receptor signaling pathway, T cell receptor signaling

pathway, Toll like receptor signaling pathway) (Figure 7C).

Therefore, we further explored the correlations between 18

immune-related cells and the riskscore via CIBERSOFT

algorithm. 8 types of immune-related cells (naive B cells,

Plasma cells, T cells CD4 memory, NK cells, Monocytes,
Frontiers in Oncology 09
Dendritic cells, Mast cells and Eosinophils) were correlated

with immune score (Figure 8A, p<0.05). There were positive

correlations between immune score and T cells CD4 memory as

well as Monocytes and Mast cells. Subsequently, 4 types of cells

(B cells memory, Monocytes, T cells CD4 memory, Mast cells,

p<0.05) were selected for further correlation analysis between

the high- and low-risk groups (Figures 8B–E). The expressions

of Monocytes in the high-risk group were higher than that in the

low-risk group. The expressions of T cells CD4 memory and

Mast cells were lower than that in the low-risk group. However,

no significant difference in the expressions of B cell memory

between the high- and low-risk groups. Our data indicate that

the immune infiltration is significantly related with the riskscore.
AML patients may be sensitive to 8 drugs

Drug sensitivity analysis was used to identify potential drugs

that AML patients may be sensitive. Drug sensitivity analysis was
A

B C

FIGURE 7

Functional analysis of the 10-gene signature. (A) The GSEA plot of top 10 enriched pathways. (B) GO enrichment analysis (p < 0.05, q < 0.05; BP,
biological process; CC, cellular component; MF, molecular function). (C) KEGG enrichment analysis (p < 0.05, q < 0.05).
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analyzed between the top 16 drugs and 10 genes. Only the results

of drug sensitivity analysis with P<0.05 were shown in Figure 9.

There were positive correlations between 4 drugs (ARRY-162,

Cobimetinib, Mitomycin and lrofulven) and SAT1 as well as

G6PD in AML patients from the TCGA cohort. In addition,

there were negative correlations between 4 drugs (Tamoxifen,

Oxaliplatin, Fulvestrant and lmatinib) and CD44. Combined

with these, AML patients with dysregulation of SAT1, G6PD or

CD44 may be sensitive to 8 drugs (ARRY-162, Cobimetinib,

Mitomycin, lrofulven, Tamoxifen, Oxaliplatin, Fulvestrant

and lmatinib).
Validation of expressions of 10 genes of
this 10-gene signature in AML

QRT-PCR was performed to validate the mRNA expression

levels of 10 genes in our signature in the FAHWMU cohort. As
Frontiers in Oncology 10
shown in Supplementary Figure 2, up-regulated CD44, DPP4,

SAT1 and NCOA4 were found in AML patients, while CHAC1,

CISD1, SLC7A11, AIFM2, G6PD, and ACSF2 were down-

regulated in AML patients.
Discussion

AML patients have been reported to benefit from advances in

targeted molecular and immunotherapy (14, 15), however, the 5-

year survival rate of AML patients remains unsatisfactory due to

high relapse rates. Stratification of patients into the high- and low-

risk groups based on reliable molecular signatures may aid in

selecting appropriate treatment strategies in line with precision

medicine. Emerging studies have indicated the vital roles of FRGs

in tumorigenesis (16–18). However, the relationship between

AML prognosis and FRGs remains unclear. In this study, we

established a novel ferroptosis-related prognostic gene signature
A

B

D E

F

C

FIGURE 8

Analysis of tumor microenvironment in 10-gene signature (A) Correlation plots of 18 immune-related cells (derived from CIBERSOFT
algorithms), stromal scores and immune score (derived from ESTIMATE algorithms) in AML (red: positive correlation; blue: negative correlation;
p < 0.05). (B-E) Violin diagrams of 4 immune-related cells (B cells memory, Monocytes, T cells CD4 memory and Mast cells). (F) Scatter plot of
the correlation between immune score and the riskscore in the 10-gene signature.
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for AML patients. We assessed the relationships between 60 FRGs

and OS, and subsequently identified 18 FRDEGs. Using LASSO

Cox regression, we selected 10 of 18 FRDEGs for construction of a

prognostic gene signature. We also compared enrichment score of

infiltration of immune cells and immune pathways between the

high- and low-risk groups, investigated functional mechanisms

via GSEA, and assessed potentially suitable drugs. This novel 10-

gene signature may contribute to the improvement in the

prediction of AML prognosis and patient stratification for

therapeutic strategies.

The FRGs (CD44, CHAC1, CISD1, DPP4, NCOA4, SAT1,

SLC7A11, AIFM2, G6PD, and ACSF2) were included in our 10-

gene signature. CD44, a cell-surface glycoprotein, has been

reported to be involved in cell-cell interaction, cell adhesion,

and migration (19). Previously, it has been demonstrated that

CD44 expression is closely related with the occurrence of

tumors, including AML (20–22). Stevens et al. found that

CHAC1 contributes to the inhibition of AML via atovaquone

(23). Inhibition of CISD1 results in iron accumulation and

oxidative injury in mitochondria, thus contributing to erastin-

induced ferroptosis in hepatocellular carcinoma cells (24). In B-

cell acute lymphoblastic leukemia, CHAC1 can overcome drug
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resistance and exert anti-leukemic activity (25). Loss of TP53

prevents nuclear accumulation of DPP4 and thus facilitates

plasma-membrane-associated DPP4-dependent lipid

peroxidation, resulting in ferroptosis (26). CARS1 has been

included in a novel prognostic signature by Chen et al., which

effectively predicts the prognosis of Clear Cell Renal Cell

Carcinoma (27). Activation of SAT1 induces l ipid

peroxidation and sensitizes cells to undergo ferroptosis upon

reactive oxygen species (ROS)-induced stress (28). Inactivation

of SLC7A11 has a synergistic effect with APR-246 for the

promotion of cell death (29). G6PD has previously been

proposed as a biomarker for AML (30). A recent study has

revealed a potential relationship between AIFM2 and EBF3,

which acts as a tumor suppressor gene in AML (31). ACSF2

participates in the regulation of the lipid metabolism via

peroxisome proliferator-activated receptor alpha. Recently,

Wang et al. constructed a FRG signature for breast cancer

patients, which included ACSF2 (32). All the 10 genes are

associated with ferroptosis process and the prognosis of

tumors, especially AML.

Recently, immune infiltration has been reported to be

involved in the progression of AML. For example, Luca et al.
FIGURE 9

Drug sensitivity analysis of the 10-gene signature. (Cor > 0 means that patients with high expression of this gene may be sensitive to this drug;
Cor< 0 means that patients with high expression of this gene may be resistant to this drug. P < 0.05).
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found that the bone marrow immune environment of AML

patients is profoundly altered (33). A previous study

demonstrated that a higher level of B and T cell activation was

found in AML samples than non-tumor samples (34). NK cells

can trigger the anti-leukemia responses (35) and ferroptosis has

been shown to exert anti-tumor immune effects by triggering

dendritic cell maturation (36). Therefore, we explored the

association between immune cell infiltration and the riskscore

in this study. Our data revealed that higher Monocytes levels

were found in the high-risk group. In addition, Mika T et al.

found that high expression of Monocytes is related to the failure

of the first induction therapy in AML (37), which indicated that

AML patients in the high-risk group with higher expression of

Monocytes may be relate to the worse OS. Besides, it has been

found that differentiated monocyte-like AML cells express

diverse immunomodulatory genes and suppress T cell activity

in vitro (38). In this study, the high-risk group with lower level of

T cells CD4 memory was associated with the higher counting of

differentiated monocyte-like AML cells, which may be

responsible for the bad prognosis of the high-risk group.

Besides, in our tumor microenvironment correlation analysis,

the riskscore was positively associated with the immune score.

Our findings revealed an association between the 10-gene

signature and immune cell infiltration.

In the past few decades, targeted cancer therapies have

developed rapidly. However, treatment of AML remains

unsatisfactory (39). In this study, we performed drug

sensitivity analysis to find AML drugs that may have clinical

benefits. We selected 8 drugs (ARRY-162, Cobimetinib,

Mitomycin, lrofulven, Tamoxifen, Oxaliplatin, Fulvestrant and

lmatinib) that AML patients with dysregulation of SAT1, G6PD

or CD44 may be sensitive to. Among them, ARRY-162,

Cobimetinib, Mitomycin, lrofulven, Tamoxifen and Oxaliplatin

have already been reported to be applied in AML patients for

clinical trials or cells (40–45). Lmatinib has been authorized to

treat chronic myeloid leukemia (CML) since 2001 (46). No

reported have been found in the treatment of Fulvestrant in

AML. Our drug sensitivity analysis provides novel promising

drugs for AML patients, and more studies are still needed for

further validation in the future.

Recently, several risk signatures of AML have been established

based on FRGs (47–49). However, our study still has many

advantages. Firstly, we firstly reported a novel prognostic risk

signature of 10 FRGs for AML based on the data from TCGA and

ICGC cohort. Secondly, we validated this 10-gene signature in a

local cohort (FAHWMU cohort). Thirdly, this signature revealed

an association between FRGs and immune cell infiltration in

AML. In addition, we used a machine learning method to validate

our 10-gene signature. Finally, we found 8 potential drugs for
Frontiers in Oncology 12
AML clinical treatment in the future. However, there are many

limitations in our research. A single hallmark (ferroptosis) was

used to construct a prognostic model, which may lead to the loss

of many key prognostic genes of AML. In addition, the detailed

roles of FRGs in AML including in vivo and in vitro should be

further explored in the future.
Conclusion

Collectively, our study establishes a novel 10-FRG

prognostic risk signature for AML patients. In addition, FRGs

may represent novel therapeutic targets in AML.
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