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Breast cancer (BC) is the most frequent cancer in women and the main cause of cancer-
related deaths in the globe, according to the World Health Organization. The need for
biomarkers that can help predict survival or guide treatment decisions in BC patients is
critical in order to provide each patient with an individualized treatment plan due to the wide
range of prognoses and therapeutic responses. A reliable prognostic model is essential for
determining the best course of treatment for patients. Patients’ clinical and pathological
data, as well as their mRNA expression levels at level 3, were gleaned from the TCGA
databases. Differentially expressed genes (DEGs) between BC and non-tumor specimens
were identified. Tumor immunity analyses have been utilized in order to decipher molecular
pathways and their relationship to the immune system. The expressions of KIF4A in BC
cells were determined by RT-PCR. To evaluate the involvement of KIF4A in BC cell
proliferation, CCK-8 tests were used. In this study, utilizing FC > 4 and p < 0.05, we
identified 140 upregulated genes and 513 down-regulated genes. A five-gene signature
comprising SFRP1, SAA1, RBP4, KIF4A and COL11A1 was developed for the prediction
of overall survivals of BC. Overall survival was distinctly worse for patients in the high-risk
group than those in the low-risk group. Cancerous and aggressiveness-related pathways
and decreased B cell, T cell CD4+, T cell CD8+, Neutrophil andMyeloid dendritic cells levels
were seen in the high-risk group. In addition, we found that KIF4A was highly expressed in
BC and its silence resulted in the suppression of the proliferation of BC cells. Taken
together, as a possible prognostic factor for BC, the five-gene profile created and verified in
this investigation could guide the immunotherapy selection.
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INTRODUCTION

Breast cancer (BC) remains to be the most common cancer and the most frequent cause of cancer
death in females worldwide (Buja et al., 2020; Hanker et al., 2020). Progress in pathological
characterisation and molecular processes research has made it possible to better diagnose and
treat BC (Yin et al., 2020). However, morbidity and fatality rates for BC patients have risen by over 20
and 14% since 2008 (Tay and Tan, 2021). Until further notice, the most effective method of
preventing and controlling local recurrence of BC is adjuvant chemotherapy and radiotherapy
followed by surgery (Eini et al., 2021; Ye et al., 2021). The majority of breast cancer tumors were
discovered clinically at an advanced stage despite the fact that considerable efforts were made to
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improve the detection and treatment, and the disease Karyotypic
studies further show that BC gets increasingly aggressive by
accumulating genetic alterations in a stepwise manner (Garcia-
Martinez et al., 2021; Sivaganesh et al., 2021). Increasing attention
has been paid to individualized and accurate therapeutic
strategies in the field of clinical treatment. Thus, finding new
biomarkers and targets for prognostication is therefore seen as a
useful strategy for achieving this objective.

BC is not a single disease, but rather a collection of disorders with
a wide range of clinical characteristics, treatment responses, and
outcomes, even among individuals who are in the same stage of the
disease (De Cicco et al., 2019). Recent advances in “omics”
technology have revealed new details about the molecular
complexity of BC, inspiring scientists to look for new ways to
better identify patients at risk for the disease (Garrido-Castro
et al., 2019; Tagliafico et al., 2020). Multigene signatures may be
more accurate than conventional risk classification methods in BC,
according to a number of studies (Sporikova et al., 2018; Li et al.,
2021). For instance, Five-gene prognostic model (KRT6A, E2F7,
DCBLD2, ASPM andADM) derived from the TCGAPAADdataset
and shown to be accurate in predicting overall survival. (Liu et al.,
2021). Zhang et al. discovered a novel autophagy-related long
noncoding RNA signature in BC patients that may bring new
insights into predicting the prognosis of patients with BC (Wu
et al., 2021). According to a recent study, a new prognostic model
connected with nine ferroptosis-related genes was developed, and
the model’s good prediction capacity was confirmed by three
databases: ICGC, GEO, TCGA datasets (Liang et al., 2020).
Prognostic gene signatures based on Chip sequencing (GEO and
TCGA, for example) might uncover more survival-associated genes,
which in combination with clinical and pathological factorsmay be a
strong tool for the prediction of the outcomes of BC and tailored
treatments (Zhang et al., 2018; Gao et al., 2019; Xu et al., 2020).

In the present study, we identified a novel five-gene signature
for patients with BC. Our findings might provide an effective
prognostic predictor and a new view for individual treatments of
BC patients.

MATERIALS AND METHODS

Patient Data Sets
The TCGA (https://cancergenome.nih.gov/) was used to acquire
clinical and pathological data from BC patients. The edgeR software
was used to normalize gene expression. In this study, a total of 1097
TCGA female BC patients with mRNA expression profiles were
used. BC samples with survival information were included in this
study. We employed the negative binomial distribution approach to
discover differently expressed genes (DGEs) between BC specimens
and non-tumor tissues. The Limma package was applied to perform
the analysis (Ritchie et al., 2015). A generalized linear model for each
gene is fitted using the Limma package’s negative binomial
distribution, and empirical Bayes shrinkage is used to estimate
dispersion and fold-change. There were no genes with an average
count value of less than 1 that could be included in the raw data set.
When |log2 fold change (FC)| >4 and a false discovery rate (FDR) <
0.05 were taken into consideration, we employed Limma program to

identify the differentially expressed DGEs. In addition, BC gene
expression profiles (GSE7904) were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). GSE7904 dataset included 19 non-tumor specimens and
43 BC specimens.

GO and KEGG Pathway Analysis
When performing a GO analysis, genes are broken down into
their molecular functions, biological processes, and cellular
components, all of which are addressed in separate sections of
the report. KEGG is a method for analyzing data to determine
which biological pathways a set of genes is particularly prominent
in. “clusterProfiler” R package was used to perform GO and
KEGG pathway analysis based on DEGs between BC specimens
and non-tumor specimens (Yu et al., 2012).

Survival Analysis
The TCGA database has clinical data and related information
downloaded, and we now need to gather data on over-survival
(OS), eliminating entries for instances for which there are no data.
The remaining case data was used for further survival analysis.
Our survival experiments focused on the top 20 genes that
differed between BC specimens and non-tumor specimens.
Assays of survival curves were done by the use of the Kaplan-
Meier methods.

Verification of Genes in GEPIA Database
An online database that utilizes data from theUCSCXena program
is called the Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer.pku.cn/). It is possible to use the
database to look for changes in gene expression between various
malignancies and healthy tissues, as well as the overall survival rate,
by using the expression analysis and custom data analysis methods.
Cancer and healthy tissues can be compared using the GEPIA
database to examine expression differences. We used the GEPIA
database to confirm the hub gene’s mRNA expression level.

Construction and Validation of a Prognostic
Gene Signature
LASSO penalized Cox regression was used to build a prognostic
model following the collection of survival-related DGEs to avoid
overfitting (McEligot et al., 2020). Centralization and
normalization (using R’s “scale” function) of the TCGA
expression data resulted in the risk score being tallied, and the
risk score formula was as follows: Risk Score = ∑7

i Xi×Yi (X:
coefficients, Y: gene expression level). By comparing the median
OS time across low- and high-risk BC subgroups, all patients were
classified as either low- or high-risk. The “survival”, “survminer”
and “timeROC” R packages were employed.

Difference of Tumor-Infiltrating Immune
Cells in BC
In order to examine the connections between risk score and the
infiltration levels of six immune cells (including dendritic cells,
macrophases, neurphils, CD8 + T cells, CD4 + T cells and B cells,
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the public database Tumor Immune Estimation Resource
(TIMER) was applied.

Analyses and Visualization of Somatic
Mutations
The Maftools R/Bioconductor software was used to retrieve the
mutational data from the MAF file. Following that, the MAF file
summary was shown using the plotmafSummary function to
show the number of variation types and classifications for each
variant. Using the oncoplot tool, the top 10 mutant genes and
POLE were plotted using the OncoPlot program. In order to plot
POLE’s lollipopPlot, the lollipopPlot function was used.

Cell Lines and RNA Interference
The American Type Culture Collection provided the human BC
cell lines MCF-7, SKBR, BT-20, ZR-75-1, MDAMB-231, and an
immortalized breast epithelial cell line MCF-10A. In DMEM, ZR-
75-1 and BT20 cells were cultivated at 37°C in a humidified
atmosphere of 5% CO2, whereas MCF7, MDA-MB-231, and
SKBR3 were cultured in RPMI-1640 with 10% FBS, 100 U/mL
penicillin, and 100 mg/ml streptomycin.

Sigma-Aldrich provided KIF4A small interfering RNA (si-KIF4A)
and a negative control siRNA. As instructed by themanufacturer, cells
were transfected using Lipofectamine 2000 (Invitrogen).

Real-Time Quantitative PCR
Trizol was used to lyse the cells, and chloroform and isopropanol
were used to extract the RNA. After determining the RNA
concentration, the cDNA (complimentary deoxyribonucleic
acid) was reverse-transcribed. ABI 7500 instruments are used
for real-time quantitative PCR. GAPDH was measured as an

internal control and the 2−ΔΔCT method was employed to
determine the relative expression of KIF4A. The primers used
were as follows: KIF4A forward, 5′-GAGCTATTTGCCGAC
AAGGC-3′; KIF4A reverse, 5′-GGAGTTTGCAAGACCCAT
GC-3′; GAPDH forward, 5′-AGTTGCGTTACACCCTTTCTT
G-3′; GAPDH reverse, 5′-TCACCTTCACCGTTCCAGTTT-3′.

Cell Growth Assay
For the cell growth experiments, 4 × 103 cells per well were seeded
into 96-well plates, with three wells used for each tested group. Cell
numbers were evaluated over 5 days using a cell counting kit-8 (CCK-
8) (SAB, Laifu Technology, Nanjing, China). A 10 μL volume of
CCK-8 reagent was applied to each well, and the plate was incubated
at 37°C for 2 h. Subsequently, in eachwell, using a spectrophotometer,
we measured the absorbance at 450 nm for each sample.

Statistical Analysis
All experiments were performed in triplicate. Statistical analyses were
performed usingR software v3.5.0, SPSS (RCoreTeam,Massachusetts,
USA) or GraphPad Prism software (GraphPad Software, San Diego,
CA, USA). Student’s t-test and one-way ANOVA were respectively
employed to evaluate two ormultiple groups, for statistical significance.
The Kaplan-Meier methods were applied to create the survival curves.
p < 0.05 was considered statistically significant.

RESULTS

Identification of the DGEs Between BC
Specimens and Non-Tumor Specimens
To screen possible regulators in BC, we analyzed TCGA datasets
using Limma package, and identified many DGEs between BC

FIGURE 1 | The identification of DGEs in BC based on TCGA datasets. (A) Heat map of all DGEs between BC specimens and normal breast specimens. (B)
Volcanic map of DGEs based on the standard of FC > 4.
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specimens and normal breast specimens, which were shown in
Heat map (Figure 1A). Then, we screened 140 upregulated genes
and 513 down-regulated genes using FC > 4 and p < 0.05, which
were shown in Volcanic map (Figure 1B).

GO and KEGG Enrichment Analysis
ClusterProfiler was used to undertake enrichment analysis of GO
and KEGG pathways in order to better understand the potential
biological role of common DEGs. The results of KEGG assays
showed that 140 upregulated genes were mainly enriched in p53
signaling pathway, Viral carcinogenesis, Transcriptional
misregulation in cancer and Systemic lupus erythematosus
(Figure 2A). The results of GO assays revealed that 140
upregulated genes were mainly enriched in spindle
organization, spindle assembly, sister chromatid segregation
and regulation of sister chromatid segregation (Figure 2B).
The results of KEGG assays showed that 513 down-regulated
genes were mainly enriched in cAMP signaling pathway, Vascular
smooth muscle contraction, Tyrosine metabolism and Renin
secretion (Figure 2C). The results of GO assays showed that

513 down-regulated genes were mainly enriched in response to
steroid hormone, response to peptide hormone, response to
ketone and response to glucocorticoid (Figure 2D).

The Screen of Survival-Related Genes in BC
Then, we used Kaplan-Meier method to identify the survival-
related genes using top 20 dysregulated genes in BC. As shown in
Figure 3A, we found that high expressions of SFRP1, SAA1 and
RBP4 were related to favorable long-term survival in BC patients,
while high expression of KIF4A, UBE2C and COL11A1 was
associated with poor prognosis in BC patients (Figure 3B).
Moreover, we used GEPIA to further explore the expression of
SFRP1, SAA1, RBP4, KIF4A, UBE2C and COL11A1 in both
TCGA datasets and GTEx data.We confirmed that the expression
of KIF4A, UBE2C and COL11A1 was distinctly increased in BC
specimens compared with normal breast specimens, while the
expression of SFRP1, SAA1 and RBP4 was distinctly decreased in
breast cancer specimens (Figure 4A). The association among the
six genes were shown in Figure 4B. There is a positive or negative
association among them.

FIGURE 2 | Function Enrichment Analysis of DEGs. (A,B) KEGG and G Analysis of 140 upregulated genes in BC. (C,D) KEGG and G Analysis of 513 down-
regulated genes in BC.
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Construction and Validation of a Prognostic
Signature
Then, the above six genes were input into the LASSO regression
model for feature selection. Under penalizing conditions (alpha =
1), five genes scores with nonzero coefficients were selected to
formulate the risk score: Risk score = (–0.0305 × SFRP1
expression) + (–0.0194 × RBP4 expression) + (0.033 × SAA1
expression) + (0.019 × COL11A1 expression) + (0.0788 × KIF4A
expression) (Figures 5A,B). The samples were separated into two
categories based on the median risk score obtained from all
LUAD samples: low-risk and high-risk groups. Figure 5C
depicts a survival summary as well as a heatmap of gene
expression levels in various tissues. According to the results of
the survival analysis, patients in the high-risk group showed a
distinctly shorter overall survival (Figure 5D). The area under the
ROC curve for 1, 3, and 5 years OS were 0.578, 0.6 and 0.605
(Figure 5E). A study was conducted to determine the correlations
between the risk score model and the presence of immune cells.
As shown in Figure 6 B cell, T cell CD4+, T cell CD8+, Neutrophil,
Macrophage and Myeloid dendritic cells were positively
correlated with risk score. It has been confirmed that the
levels of immune cells play an important role in the
progression of various tumors (Sabado et al., 2017; Tanaka

and Sakaguchi, 2019). Our findings further indicated the
potential reason why our model was associated with the
clinical outcome of BC patients.

Knockdown of KIF4A Suppressed the
Proliferation of BC Cells
We assessed numerous basic aspects of BC somatic mutation data
from the TCGA datasets using the waterfall andmaftools analyses
provided by the R package. As identified by a waterfall plot, the
top 10mutated genes were TP53, PIK3CA, TTN, CDH1, GATA3,
MUC16, KMT2C, MAP3K1, RYR2, HMCN1, and the somatic
mutation rate was also shown (Figures 7A,B). The summary plot
exhibited that the main variant classification was missense
mutation, It was discovered that SNP was the most prevalent
type of variant, and that cytosine altered into thymine was the
most common type of SNV class (Figure 7C). To further
determine the expression of KIF4A in BC, we analyzed
GSE7904, finding that KIF4A expression was distinctly
upregulated in BC specimens compared with non-tumor
specimens (Figure 8A). Then, we performed RT-PCR to
examine the expression of KIF4A in several BC cells, finding
that KIF4A expression was distinctly upregulated in Human BC
cell lines (MCF-7, SKBR, BT-20, ZR-75–1, MDAMB-231)

FIGURE 3 | Identification of survival-related DGEs in BC patients. (A) high expression of SFRP1, SAA1 and RBP4were associated with favorable long-term survival
in BC patients. (B) High expression of KIF4A, UBE2C and COL11A1 was associated with poor prognosis in BC patients.
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compared with MCF-10A cells (Figure 8B). By the use of si-
KIF4A, we built KIF4A-knockdown cell lines (MCF-7 and BT-20,
which was confirmed by RT-PCR(Figure 8C). Moreover, the

results of CCK-8 assays revealed that knockdown of KIF4A
distinctly suppressed the proliferation of MCF-7 and BT-20
cells (Figures 8D,E). Our finding suggested that KIF4A may

FIGURE 4 | (A) The expression of the six survival-related genes in BC specimens and normal breast cancer specimens from TCGA and GTEx data. (B) The
associations between the expressions of the six survival-related genes.
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influence the prognosis of BC patients via promoting the
proliferation of BC.

DISCUSSION

Because of its complex molecular and cellular heterogeneity, BC is
the most prevalent malignant tumour in women, accounting for
one-quarter of all female cancer cases (Matsen and Neumayer,
2013; Fahad Ullah, 2019). Its incidence is increasing year after
year, and it is the most common malignant tumour in women
(Maughan et al., 2010). As a result, better understanding of BC
biology may provide clinicians with new strategies to utilise in the
treatment of the disease. Comprehensive genomic studies
demonstrating the impacts of RNA have attracted a great deal

of attention recently (Azim and Partridge, 2014; van ’t Veer et al.,
2002). A large number of potentially useful mRNAs must be
identified in order to enhance the clinical outcomes of BC
patients (Sun et al., 2019; Zhang and Yu, 2020). However,
there is a limited number of particular markers that may be
utilised to demonstrate therapeutic results, and prognostic
criteria are significant in the management of BC patients.
Thus, there is an urgent need for the identification of markers
of BC in order to minimise mortality and improve the prognosis
of cancer patients.

Using the TCGA database, we examined the gene expression
variations between BC and normal breast tissues in this work in
order to discover possible gene biomarkers. After screening
DEGs, Lasso analysis was applied to build a risk model for
predicting the prognosis of BC. We identified five genes:

FIGURE 5 | LASSO regression analysis of TCGA datasets identifies a five-gene risk profile for overall survival. (A) Adjustment of the proportional hazards model’s
tuning parameters using cross-validation. (B) Scan of six BC genes with the LASSO coefficient spectrum. (C) Patient survival and BC status, as well as risk score
distribution. (D) Kaplan-Meier was used to categorise patients based on their median risk of developing BC. (E) The risk signature’s predictive power was demonstrated
using ROC curves.
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SFRP1, RBP4, SAA1, COL11A1 and KIF4A. high expressions of
SFRP1, SAA1 and RBP4 were related to favorable long-term
survival in BC patients, while high expression of KIF4A and
COL11A1 was associated with poor prognosis in BC patients. In
addition, patients in the high-risk group exhibited distinctly lower
overall survivals, demonstrating that the four-gene signature had
a good ability to predict mortality.

Various cell types are critical to tumour immunology, and the
tumour microenvironment (TME) is a fundamental component
of cancer (Ren et al., 2021). The response to immunotherapy may
be influenced by the TME infrastructure and the interactions
between cancer cells and TME throughout the onset and course of
the disease (Crespo et al., 2013; Sun et al., 2018). As part of the
tumour stroma, tumor-infiltrating immune cells play a key role in
tumour progression and response to cancer therapy (Certo et al.,
2021; Singleton et al., 2021). Researchers looked into the
connections between the risk score model and immune cell
infiltration. We found that B cell, T cell CD4+, T cell CD8+,
Neutrophil, Macrophage and Myeloid dendritic cells were
positive correlated with risk score, suggesting the importance
of our signature in the immune system.

Secreted frizzled-related protein 1 (SFRP1) belongs to the
secreted glycoprotein SFRP family (Baharudin et al., 2020;
Cisneros et al., 2020). Since SFRP1 has been found to be
down-regulated in a number of human malignancies, it has

been designated as a tumour suppressor gene. This is mostly
due to epigenetic inactivation by DNA methylation or
transcriptional silence by miRNAs (Zhang et al., 2019;
Sunkara et al., 2020). SFRP1 protein expression has been
shown to be closely linked to BC, according to one study
(Veeck et al., 2006; Schäfer et al., 2019). SFRP1’s usefulness as
a biomarker for chemotherapy response in BC is supported by
associations with age and tumour grade (Gregory et al., 2019).

Retinol binding protein 4 (RBP4) is a 21-kDa protein
belonging to the lipocalin family and is a retinol transporter in
the blood (Steinhoff et al., 2021). Growth, eyesight, and metabolic
disorders are all impacted by RBP4, an adipokine mostly
produced in the liver and fat (Wang et al., 2018; Zhao et al.,
2021). In recent years, several studies have reported that RBP4
was dysregulated in several types of tumors (Fei et al., 2017;
Karunanithi et al., 2017). However, the function of RBP4 was
rarely reported in BC.

SAA1 protein belongs to a member of the serum amyloid A
family of apolipoproteins (Jiang et al., 2021). An important acute-
phase protein known as SAA1 is increased in response to
inflammation and tissue injury (Zhou et al., 2019; Gan et al.,
2020). Besides, suppression of SAA1 expression can also occur
after surgery or in late cancers. The prognostic value of SAA1 in
BC has been frequently reported (Cao et al., 2021; Olivier et al.,
2021).

FIGURE 6 | The relationships between the risk score model and immune cell infiltration were investigated based on TCGA samples.
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Kinesin family member 4A (KIF4A), a KIF protein, is an
essential chromosome-associated molecular motor encoding
a 140-kDa protein (Cuijpers et al., 2020). KIF4A has been

implicated in the regulation of chromosomal condensation
and segregation, middle-spindle formation, and mitotic
cytokinesis, according to previous research. Further

FIGURE 7 | BC mutation cohorts in TCGA datasets. (A,B) Waterfall diagram depicting the TCGA BC cohort’s top 10 most frequently mutated genes, including
KIF4A. (C) Overview of mutations in all BC samples.
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researches have shown that KIF4A operates as an oncogene
and plays critical roles in a number of malignancies,
including breast cancer, prostate cancer and colorectal
cancer (Matsumoto et al., 2018; Xue et al., 2018; Cao et al.,
2020). In this study, we analyzed BC somatic mutation data
from the TCGA database, and found that KIF4A showed a
high level of somatic mutation. Then, we chose it for further
study. Based on the results of GSE7904, we further confirmed
that KIF4A expression was distinctly upregulated in BC
specimens. The results of RT-PCR also confirmed that
KIF4A expression was highly expressed in BC cells, which
was consistent with the results form TCGA datasets. We
further explored its function, finding that knockdown of
KIF4A distinctly suppressed the proliferation of BC cells,
suggesting that it acted as a tumor promotor in BC
progression.

Several limitations existed in our study. First, Because the
sample lacked certain clinical follow-up information, we were
unable to identify predictive biomarkers based on criteria such as
the existence of other health disorders. Secondly, bioinformatic
approaches using RNA-seq data revealed the immunological
landscape. Noise may have affected this evaluation. Thus, a
larger number of participants in the experiments, along with
additional genetic testing, will be needed in the future.

CONCLUSION

Here, A collection of biologically significant genes and a five-gene
signature that has been independently validated have been developed
using integrated studies. Hopefully, our 5-gene signature may be a
clinically beneficial tool for individualized treatment of BC.
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Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 91212510

Yang et al. Five-Gene Signature in Breast Cancer

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Azim, H. A., Jr., and Partridge, A. H. (2014). Biology of Breast Cancer in Young
Women. Breast Cancer Res. 16, 427. doi:10.1186/s13058-014-0427-5

Baharudin, R., Tieng, F. Y. F., Lee, L. H., and Ab Mutalib, N. S. (2020). Epigenetics
of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 12, 445. doi:10.
3390/cancers12020445

Buja, A., Pierbon, M., Lago, L., Grotto, G., and Baldo, V. (2020). Breast Cancer
Primary Prevention and Diet: An Umbrella Review. Int. J. Environ. Res. Public
Health 17, 4731. doi:10.3390/ijerph17134731

Cao, Q., Song, Z., Ruan, H., Wang, C., Yang, X., Bao, L., et al. (2020). Targeting the
KIF4A/AR Axis to Reverse Endocrine Therapy Resistance in Castration-
Resistant Prostate Cancer. Clin. Cancer Res. 26, 1516–1528. doi:10.1158/
1078-0432.ccr-19-0396

Cao, Z., Jin, Z., Zeng, L., He, H., Chen, Q., Zou, Q., et al. (2021). Prognostic and
Tumor-Immune Infiltration Cell Signatures in Tamoxifen-Resistant Breast
Cancers. Gland Surg. 10 (2021), 2766–2779. doi:10.21037/gs-21-566

Certo, M., Tsai, C. H., Pucino, V., Ho, P. C., and Mauro, C. (2021). Lactate
Modulation of Immune Responses in Inflammatory versus Tumour
Microenvironments. Nat. Rev. Immunol. 21 (2021), 151–161. doi:10.1038/
s41577-020-0406-2

Cisneros, E., di Marco, F., Rueda-Carrasco, J., Lillo, C., Pereyra, G., Martín-
Bermejo, M. J., et al. (2020). Sfrp1 Deficiency Makes Retinal Photoreceptors
Prone to Degeneration. Sci. Rep. 10, 5115. doi:10.1038/s41598-020-61970-8

Crespo, J., Sun, H., Welling, T. H., Tian, Z., and Zou, W. (2013). T Cell Anergy,
Exhaustion, Senescence, and Stemness in the Tumor Microenvironment. Curr.
Opin. Immunol. 25, 214–221. doi:10.1016/j.coi.2012.12.003

Cuijpers, S. A. G., Willemstein, E., Ruppert, J. G., van Elsland, D. M., Earnshaw, W.
C., and Vertegaal, A. C. O. (2020). Chromokinesin KIF4A Teams up with
Stathmin 1 to Regulate Abscission in a SUMO-dependent Manner. J. Cel Sci
133, jcs248591. doi:10.1242/jcs.248591

De Cicco, P., Catani, M. V., Gasperi, V., Sibilano, M., Quaglietta, M., and Savini, I.
(2019). Nutrition and Breast Cancer: A Literature Review on Prevention,
Treatment and Recurrence. Nutrients 11, 1514. doi:10.3390/nu11071514

Eini, M., Zainodini, N., Montazeri, H., Mirzabeigi, P., and Tarighi, P. (2021). A
Review of Therapeutic Antibodies in Breast Cancer. J. Pharm. Pharm. Sci. 24
(2021), 363–380. doi:10.18433/jpps31864

Fahad Ullah, M. (2019). Breast Cancer: Current Perspectives on the Disease Status.
Adv. Exp. Med. Biol. 1152, 51–64. doi:10.1007/978-3-030-20301-6_4

Fei, W., Chen, L., Chen, J., Shi, Q., Zhang, L., Liu, S., et al. (2017). RBP4 and THBS2
Are Serum Biomarkers for Diagnosis of Colorectal Cancer. Oncotarget 8,
92254–92264. doi:10.18632/oncotarget.21173

Gan, X.-W.,Wang, W.-S., Lu, J.-W., Ling, L.-J., Zhou, Q., Zhang, H.-J., et al. (2020).
De Novo Synthesis of SAA1 in the Placenta Participates in Parturition. Front.
Immunol. 11, 1038. doi:10.3389/fimmu.2020.01038

Gao, C., Zhuang, J., Zhou, C., Li, H., Liu, C., Liu, L., et al. (2019). SNP Mutation-
related Genes in Breast Cancer for Monitoring and Prognosis of Patients: A
Study Based on the TCGA Database. Cancer Med. 8, 2303–2312. doi:10.1002/
cam4.2065

Garcia-Martinez, L., Zhang, Y., Nakata, Y., Chan, H. L., and Morey, L. (2021).
Epigenetic Mechanisms in Breast Cancer Therapy and Resistance. Nat.
Commun. 12 (2021), 1786. doi:10.1038/s41467-021-22024-3

Garrido-Castro, A. C., Lin, N. U., and Polyak, K. (2019). Insights into Molecular
Classifications of Triple-Negative Breast Cancer: Improving Patient Selection
for Treatment. Cancer Discov. 9, 176–198. doi:10.1158/2159-8290.cd-18-1177

Gregory, K. J., Roberts, A. L., Conlon, E. M., Mayfield, J. A., Hagen, M. J., Crisi, G.
M., et al. (2019). Gene Expression Signature of Atypical Breast Hyperplasia and
Regulation by SFRP1. Breast Cancer Res. 21, 76. doi:10.1186/s13058-019-
1157-5

Hanker, A. B., Sudhan, D. R., and Arteaga, C. L. (2020). Overcoming Endocrine
Resistance in Breast Cancer. Cancer Cell 37, 496–513. doi:10.1016/j.ccell.2020.
03.009

Jiang, Y., Pin, L., Shi, W., Huang, Q., Wang, L., and Liu, H. (2021). SAA1 Regulates
Pro-labour Mediators in Term Labour by Activating YAP Pathway. Mol. Cel
Biochem 476 (2021), 2791–2801. doi:10.1007/s11010-021-04125-1

Karunanithi, S., Levi, L., DeVecchio, J., Karagkounis, G., Reizes, O., Lathia, J. D.,
et al. (2017). RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and

Mediates High-Fat Diet-Induced Colon Carcinogenesis. Stem Cel Rep. 9,
438–450. doi:10.1016/j.stemcr.2017.06.002

Li, Y., Zhao, X., Liu, Q., and Liu, Y. (2021). Bioinformatics Reveal Macrophages
Marker Genes Signature in Breast Cancer to Predict Prognosis. Ann. Med. 53
(2021), 1019–1031. doi:10.1080/07853890.2021.1914343

Liang, J.-y., Wang, D.-s., Lin, H.-c., Chen, X.-x., Yang, H., Zheng, Y., et al. (2020). A
Novel Ferroptosis-Related Gene Signature for Overall Survival Prediction in
Patients with Hepatocellular Carcinoma. Int. J. Biol. Sci. 16, 2430–2441. doi:10.
7150/ijbs.45050

Liu, B., Fu, T., He, P., Du, C., and Xu, K. (2021). Construction of a Five-Gene
Prognostic Model Based on Immune-Related Genes for the Prediction of
Survival in Pancreatic Cancer. Biosci. Rep. 41, BSR20204301. doi:10.1042/
bsr20204301

Matsen, C. B., and Neumayer, L. A. (2013). Breast Cancer. JAMA Surg. 148,
971–979. doi:10.1001/jamasurg.2013.3393

Matsumoto, Y., Saito, M., Saito, K., Kanke, Y., Watanabe, Y., Onozawa, H., et al.
(2018). Enhanced Expression of KIF4A in Colorectal Cancer Is Associated with
Lymph Node Metastasis. Oncol. Lett. 15, 2188–2194. doi:10.3892/ol.2017.7555

Maughan, K. L., Lutterbie, M. A., and Ham, P. S. (2010). Treatment of Breast
Cancer. Am. Fam. Physician 81, 1339–1346.

McEligot, A. J., Poynor, V., Sharma, R., and Panangadan, A. (2020). Logistic
LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients 12, 2652.
doi:10.3390/nu12092652

Olivier, D. W., Pretorius, E., and Engelbrecht, A. M. (2021). Serum Amyloid A1:
Innocent Bystander or Active Participant in Cell Migration in Triple-Negative
Breast Cancer? Exp. Cel Res 406 (2021), 112759. doi:10.1016/j.yexcr.2021.
112759

Ren, X., Zhang, L., Zhang, Y., Li, Z., Siemers, N., and Zhang, Z. (2021). Insights
Gained from Single-Cell Analysis of Immune Cells in the Tumor
Microenvironment. Annu. Rev. Immunol. 39 (2021), 583–609. doi:10.1146/
annurev-immunol-110519-071134

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Sabado, R. L., Balan, S., and Bhardwaj, N. (2017). Dendritic Cell-Based
Immunotherapy. Cell Res 27, 74–95. doi:10.1038/cr.2016.157

Schäfer, S. A., Hülsewig, C., Barth, P., von Wahlde, M. K., Tio, J., Kolberg, H. C.,
et al. (2019). Correlation between SFRP1 Expression and Clinicopathological
Parameters in Patients with Triple-Negative Breast Cancer. Future Oncol. 15,
1921–1938. doi:10.2217/fon-2018-0564

Singleton, D. C., Macann, A., and Wilson, W. R. (2021). Therapeutic Targeting of
the Hypoxic Tumour Microenvironment. Nat. Rev. Clin. Oncol. 18 (2021),
751–772. doi:10.1038/s41571-021-00539-4

Sivaganesh, V., Promi, N., Maher, S., and Peethambaran, B. (2021). Emerging
Immunotherapies against Novel Molecular Targets in Breast Cancer. Int. J. Mol.
Sci. 22, 2433. doi:10.3390/ijms22052433

Sporikova, Z., Koudelakova, V., Trojanec, R., and Hajduch, M. (2018). Genetic
Markers in Triple-Negative Breast Cancer. Clin. Breast Cancer 18, e841–e850.
doi:10.1016/j.clbc.2018.07.023

Steinhoff, J. S., Lass, A., and Schupp, M. (2021). Biological Functions of RBP4 and
its Relevance for Human Diseases. Front. Physiol. 12 (2021), 659977. doi:10.
3389/fphys.2021.659977

Sun, C.-C., Li, S.-J., Hu, W., Zhang, J., Zhou, Q., Liu, C., et al. (2019).
Comprehensive Analysis of the Expression and Prognosis for E2Fs in
Human Breast Cancer. Mol. Ther. 27, 1153–1165. doi:10.1016/j.ymthe.2019.
03.019

Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., et al. (2018). Emerging Role of
Exosome-Derived Long Non-coding RNAs in Tumor Microenvironment.Mol.
Cancer 17, 82. doi:10.1186/s12943-018-0831-z

Sunkara, R. R., Sarate, R. M., Setia, P., Shah, S., Gupta, S., Chaturvedi, P., et al.
(2020). SFRP1 in Skin Tumor Initiation and Cancer Stem Cell Regulation with
Potential Implications in Epithelial Cancers. Stem Cel Rep. 14, 271–284. doi:10.
1016/j.stemcr.2019.12.006

Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., and Houssami,
N. (2020). Overview of Radiomics in Breast Cancer Diagnosis and
Prognostication. The Breast 49, 74–80. doi:10.1016/j.breast.2019.10.018

Tanaka, A., and Sakaguchi, S. (2019). Targeting Treg Cells in Cancer
Immunotherapy. Eur. J. Immunol. 49, 1140–1146. doi:10.1002/eji.201847659

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 91212511

Yang et al. Five-Gene Signature in Breast Cancer

https://doi.org/10.1186/s13058-014-0427-5
https://doi.org/10.3390/cancers12020445
https://doi.org/10.3390/cancers12020445
https://doi.org/10.3390/ijerph17134731
https://doi.org/10.1158/1078-0432.ccr-19-0396
https://doi.org/10.1158/1078-0432.ccr-19-0396
https://doi.org/10.21037/gs-21-566
https://doi.org/10.1038/s41577-020-0406-2
https://doi.org/10.1038/s41577-020-0406-2
https://doi.org/10.1038/s41598-020-61970-8
https://doi.org/10.1016/j.coi.2012.12.003
https://doi.org/10.1242/jcs.248591
https://doi.org/10.3390/nu11071514
https://doi.org/10.18433/jpps31864
https://doi.org/10.1007/978-3-030-20301-6_4
https://doi.org/10.18632/oncotarget.21173
https://doi.org/10.3389/fimmu.2020.01038
https://doi.org/10.1002/cam4.2065
https://doi.org/10.1002/cam4.2065
https://doi.org/10.1038/s41467-021-22024-3
https://doi.org/10.1158/2159-8290.cd-18-1177
https://doi.org/10.1186/s13058-019-1157-5
https://doi.org/10.1186/s13058-019-1157-5
https://doi.org/10.1016/j.ccell.2020.03.009
https://doi.org/10.1016/j.ccell.2020.03.009
https://doi.org/10.1007/s11010-021-04125-1
https://doi.org/10.1016/j.stemcr.2017.06.002
https://doi.org/10.1080/07853890.2021.1914343
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.1042/bsr20204301
https://doi.org/10.1042/bsr20204301
https://doi.org/10.1001/jamasurg.2013.3393
https://doi.org/10.3892/ol.2017.7555
https://doi.org/10.3390/nu12092652
https://doi.org/10.1016/j.yexcr.2021.112759
https://doi.org/10.1016/j.yexcr.2021.112759
https://doi.org/10.1146/annurev-immunol-110519-071134
https://doi.org/10.1146/annurev-immunol-110519-071134
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/cr.2016.157
https://doi.org/10.2217/fon-2018-0564
https://doi.org/10.1038/s41571-021-00539-4
https://doi.org/10.3390/ijms22052433
https://doi.org/10.1016/j.clbc.2018.07.023
https://doi.org/10.3389/fphys.2021.659977
https://doi.org/10.3389/fphys.2021.659977
https://doi.org/10.1016/j.ymthe.2019.03.019
https://doi.org/10.1016/j.ymthe.2019.03.019
https://doi.org/10.1186/s12943-018-0831-z
https://doi.org/10.1016/j.stemcr.2019.12.006
https://doi.org/10.1016/j.stemcr.2019.12.006
https://doi.org/10.1016/j.breast.2019.10.018
https://doi.org/10.1002/eji.201847659
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tay, T. K. Y., and Tan, P. H. (2021). Liquid Biopsy in Breast Cancer: A Focused
Review. Arch. Pathol. Lab. Med. 145 (2021), 678–686. doi:10.5858/arpa.2019-
0559-RA

van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M.,
et al. (2002). Gene Expression Profiling Predicts Clinical Outcome of Breast
Cancer. Nature 415, 530–536. doi:10.1038/415530a

Veeck, J., Niederacher, D., An, H., Klopocki, E., Wiesmann, F., Betz, B., et al.
(2006). Aberrant Methylation of theWnt Antagonist SFRP1 in Breast Cancer Is
Associated with Unfavourable Prognosis. Oncogene 25, 3479–3488. doi:10.
1038/sj.onc.1209386

Wang, Y., Wang, Y., and Zhang, Z. (2018). Adipokine RBP4 Drives Ovarian
Cancer Cell Migration. J. Ovarian Res. 11, 29. doi:10.1186/s13048-018-0397-9

Wu, Q., Li, Q., Zhu, W., Zhang, X., and Li, H. (2021). Identification of Autophagy-
Related Long Non-coding RNA Prognostic Signature for Breast Cancer. J. Cel
Mol Med 25 (2021), 4088–4098. doi:10.1111/jcmm.16378

Xu, Y. H., Deng, J. L., Wang, L. P., Zhang, H. B., Tang, L., Huang, Y., et al. (2020).
Identification of Candidate Genes Associated with Breast Cancer Prognosis.
DNA Cel Biol 39 (2020), 1205–1227. doi:10.1089/dna.2020.5482

Xue, D., Cheng, P., Han, M., Liu, X., Xue, L., Ye, C., et al. (2018). An Integrated
Bioinformatical Analysis to Evaluate the Role of KIF4A as a Prognostic
Biomarker for Breast Cancer. Ott Vol. 11, 4755–4768. doi:10.2147/ott.
s164730

Ye, Y., Xu, C., Chen, F., Liu, Q., and Cheng, N. (2021). Targeting Innate Immunity
in Breast Cancer Therapy: A Narrative Review. Front. Immunol. 12 (2021),
771201. doi:10.3389/fimmu.2021.771201

Yin, L., Duan, J.-J., Bian, X.-W., and Yu, S.-c. (2020). Triple-negative Breast Cancer
Molecular Subtyping and Treatment Progress. Breast Cancer Res. 22, 61. doi:10.
1186/s13058-020-01296-5

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16, 284–287. doi:10.1089/omi.2011.0118

Zhang, H., Sun, D., Qiu, J., and Yao, L. (2019). SFRP1 Inhibited the Epithelial
Ovarian Cancer through Inhibiting Wnt/β-Catenin Signaling. Acta Biochim.
Pol. 66, 393–400. doi:10.18388/abp.2019_2757

Zhang, S., Wang, Y., Gu, Y., Zhu, J., Ci, C., Guo, Z., et al. (2018). Specific Breast
Cancer Prognosis-subtype Distinctions Based onDNAmethylation Patterns.
Mol. Oncol. 12, 1047–1060. doi:10.1002/1878-0261.12309

Zhang, Y., and Yu, C. (2020). Prognostic Characterization of OAS1/OAS2/OAS3/
OASL in Breast Cancer. BMC Cancer 20, 575. doi:10.1186/s12885-020-07034-6

Zhao, Y., Rao, J., Qiu, T., Li, C., and Zhou, X. (2021). The Effect of RBP4 on
microRNA Expression Profiles in Porcine Granulosa Cells. Animals (Basel) 11,
1391. doi:10.3390/ani11051391

Zhou, X., Li, J., Jiang, L., Zhou, D., Wu, L., Huang, Y., et al. (2019). SAA1 Gene
Polymorphisms in Osteoporosis Patients. Biosci. Rep. 39, BSR20181031. doi:10.
1042/BSR20181031

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, Liu and Liu. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 91212512

Yang et al. Five-Gene Signature in Breast Cancer

https://doi.org/10.5858/arpa.2019-0559-RA
https://doi.org/10.5858/arpa.2019-0559-RA
https://doi.org/10.1038/415530a
https://doi.org/10.1038/sj.onc.1209386
https://doi.org/10.1038/sj.onc.1209386
https://doi.org/10.1186/s13048-018-0397-9
https://doi.org/10.1111/jcmm.16378
https://doi.org/10.1089/dna.2020.5482
https://doi.org/10.2147/ott.s164730
https://doi.org/10.2147/ott.s164730
https://doi.org/10.3389/fimmu.2021.771201
https://doi.org/10.1186/s13058-020-01296-5
https://doi.org/10.1186/s13058-020-01296-5
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.18388/abp.2019_2757
https://doi.org/10.1002/1878-0261.12309
https://doi.org/10.1186/s12885-020-07034-6
https://doi.org/10.3390/ani11051391
https://doi.org/10.1042/BSR20181031
https://doi.org/10.1042/BSR20181031
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Novel Five-Gene Signature Related to Clinical Outcome and Immune Microenvironment in Breast Cancer
	Introduction
	Materials and Methods
	Patient Data Sets
	GO and KEGG Pathway Analysis
	Survival Analysis
	Verification of Genes in GEPIA Database
	Construction and Validation of a Prognostic Gene Signature
	Difference of Tumor-Infiltrating Immune Cells in BC
	Analyses and Visualization of Somatic Mutations
	Cell Lines and RNA Interference
	Real-Time Quantitative PCR
	Cell Growth Assay
	Statistical Analysis

	Results
	Identification of the DGEs Between BC Specimens and Non-Tumor Specimens
	GO and KEGG Enrichment Analysis
	The Screen of Survival-Related Genes in BC
	Construction and Validation of a Prognostic Signature
	Knockdown of KIF4A Suppressed the Proliferation of BC Cells

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	References


