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Early detection of brain metastases and differentiation from other neuropathologies

is crucial. Although biopsy is often required for definitive diagnosis, imaging can

provide useful information. After treatment commences, imaging is also performed

to assess the efficacy of treatment. Contrast-enhanced magnetic resonance imaging

(MRI) is the traditional imaging method for the evaluation of brain metastases, as

it provides information about lesion size, morphology, and macroscopic properties.

Newer MRI sequences have been developed to increase the conspicuity of detecting

enhancing metastases. Other advanced MRI techniques, that have the capability

to probe beyond the anatomic structure, are available to characterize micro-

structures, cellularity, physiology, perfusion, and metabolism. Artificial intelligence

provides powerful computational tools for detection, segmentation, classification,

prediction, and prognosis. We highlight and review a few advanced MRI techniques for

the assessment of brain metastases–specifically for (1) diagnosis, including differentiating

between malignancy types and (2) evaluation of treatment response, including the

differentiation between radiation necrosis and disease progression.

Keywords: cube, neural network, MRS, quantitative magnetization transfer (qMT), trans-membrane water

exchange, chemical exchange saturation transfer (CEST), radiomic, artificial intelligence

INTRODUCTION

Early detection of brain metastases (BM) and accurate differentiation from other neuropathologies
is crucial. Early diagnosis affects prognosis and outcome (1). Separating metastases from other
etiologies such as primary brain tumors, infection, demyelination, infarction, and hemorrhage is
important because the respective treatments are vastly different. Although biopsy is often required
for definitive diagnosis, imaging can provide useful information.

Recent improvements in local procedures combined with newer systemic treatments, including
targeted therapeutics, have substantially modified the prognosis and survival of patients with brain
metastases. Primary approaches to the treatment of brain metastases include surgery, stereotactic
radiosurgery (SRS), and whole brain radiation therapy (WBRT). One key determinant in informing
treatment decisions is the number of metastases present. Convergent data suggest SRS to the
surgical cavity is preferable to WBRT in most patients with up to four brain metastases (2, 3),
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providing similar intracranial disease control with less risk of
neurocognitive decline. Treatment for patients with multiple
(>4) brain metastases has yet to be determined (4). Although
expert opinion on the limit on number and size varies, there
is no question that accurate accounting of the number of brain
metastases is necessary.

Besides detection and tallying, imaging is also performed to
assess treatment effects. According to the Response Assessment
in Neuro-Oncology Brain Metastases (RANO-BM) working
group’s proposal, the size of metastases is an important
criteria for assessing treatment response (5). Indeed, the four
categories of response (complete response, partial response,
progressive disease, and stable disease), are defined based
on the lesion size. Another crucial task for clinicians and
radiologists after radiotherapy is the distinction between
radiation necrosis and tumor progression, which is challenging
because of their overlapping features on conventional MRI
sequences. Recent advances in the treatment of brain metastases
(e.g., immunotherapy and targeted therapies) have also posed
challenges for the interpretation of MRIs, specifically with regard
to the question of pseudoprogression or radiation necrosis vs.
true disease progression.

Traditionally, contrast-enhancedmagnetic resonance imaging
(MRI) is the preferred imaging study for the diagnosis of
brain metastases (6, 7). The two most commonly used MRI
sequences for assessing brain metastases are contrast-enhanced
T1-weighted (CET1W) and T2-weighted FLAIR, which provide
information about size, morphology and macroscopic structures.
Newer MRI sequences have been developed to increase the
conspicuity of enhancing metastases. More recently, advanced
MRI techniques that have moved beyond anatomical imaging are
available to characterize microstructures, cellularity, physiology,
perfusion, and metabolism. Changes in these attributes may
supersede perceivable macroscopic anatomic changes and can
serve as potential biomarkers for monitoring treatment effect,
recurrence, and disease progression (8).

The recent interest of artificial intelligence has transformed
the field of medicine. Radiomics and deep learning are
deployed to unveil discernible and grossly indiscernible features
within radiological images, which can assist with decision-
making in oncology (9, 10). Radiomics use sophisticated
computational methods to extract quantitative features from
medical images, which can be beyond human visual perception
(9). A vast amount of computational data are generated,
which are then mined by using various machine-learning
algorithms to develop models that may potentially improve
diagnostic, prognostic, and predictive accuracy (9). On the
other hand, deep learning uses multilayer artificial neural
networks to learn imperceptible features directly from data,
without the constraints of predefined equations and is a
powerful tool for classification, detection, and segmentation
tasks (11).

Here, we highlight and review the utility of advanced
MRI techniques, including new imaging sequences, quantitative
methods, and artificial intelligence to evaluate brain metastases–
specifically for (1) diagnosis, including differentiating between
malignancy types and (2) evaluation of treatment response,

including the differentiation between radiation necrosis and
disease progression.

BLACK BLOOD MR IMAGING

A clinically dedicated brain metastasis MRI protocol typically
consists of pre-contrast (i.e., diffusion-weighted, T2-weighted,
T1-weighted) and post-contrast (i.e., T1-weighted, FLAIR)
sequences. The critical sequence is the postcontrast 3D T1-
weighted sequence, which is a high-resolution sequence acquired
by either 3D volumetric Fast Spoiled Gradient-Echo (FSPGR) or
Fast Spin-Echo (FSE) technique.

3D volumetric gradient echo imaging (e.g., BRAVO, GE
Healthcare; MPRAGE, Siemens Healthcare; 3D TFE; Philips
Healthcare) is employed broadly because of the excellent gray-
white matter differentiation provided by the technique. 3D
volumetric FSE imaging (e.g., CUBE, GE Healthcare; SPACE,
Siemens Healthcare; VISTA, Phillips Healthcare) is a relatively
newer technique that is also optimal for high-resolution imaging.
T1-weighted, T2-weighted, PD-weighted, or FLAIR images
can be obtained with the FSE technique. One important
distinguishing feature between both of these techniques is the
appearance of the vessels. Specifically, the vasculature appears
bright on post-contrast 3D T1 FSPGR but appears dark (“black
blood”) on post-contrast 3D T1 FSE. As a result of the “bright
blood” appearance on post-contrast FSPGR, it can sometimes
be difficult to distinguish enhancing parenchymal metastases
or leptomeningeal carcinomatosis (Figure 1) from background
vascular enhancement (12). On the contrary, post-contrast FSE
provides inherent background vascular suppression, yielding
a higher contrast-to-noise ratio (CNR) of lesions, making
enhancing parenchymal, and leptomeningeal metastases more
conspicuous (13).

Detection of Brain Metastases
To make metastases even more perceptible, thick-section
maximum intensity projection (MIP) images can be
reconstructed from post-contrast 3D T1 FSE. Reconstruction
with slice overlapping can further help to reduce artifacts from
partial volume averaging and improve visualization of lesions
(Figure 2) (14). The use of MIP images is standard practice for
detecting pulmonary nodules in chest imaging (15), because
discrete lesions are accentuated from the background. Yoon et al.
used a similar technique and demonstrated better and faster
detection of brainmetastases usingMIP images constructed from
overlapping post-contrast T1-weighted CUBE (oCUBE-MIP).
They compared oCUBE-MIP images with more conventional
imaging techniques–source post-contrast 3D T1 FSPGR, source
post-contrast 3D T1 CUBE, and non-overlapping CUBE MIPs
(nCUBE-MIP) (14). As expected, the CNR was highest on
oCUBE-MIP and lowest on FSPGR, for both small (<4mm)
and large lesions (>4mm). The sensitivity for lesion detection
was highest with oCUBE-MIP (0.96). oCUBE-MIP had a slightly
higher false-positive rate than FSPGR, which they attributed
to erroneous diagnosis of tiny vascular segments as punctate
metastases. However, the false-positive rate of oCUBE-MIP was
improved when source CUBE images were provided along with
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FIGURE 1 | 68-years-old patient with primary lung adenocarcinoma and leptomeningeal carcinomatosis. Diffuse nodular leptomeningeal enhancement is seen over

the left cerebellar surface on (A) post-contrast 3D T1 FSPGR and (B) post-contrast 3D T1 CUBE, compatible with leptomeningeal carcinomatosis. Conspicuity of

enhancement is increased in (B) compared to (A).

oCUBE-MIP images for cross-referencing purposes, because
vessels can be more accurately traced on source CUBE images.
The mean interpretation time with oCUBE-MIP was 94.7 +/–
36.5 s, which was significantly lower than with source CUBE
(173.5 +/– 67.7 s) and source BRAVO (195 +/– 64.8 s) alone,
providing an average saving of at least 100 s per case.

Taking advantage of the higher CNR on CUBE images, Oh
et al. demonstrated significantly better diagnostic accuracy for
detection of leptomeningeal carcinomatosis in 78 subjects with
post-contrast 3D T1 CUBE images (p < 0.05). Highest sensitivity
was achieved on post-contrast CUBE (97.43%), followed by post-
contrast 2D T1-weighted spin-echo (66.67%), and post-contrast
T1 FSPGR (64.1%). There were no significant differences in
specificities among the three imaging techniques (16).

Clinical Implication

Post-contrast 3D T1 CUBE, particularly with overlapping thick-
section MIP reconstruction, is a clinically available imaging
technique that offers high contrast-to-noise ratios of enhancing
lesions within the brain and allows for fast and sensitive detection
of brain metastases (Table 1).

MAGNETIC RESONANCE
SPECTROSCOPY (MRS)

Protons of different molecules resonate at slightly different
frequencies secondary to the local magnetic field generated by
the electron cloud surrounding them. Magnetic resonance
spectroscopy (MRS) detects tissue metabolites by their
characteristic resonant frequencies (17). In oncologic
applications, the metabolites of interest are products or
byproducts of malignancy-related pathways (17, 18). The most
common metabolites are N-acetylaspartate (NAA), choline

(Cho), lipid (Lp), and creatine (Cr). NAA is a neurotransmitter,
which is abundant in neurons, and is a marker for neuronal
health (19). Its concentration is related to the extent of neuronal
destruction (20). Choline is involved in the manufacturing
of phospholipids, which is an integral component of cell
membranes (21). Higher levels of choline are associated with
higher cell membrane turnover, presumably from cell damage.
Lipid is a byproduct associated with cellular necrosis and is
often seen in the setting of glioblastoma or metastases. Creatine
is involved in intracellular metabolic processes. Creatine
concentration is higher in areas with higher energy metabolism

(22). The concentration of these metabolites can be measured on
MRS and can help to determine the underlying pathophysiology
of a lesion.

There are many spectroscopic acquisition techniques, with
commonly usedmethods being “PRESS” (23) and “STEAM” (24).
While technical details of MRS are beyond the scope of this

article, MRS can be acquired with either short or long echo-time

(TE), with typical short TE values ranging between 18 and 45ms
and long TE values ranging between 120 and 288ms. Different TE
values highlight different aspects of the spectra. For example, on
short TE MRS, the spectra tend to have an irregular fluctuating
baseline, and NAA may overlap with the glutamine/glutamate
peak. On long TEMRS, lipids may not be detected, and there may
be an artifactual elevation of the Cho/Cr ratio (25). The optimal
TE for brain malignancy MRS is still under discussion (25). MRS
is acquired by using a single voxel technique, with a small voxel
size of a few cubic centimeters, or with a (2D or 3D) multi-voxel
technique, which provides larger coverage of a target lesion at
a higher spatial resolution. However, both methods are limited
in spatial resolution and coverage, making MRS susceptible to
partial volume effects. Diagnostic accuracy of MRS can also be
limited by sampling error, especially with heterogeneous lesions
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FIGURE 2 | Enhancing cerebral metastases in a 78-years-old patient with metastatic lung carcinoma. Postcontrast 3D T1-weighted (A) FSPGR, (B) CUBE, and (C)

overlapping CUBE maximum intensity projection (oC-MIP) images demonstrate enhancing metastatic lesions. The lesions appear most conspicuous with overlapping

CUBE MIPs (C). The contrast-to-noise ratio of lesions is also highest for oC-MIP (C).

TABLE 1 | Summary of imaging techniques, features, and potential applications.

Technique Features Potential applications

Overlapping post-contrast 3D

T1-weighted CUBE (oCUBE-MIP)

High contrast-to-noise ratio of

enhancing lesions

• Fast and sensitive detection of brain parenchymal and leptomeningeal metastases

• Clinically available and easy to implement

Magnetic resonance spectroscopy Detects tumoral metabolites • Lipids detected in metastases and glioblastomas

• Higher NAA/Cr in metastases than in primary gliomas

• Higher Cho/Cr and Cho/NAA with tumor progression than with radiation necrosis

• Clinically available but more difficult and complex to implement; complementary to

structural imaging

• Standardization across different MRI vendors is needed

Quantitative magnetization transfer Characterizes magnetization transfer

ratio (MTR), macromolecular

concentration (F), exchange rate

between the bound protons and free

water protons (kf)

• Peritumoral MTR lowest in meningioma compared to glioblastoma and metastases

• Macromolecular fraction in the non-contrast-enhancing region of tumor highest in

metastases

• Largely investigational at this time

• No standardized post-processing software

Trans-membrane water exchange Measures transmembrane

intra-extracellular water exchange

rate constant (kIE) which is sensitive

to apoptosis

• kIE higher in responders (to radiosurgery) than non-responders

• Largely investigational at this time

Chemical exchange saturation

transfer

Measures metabolites of neoplasm

milieu

• Higher MTRAmide and NOE with tumor progression than with radiation necrosis.

• Promising and rapidly developing molecular-imaging tool

• More studies in humans and standardized techiques to improve the specificity

are needed

Perfusion imaging Relative cerebral blood volume and

cerebral blood flow

• Peritumoral rCBV and rCBF higher in glioblastomas than metastases

• Intratumoral rCBV can help to distinguish infection from tumor

• Higher intratumoral and peritumoral ASL-rCBF in glioblastomas than in metastases.

• Higher rCBV, higher rPH, lower PSR, higher Ktrans in recurrent tumor; lower rCBV,

lower rPH, higher PSR, lower Ktrans in radiation necrosis

• Clinically available with different acquisition and post-processing methods, limiting

its universal adoption; complementary to structural imaging

Radiomics and textural analysis Computes quantitative patterns and

inter-pixel relationships of tumors

• Some textural parameters can distinguish glioblastomas from metastases

Some textural parameters can classify the primary origins of brain metastases

• Largely investigational at this time; large multicenter datasets are needed

for validation

(8). In general, a multi-voxel technique is recommended for
evaluation of heterogeneous tumors or multiple lesions in order
to minimize sampling error from a specific area of a lesion

(26). Moreover, voxels should be positioned away from fat, bone,
air, ventricles, vessels, and cerebrospinal fluid in order to avoid
contamination of the spectra.
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Differentiate Malignancy Types
Similar to glioblastoma, brain metastases express elevated lipid
signal (presumably as a result of cellular necrosis) on MRS.
The lipid peak, therefore, has been used to differentiate these
two tumor types from other brain neoplasms (27). Ishimaru
et al. studied 11 patients with anaplastic gliomas, 20 patients
with glioblastomas, and 25 patients with brain metastases using
single-voxel MRS to differentiate between the three malignancy
types (27). They measured the levels of lipids, NAA, Cho, and
Cr. Metastases and glioblastomas showed definite lipid peak
or lipid/lactate mixture peak, but no lipid signal was detected
in anaplastic gliomas. Absence of the lipid signal precluded
metastases. A strong Cho peak was detected in all tumors.
No definite Cr peak was detected in 21 of the 25 metastases.
Therefore, the presence of a Cr peak was suggestive of glioma,
whereas the absence of a Cr peak was more suggestive of
metastasis. The NAA/Cr ratio was shown to be higher in brain
metastases (NAA/Cr = 1.58 ± 0.56), as compared to anaplastic
gliomas (NAA/Cr = 0.70 ± 0.23) and glioblastomas (NAA/Cr =
0.76± 0.40) (27).

Similar results were reported in another study investigating
32 patients with high-grade gliomas, 14 patients with low-grade
gliomas, and 14 patients with brain metastases using multi-voxel
2D MRS on 3T (28). Both NAA/Cr and Cho/Cr ratios within
the tumors were higher in brain metastases (NAA/Cr = 4.43 ±

4.5, Cho/Cr = 4.88 ± 7.0), than in low-grade gliomas (NAA/Cr
= 1.68 ± 0.9, Cho/Cr = 2.7 ± 2.1), and high-grade gliomas
(NAA/Cr = 1.04 ± 0.6, Cho/Cr = 3.4 ± 1.7). In the peritumoral
regions, NAA/Cr and Cho/Cr ratios were highest in low-grade
gliomas (NAA/Cr = 3.73 ± 2.61, Cho/Cr = 4.62 ± 6.95),
followed by brain metastases (NAA/Cr = 2.53 ± 1.13, Cho/Cr
= 2.72 ± 2.55), and lowest in high-grade gliomas (NAA/Cr =
1.49 ± 0.83, and Cho/Cr = 2.49 ± 2.02) (28). Higher lipids
were measured in high-grade gliomas (Lipids = 118.2 ± 215.9),
which could help to discriminate them from metastases (Lipids
= 35.48 ± 48.22). However, lipid levels in low-grade gliomas
were similar to that of metastases and were therefore not useful
to discriminate between the two (28). Lactate signal was also
significantly different in high-grade gliomas (Lactate = 94.62
± 123), with respect to low-grade gliomas (Lactate = 50.02
± 97.89), and metastases (Lactate = 15.07 ± 16.74). Of note,
the reported standard deviations in metabolite measurements
were quite large and overlapped between tumor types. Therefore,
further studies with larger populations are needed to better
determine if MRS is useful for differentiating brain metastases
from different glioma types.

Evaluate Treatment Effect
Sjobakk et al. used single voxel MRS to study lipid peak in
21 patients with brain metastases before treatment to predict
outcome. Patients with a higher lipid signal at baseline had
a higher 5-months survival rate. Four patients in the cohort
underwent repeat MRS after treatment, which demonstrated
decreased lipid signal. The two patients with a larger drop in lipid
signal survived longer than the other two (16 vs. 3 months) (29).

MRS has also been used to differentiate radiation necrosis
from tumor progression in brain metastases. Weybright et al.

evaluated MRS in 29 patients with brain metastases after
radiotherapy. Metastases that progressed showed significantly
higher ratios of Cho/Cr and Cho/NAA compared to radiation
necrosis (30). Schlemmer et al. also used MRS to differentiate
radiation necrosis from disease progression in 56 patients (6
metastases, 2 meningiomas, 50 grade I to IV astrocytomas).
Higher Cho/Cr and Cho/NAA ratios (p < 0.0001) were observed
in tumor progression (n= 34) compared with radiation necrosis
or stable disease (n = 32) and contralateral normal brain (n =

33). Using Cho/Cr and Cho/NAA ratios to classify a lesion as
progressive tumor yielded 82 and 81% accuracy, respectively (31).

These findings were further interrogated in a meta-analysis
of 13 studies, encompassing 397 lesions, that showed higher
Cho/Cr and Cho/NAA ratios in tumors than in radiation necrosis
(22). There was a significant difference in Cho/Cr ratio between
recurrent tumor and radiation necrosis (0.77, 95%CI = 0.57 to
0.98, p= 0.001). There was also a significant difference in ratios of
Cho/NAA between recurrent tumor and radiation necrosis (1.02,
95%CI = 0.03 to 2.00, p = 0.044). However, there was a large
overlap in the values between the two groups.

These promising studies suggest that the concentrations
and ratios of metabolites in tumor milieu detected by
MRS may be useful in distinguishing between the following
groups: neoplastic and non-neoplastic brain lesions, progressive
disease and radiation necrosis, and treatment responders
and non-responders.

Clinical Implication

MRS is a clinically available technique that provides information
on tumoral metabolites in the treatment naïve and post-
treatment setting (Figures 3, 4). However, given overlapping
features with different tumor types and subtypes and other
metabolically active disease processes, prospective studies with
larger sample sizes are needed to further investigate its potential
diagnostic capabilities (Table 1). Partial volume effects and
limited coverage are some of the reasons why MRS is replaced by
other whole-brain techniques such as perfusion. Standardization
across sites and different vendors of acquisition and analysis
techniques is also needed before MRS can be widely adopted as
clinical tool (32).

QUANTITATIVE MAGNETIZATION
TRANSFER (qMT)

Magnetic transfer describes the phenomenon where net
magnetization of free water hydrogen protons is exchanged
with that of restricted hydrogen protons (those bound to
macromolecules) (33). Such macromolecules include lipids
constituted in myelin and cell membranes. Magnetization
transfer imaging (MTI) applies radiofrequency energy (MT
pulses) to the bound protons, which is then transferred to the
free water pool (34). Depending on the degree of coupling
between these pools, the free water pool becomes partially
saturated. When imaged, this saturation effect (secondary to
magnetization transfer) manifests as signal loss. Quantitative
magnetization transfer imaging (qMT) characterizes the

Frontiers in Neurology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 270

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Tong et al. Advanced Imaging of Brain Metastases

FIGURE 3 | 67-years-old patient with a left medial frontal lobe brain metastasis from primary lung cancer treated with stereotactic radiosurgery. (A) Post-contrast

T1-weighted image shows the treated enhancing lesion. (B) Multi-voxel 2D magnetic resonance spectroscopy acquired at 3T with grid placed on the lesion. (C)

Spectra (from the voxel highlighted in yellow) shows findings of disease progression, with the presence of a lipid peak (indicative of necrosis), high Cho peak, and

increased Cho/NAA and Cho/Cr ratios. Subsequent short-term follow-up MRI showed growth of the lesion (not shown), supporting the diagnosis of disease

progression.

FIGURE 4 | 79-years-old patient with left thalamic metastasis from lung cancer treated with stereotactic radiotherapy. (A) Post-contrast T1-weighted image shows

the treated enhancing lesion. (B) Multi-voxel 2D magnetic resonance spectroscopy acquired at 3T with grid placed on the lesion. (C) Spectra (from the voxel

highlighted in yellow) shows mild elevation of the choline peak, slightly increased Cho/Cr ratio, slightly increased Cho/NAA ratio, and normal NAA/Cr ratio. Subsequent

follow-up MRI showed shrinkage of the contrast-enhancing mass (not shown), supporting the diagnosis of radiation necrosis.

magnetization transfer ratio (MTR), the macromolecular
concentration (F), the exchange rate between the bound protons
and free water protons (kf), as well as the relaxation times (T1,
T2) of the bound and free proton pools (34). MTR of each
voxel is computed as: MTR = (So – SMT)/So, where So is the
magnitude of tissue signal before the MT pulse and SMT is the
signal after applying MT pulse.

Differentiate Malignancy Types
Garcia et al. used magnetization transfer ratio (MTR) and qMT
parameters to differentiate brain metastases from other brain
tumors in 26 patients (35). (Figure 5) Significant differences
were found in the MTR and qMT parameters (on both the
tumor rim and core) of glioblastoma, meningiomas, and brain

metastases (35). MTR on the non-contrast-enhancing region of
tumor was highest in metastases (MTR= 35.1%± 0.5), followed
by glioblastoma (MTR = 33.8% ± 1.2 and meningiomas (MTR
= 28.9% ± 1.6), and was capable of separating metastases
from meningiomas. MTR on the contrast-enhancing region
was highest in meningiomas (MTR = 30.5% ± 1.2), followed
by metastases (MTR = 27.4% ± 1.0) and glioblastoma (MTR
= 25.2% ± 0.6), and could separate glioblastoma from
meningiomas. MT exchange rate on the contrast-enhancing
region of the tumor (kf = 0.8 ± 0.1, 1.1 ± 0.1, 0.6 ± 0.0 for
brain metastases, meningiomas, and glioblastomas, respectively)
and macromolecular fraction on the non-contrast-enhancing
region of the tumor (F = 7.2 ± 0.7, 5.6 ± 0.2, 3.6± 0.7
for brain metastases, meningiomas, and glioblastomas,
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FIGURE 5 | Conventional T2-FLAIR and T1-weighted contrast-enhanced as well as magnetization transfer ratio (MTR), macromolecular concentration (F), and

exchange rate between the bound protons and free water protons (kf) images of a patient with a malignant pleomorphic glial tumor in the left temporal and occipital

lobes showing contralateral tumor extension via the splenium of the corpus callosum. Abnormal MTR values can be discerned ventrally and laterally to the altered

looking tissue on conventional MRI (black arrows). Reproduced, with permission, from Garcia et al. (35).

respectively) could distinguish between all three tumor
types (35).

Clinical Implication

Quantitative magnetization transfer imaging is largely research-
based at this time. More and larger clinical studies are needed to
validate its use in the clinical setting (Table 1). Currently, there
are no FDA approved or standardized software to post-process
the acquired data or display the results.

TRANS-MEMBRANE WATER EXCHANGE

Biologic tissue can be grossly divided into three compartments–
vascular, intracellular, and extracellular extra-vascular, with
different physiochemical properties. Water molecules move
between these two non-vascular compartments constantly. The
exchange rate of water molecules between intracellular and
extracellular compartments depends on the permeability of the
cell membrane as well as on the size and shape of the cell
(36). Transmembrane intra-to-extracellular water exchange rate
constant (kIE) is very sensitive to structure damage such as
apoptosis. During apoptosis, cells are disfigured, shrunken, and
have higher cell membrane permeability (36, 37), leading to an
increase in kIE. It has been shown that kIE increases significantly
within days after inducing apoptosis (38, 39).

Evaluate Treatment Effect
Mehrabian et al. developed a water exchange quantification
technique for dynamic contrast-enhanced MRI, to measure
the transmembrane water exchange rate (kIE) (39). Since
the transmembrane intra-to-extracellular water exchange rate
constant (kIE) is sensitive to apoptosis, and assuming effective
treatment destroys malignant cells by apoptosis, kIE can be
used to distinguish responders from non-responders to therapy.
The authors investigated the change in transmembrane water
exchange rate (kIE) between pre-treatment and 1-week post-
treatment scans, and correlated measurements with treatment
efficacy in 19 patients with brain metastases undergoing
stereotactic radiosurgery (39). Trans-membrane water exchange
rate constant is significantly increased in responders, as
determined according to RANO-BM criteria (5), than non-
responders within 1 week after treatment (p < 0.001). In
addition, the increase in transmembrane water exchange rate
(kIE) correlated with tumor shrinkage at 1 month after treatment
(R = −0.76, p < 0.001). This ability to differentiate responders
from non-responders at such early post-treatment stage can
potentially help to inform treatment plans.

Clinical Implication

Multi-center trials complying with criteria of evidence-based
medicine have not yet been completed, therefore transmembrane
water exchange imaging is primarily investigational at this
time (Table 1).
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FIGURE 6 | Example CEST amide effect maps within the tumor and immediately surrounding tissue, including edema, at baseline and 1 week post-treatment for 2

patients: (A) tumor volume decreased 1 month post-therapy and (B) tumor volume increased 1 month post-therapy. The margins of the enhancing tumor are

indicated with an arrow and outlined in black on the CEST maps. The corresponding slice from the high resolution, contrast-enhanced T1-weighted volume is shown

for comparison. Contrast-enhanced T1-weighted and FLAIR images at 1 month follow-up are shown in the third row. Reproduced, with permission, from Desmond

et al. (48).

CHEMICAL EXCHANGE SATURATION
TRANSFER (CEST)

Chemical exchange saturation transfer MRI (CEST) is a novel
MR technique that detects the chemical shift between exchanging
protons of the metabolites with the local electron cloud (40).

CEST can image certain compounds at concentrations that

are too low to be detected by standard MR imaging or MRS
(40–42). CEST is sensitive to the exchange of labile protons

(including amide protons), rapid exchange of hydroxyl protons,
and intramolecular transfer of magnetization from aliphatic
(-CH) protons to labile protons, termed as relayed nuclear
Overhauser effect (rNOE) (43). These protons are found in
metabolites such as glutamate, lactate, myo-inositol and glucose,
which are common constituents in a neoplastic milieu (44).
The most commonly used CEST metrics in cancer are amide
proton transfer (APT) (45), magnetization transfer ratio for
amide (MTRAmide), and nuclear Overhauser effect (NOE) (46).

NOE is the transfer of nuclear spin polarization from one nuclear
spin population to another via dipolar cross-relaxation (47).

Evaluation of Treatment Effect
Desmond et al. applied endogenous CEST-MRI to determine
response of 25 patients with brain metastases within 1 week after
stereotactic radiosurgery (SRS) treatment (48). Reduced CEST
signal in responders and increased CEST in non-responders were
observed (Figure 6). Furthermore, changes in CEST signals at 1-
week post treatment correlated with the change in tumor volume
measured at 1 month post-treatment. In particular, the width of
the NOE peak in tumor (correlation coefficient, r = −0.55, p
= 0.028) and amplitude of NOE peak on the normal-appearing
white matter (r= 0.69, p= 0.002) yielded the highest correlations
(48). The amplitude of the NOE peak in the contralateral normal-
appearing white matter (NAWM) at baseline (before SRS) was
inversely correlated with the degree of tumor volume change at
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1 month post-treatment (r=−0.69, p= 0.002), which may be an
indicator of tumor aggressiveness (48).

Mehrabian et al. used CEST to differentiate radiation necrosis
from tumor progression in 16 patients with brain metastases,
with nine confirmed radiation necrosis and seven tumor
progression (49). Both MTRAmide and NOE were able to
differentiate progressive tumors from radiation necrosis with
high accuracy (p< 0.0001) (49). HigherMTRAmide wasmeasured
in tumor progression (MTRAmide = 12.0 ± 1.9), compared to
radiation necrosis (MTRAmide = 8.2 ± 1.0). Higher NOE was
measured in tumor progression (NOE = 12.6 ± 1.6), compared
to radiation necrosis (NOE= 8.9± 0.9).

Clinical Implication

Chemical exchange saturation transfer shows promise as a tool
for molecular imaging of CNS malignancy. Although CEST is
largely a research tool currently, there are rapid development
in CEST techniques for improving the acquisition speed and
spatial coverage (50). More studies in humans and standardized
techniques to improve the specificity of the methods will be
needed in order to translate into the clinical setting (50) (Table 1).

PERFUSION IMAGING

The most commonly used techniques for assessing tumor
perfusion are dynamic susceptibility contrast (DSC), dynamic
contrast-enhanced (DCE), and arterial spin labeling (ASL)
imaging (Figure 7). Different perfusion parameters are derived
from each technique. For CNS tumor imaging, cerebral blood
volume (CBV) and cerebral blood flow (CBF) are commonly
studied metrics. CBV measures the amount of blood per volume
of tissue. CBFmeasures the amount of blood per volume of tissue
per unit of time. Both CBV and CBF reflect tumor vascularity.
In addition to measuring absolute values, CBV and CBF are
often measured relative to an internal control (typically the
contralateral normal parenchyma). The ratios are often referred
to as relative cerebral blood volume (rCBV) and relative cerebral
blood flow (rCBF), respectively. In contrast to DSC and DCE
imaging, ASL is a non-contrast method for determining CBF.

Differentiation of Malignancy Types
Server et al. measured DSC perfusion parameters within the
tumor and peritumoral regions to differentiate glioblastomas (n
= 40) frommetastases (n= 21) (51). The rCBV and rCBF within
the peritumoral region were significantly higher in glioblastomas
(rCBV = 1.8 ± 0.7, rCBF = 2.1 ± 1.4) than metastases (rCBV
= 0.6 ± 0.1, rCBF =0.7 ± 0.5). An rCBV threshold of 0.8
yielded 95% sensitivity and 92% specificity for differentiating
glioblastomas from metastasis. Other similar studies showed
high negative predictive value and high specificity for detecting
metastases with a peritumoral rCBV cutoff of 1.0 (52, 53).

Interestingly, the rCBV and rCBF within the tumor were not
significantly different between glioblastomas andmetastases (51).
However, studies have shown that neoplasms (rCBV = 4.28 ±

2.11) have higher rCBV than infectious lesions (rCBV = 0.63
± 0.49), and intratumoral rCBV can be helpful to distinguish
infectious lesions from neoplasms (54).

Sunwoo et al. performed qualitative and quantitative
analyses on ASL-CBF in 128 patients with glioblastoma (n
= 89) and brain metastases (n = 39) (55). Intratumoral
and peritumoral rCBF were assessed. Both qualitatively and
quantitatively, glioblastomas demonstrated higher intratumoral
and peritumoral rCBF than metastases. They report an area
under the curve (AUC) of 0.835 for differentiating the two with
peritumoral rCBF (55).

Evaluation of Treatment Effect
Tumor recurrences typically develop increased abnormal
vasculature, which is represented by increased rCBV. Relative
peak height (rPH), which is the maximum change in signal
during the passage of contrast agent, correlates with tumor
capillary blood volume. Tumor recurrences will also have
relatively higher rPH (56). Percentage of signal-intensity
recovery (PSR), an indicator of blood-brain-barrier integrity,
reflects the degree of contrast agent leakage caused by alteration
of capillary permeability. Tumor recurrences often have
increased permeability due to abnormally formed vessels,
which allow more gadolinium to leak into and remain in the
extracellular space, leading to persistent gadolinium effects
of decreasing signal and consequently decreased PSR. In
contrast, in radiation necrosis, the vasculature is damaged,
with resulting decreased blood flow, which is represented by
decreased rCBV. Also, as there is less leakage of contrast into
the extracellular space, the PSR will be higher in radiation
necrosis (56).

Barajas et al. used DSC perfusion imaging to aid in the
diagnosis of tumor recurrence vs. radiation necrosis; the
authors assessed a total of 30 lesions in 27 patients with
brain metastases, which were enlarging after SRS. They showed
that rCBV and rPH were statistically higher and PSR was
lower in recurrent tumor than in cases of radiation necrosis.
Additionally, they demonstrated that PSR was the best indicator
of radiation necrosis when a cutoff value of >76.3% was
used, yielding a sensitivity of 95.65% and a specificity of
100% (56).

Ktrans, derived from DCE, reflects the permeability of the
tissue. An increased Ktrans suggests tumor recurrence. Morabito
et al. demonstrated similar accuracy of DCE compared to DSC in
distinguishing between tumor recurrence and radiation necrosis
in a total of 28 patients (total of 72 lesions) in both primary brain
tumors (15 cases) and metastatic lesions (57 lesions) treated with
SRS. The rCBV values for DSC and the Ktrans values for DCE
were compared and showed similar accuracy in differentiation
radiation necrosis from tumor progression (57).

Clinical Implication

MR perfusion imaging is a widely available clinical technique
used for assessing tumor vascularity, for differentiating between
tumor types, and for differentiating tumor recurrence from
treatment effect (Table 1). However, widespread adoption has
been limited by lack of imaging acquisition and post-processing
standardization across multiple and different institutions.

Frontiers in Neurology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 270

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Tong et al. Advanced Imaging of Brain Metastases

FIGURE 7 | Utility of arterial spin labeling (ASL), dynamic contrast enhancement (DCE), and dynamic susceptibility contrast (DSC) perfusion MRI to differentiate

between recurrent tumor and treatment effect. Top panel shows recurrent tumor in a 34-years-old female with a left frontal breast cancer metastasis that was

previously resected and treated with stereotactic radiosurgery. ASL, DCE, and DSC images demonstrate high cerebral blood flow, Ktrans, and cerebral blood volume

(arrows), respectively, associated with the contrast-enhancing lesion. Tumor was confirmed on histopathology from subsequent re-resection. Bottom panel shows

treatment effect in a 65-years-old female with a right frontal lung cancer metastasis who was previously resected and treated with stereotactic radiosurgery. ASL,

DCE, and DSC images demonstrate low cerebral blood flow, Ktrans, and cerebral blood volume (arrowheads), respectively, associated with the mildly enhancing

lesion. Treatment effect was confirmed with negative PET/MRI (not shown) and a stable 3-months follow-up MRI (not shown).

RADIOMICS AND ARTIFICIAL
INTELLIGENCE

Treatment and prognosis for patients with primary CNS
malignancies and different types of metastases are different,
which makes distinguishing between them important. However,
these neoplastic brain lesions have overlapping features on
conventional MRI, such as enhancement, surrounding edema
and central necrosis. More sophisticated features, beyond
standard morphometric features, are needed to distinguish them.

Texture analysis, a common radiomics approach, uses
high-order statistical methods to extract quantitative patterns
and inter-pixel relationships within an image. The generated
computational data are then mined by using various machine-
learning algorithms to develop models that may potentially
improve diagnostic, prognostic, and predictive accuracy (9).
Texture analysis can characterize tumor heterogeneity by
evaluating relationships of gray pixels/voxels to each other using
mathematical techniques such as gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), etc. Texture
analysis has been used to distinguish brain metastases from
various primary malignancies (58–60).

Differentiation of Malignancy Types
Petrujkic et al. performed texture analysis on 30 patients with
glioblastomas and 25 patients with solitary metastases on T2-
weighted, susceptibility weighted, and post-contrast MPRAGE

(CET1) images (61). Five textural parameters were calculated–
Angular second moment (SASM), Inverse difference moment
(SIDM), Contrast (SCON), correlation (SCOR), and Entropy
(SENT). Compared to glioblastomas, metastases had higher SENT ,
SCOR, and SCON , and lower SASM and SIDM (61). All five
textural parameters from T2-weighted imaging were significantly
different between glioblastoma and metastasis. Inverse difference
moment (SIDM) on T2-weighted imaging was most useful
for differentiating the two (sensitivity = 83.3%). On CET1
images, four textural parameters (SASM , SIDM , SCON , SENT)
were significantly different, with Inverse difference moment
(SIDM) being most specific (specificity = 84%). Performance was
better when multi-sequence textural parameters were combined,
achieving an AUC of 0.908, with 86.7% sensitivity and 80.0%
specificity (61).

Similar results were reported in another study using perfusion
imaging by Mouthuy et al. (62). Other investigators explored
tumor heterogeneity bymeans of both 2D and 3D texture analysis
in search for structural differences between brain metastases
originating from different systemic cancers (63). Ortiz-Ramon
et al. used random forest machine-learning approach based on
texture analysis in 38 patients, to classify the primary origins
of three brain metastases– lung cancer, melanoma, and breast
cancer (64). Forty-three rotation-invariant 3D and 2D texture
features were examined. Overall, 3D texture features were more
discriminative than 2D features. A random forest classifier, using
four 3D texture features, was accurate in differentiating lung
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FIGURE 8 | Probability maps, generated by neural-network, overlaid on post-contrast BRAVO image in patient with three lung carcinoma metastases. The yellow

outline represents “ground-truth” segmentation manually drawn by neuroradiologists.

cancer metastases from breast cancer metastases (AUC = 0.963
± 0.054). Another random forest classifier, using eight 3D texture
features, was very good in differentiating lung cancer metastases
from melanoma metastases (AUC = 0.936 ± 0.070). However,
none of their random forest classifiers were able to differentiate
breast cancer metastases from melanoma metastases (AUC =

0.607 ± 0.180), presumably because of a limited small dataset.
Nonetheless, texture analysis is a promising tool for classifying
brain neoplasms.

Automatic Detection and Segmentation
Typical planning in stereotactic radiosurgery (SRS) requires
accurate detection and meticulous segmentation of each
target lesion. Both steps are time-consuming and subject to
interobserver variation. Artificial intelligence is well-suited for
tackling manually tedious and repetitive tasks that require high-
precision, such as brain metastases detection and segmentation.
Several deep learning (DL) algorithms have been developed to
detect and segment primary brain metastases, by learning from
voxel-wise labeled MRI data (65–67).

Grovik et al. designed a convolution neural network
(CNN) for automatic detection and segmentation of brain
metastases using multisequence (pre-contrast T1-weighted
CUBE, post-contrast T1-weighted CUBE, post-contrast T1-
weighted BRAVO, and 3D CUBE FLAIR)MRI data as input (68).
Ground truth segmentations of the metastases were manually
outlined on each slice depicting the lesion on post-contrast
BRAVO images. The network’s input was a slab of seven slices
from each of the four sequences (pre-contrast T1-weighted
CUBE, post-contrast T1-weighted CUBE, post-contrast T1-
weighted BRAVO, and 3D CUBE FLAIR). The center slice of
the slab was selected at the center of the metastasis. The CNN

was based on the GoogLeNet architecture and was trained using
TensorFlow. The output was a probability map (ranging between
0 and 1) of whether the voxel represented a metastasis (Figure 8).
Voxel-wise detection accuracy was 0.98 +/– 0.04, corresponding
to 94% sensitivity and 97% specificity. According to subgroup
analysis and based on disease burden, the ability to detect
metastatic voxels was better in patients with few (1–3) metastases
than in those with more than four. Segmentation performance, as
measured by the Dice coefficient, was slightly better for patients
with 4–10 metastases. Using the optimal probability threshold,
on a lesion-by-lesion basis, the sensitivity was 83 +/– 22%, with
a false positive rate of 8.3 lesions per cases. False positive lesions
were found primarily near vascular structures at the skull base
such as the venous sinuses or over the cortex. Overall, the CNN
performed best on patients with few metastases, both in terms of
sensitivity and the number of FPs.

Other groups, using different variations of neural networks
and imaging sequences as input, have reported comparable
results (65–67). In essence, the CNNs have the potential to
integrate detection, segmentation, and quantification of brain
metastases using a streamlined process. The output of the CNN
can also potentially be used as masks for radiotherapy planning.

Evaluate Treatment Effect
Larroza et al. used texture analysis and Support Vector
Machine classification (a type of machine-learning classification
technique) to differentiate between brain metastases and
radiation necrosis on contrast-enhanced T1-weighted images
(69). A total of 179 texture features were extracted from 115
lesions from 73 patients (60 untreated lesions, 23 SRS-treated
lesions, and 32 radiation necrosis). A support vector machine was
used to find a subset of features that attained best classification
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performance. The highest classification accuracy was achieved by
a machine trained with treated metastases, using a subset of 10
features (AUC = 0.94 ± 0.07). The second best performer was
a machine trained with both treated and untreated metastases,
using a subset of seven features and tested on treated metastases
(AUC = 0.93 ± 0.02). Texture analysis on conventional MRI
seems to be capable of differentiating between brain metastasis
and radiation necrosis with high accuracy.

Clinical Implication

Studies using radiomics and machine learning in all fields of
medicine are rapidly growing; however, validation with large
multicenter and heterogeneous datasets is needed to confirm
performance accuracy before deployment in the clinical neuro-
oncology setting (Table 1).

CONCLUSION

Treatment of brain metastases has become increasingly
individualized as surgical and radiosurgical techniques have
evolved over the past several decades. Accurate diagnosis and
assessment of brain metastases in patients with systemic cancers
has important implications for patient prognosis and treatment
strategy. Newer anatomic imaging techniques such as “black-
blood” MR imaging accentuate detection of enhancing brain
parenchymal metastases and has been reported to have more
sensitivity for the detection of leptomeningeal carcinomatosis.
Overlapping CUBE-MIP images make identifying brain
metastases easier and quicker. Advanced MRI techniques that
penetrate beyond macrostructures of brain metastases, such
as MRS, MR perfusion, CEST, and qMT, provide quantitative

parameters that are sensitive to underlying tissue microstructure
and pathophysiology. These parameters may hold promise as
imaging biomarkers for monitoring disease progression and
predicting treatment outcome. However, it is important to note
that some of the MRI techniques highlighted in this review are
still largely research-based tools and have not been integrated
into clinical practice. Systematic validation using standardized
protocols in the clinical setting is needed before any potential
efficacy or utility of these methods is realized.

Artificial intelligence can enhance assessment of brain
metastases. Texture analysis computes a large amount of intrinsic
features for quantitative comparisons. Various machine-learning
algorithms can be applied in tandem to extract useful features
for classification. Deep Learning, utilizing neural networks,
can automate detection and segmentation with high accuracy
and precision.

These important advancements are helpful for promoting
individualized risk-stratification, tumor characterization, and
treatment decisions. However, further investigations are needed
to standardize these advanced techniques and measurements.
Larger multicenter clinical trials are also imperative to fully
evaluate the clinical utility of these various techniques and
image data.
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