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ORIGINAL INVESTIGATION

DPP‑4 inhibition has no acute effect 
on BNP and its N‑terminal pro‑hormone 
measured by commercial immune‑assays. 
A randomized cross‑over trial in patients 
with type 2 diabetes
Gian Paolo Fadini*, Benedetta Maria Bonora, Mattia Albiero, Martina Zaninotto, Mario Plebani 
and Angelo Avogaro

Abstract 

Background:  Use of dipeptidyl peptidase-4 inhibitors (DPP4-i) for the treatment of type 2 diabetes (T2D) has been 
associated with a possible increase in the risk for heart failure (HF). B-type natriuretic peptide (BNP), which is both a 
biomarker of HF and a hemodynamically active hormone, is a substrate of DPP-4. We herein tested the acute effects 
of the DPP-4i linagliptin on BNP and NT-proBNP in a cross-over placebo-controlled trial in patients with T2D with and 
without chronic kidney disease (CKD).

Methods:  B-type natriuretic peptide and NT-proBNP were measured using commercially available clinical-grade 
immune-assays at baseline and at the end of a 4-day treatment with placebo and linagliptin. Changes from base-
line during each treatment arm, as well as placebo-subtracted effects of linagliptin on BNP and NT-proBNP were 
calculated.

Results:  46 patients completed the study, 18 of whom were affected by CKD. Baseline BNP and NT-proBNP levels 
increased with age, were elevated in CKD patients, and inversely correlated with estimated glomerular filtration 
rate. No significant change was detected in BNP and NT-proBNP levels after treatment with linagliptin or placebo in 
patients with or without CKD. Only in CKD patients the placebo-subtracted effect of linagliptin indicated a significant 
reduction in NT-proBNP levels, but this finding was not statistically robust.

Conclusions:  Acute treatment with a DPP-4i exerts no clinically-meaningful effects on BNP and NT-proBNP. As rou-
tinely used immunoassays do not discriminate between intact/active and cleaved BNP, these data cannot rule out an 
effect of DPP-4i on HF pathophysiology.
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Background
Dipeptidyl peptidase-4 inhibitors (DPP-4i) are routinely 
used for the treatment of type 2 diabetes (T2D). Their 

glucose-lowering activity results from inhibition of the 
enzymatic cleavage of glucagon-like pepide (GLP)-1 and 
glucose insulinotropic peptide (GIP) by DPP-4 [1]. DPP-4 
has several other physiological substrates, including 
cytokines, chemokines, and neuro-hormones, provid-
ing the biological basis for non-glycemic effects of DPP-
4i [2]. However, comparatively fewer peptides have been 
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identified as endogenous physiological substrates in vivo 
[3].

Concerns have been raised on the possibility that DPP-
4i increase the risk of heart failure (HF), but the mecha-
nisms are largely unknown [4, 5]. Intact B-type natriuretic 
peptide (BNP1–32) is cleaved by DPP-4, generating BNP3–

32 [6]. BNP, which is produced by cardiomyocytes in 
response to hemodynamic stress and neuro-hormonal 
stimulation, is a clinical-grade biomarker of HF [7]. In 
turn, BNP is involved in the pathophysiology of HF, as 
it induces vasodilation and natriuresis, thereby antago-
nizing the effects of angiotensin-II [8, 9]. BNP con-
centrations are reduced in people with obesity, insulin 
resistance, and diabetes, and this deficiency may contrib-
ute to their cardiovascular risk [10]. Thus DPP-4i may 
exert beneficial effects on cardiac function, by increasing 
the proportion of intact/active BNP1–32 versus cleaved 
BNP3–32, in addition to GLP-1 mediated cardioprotection 
[11].

BNP1–32 derives from proBNP (108 amino-acid) after 
removal of an N-terminal (NT) fragment of 76 amino-
acids by pro-hormone convertases [12]. Although BNP 
and NT-proBNP are released at equimolar concentra-
tions, the half-life of the NT-proBNP in the circula-
tion is longer, resulting in higher concentrations. In 
patients with diabetes, despite a possible reduction of 
BNP, the clinical predictive capacity of NT-proBNP has 
been shown to be preserved [13, 14]. Interestingly, also 
proBNP1–108 and NT-proBNP1–76 are candidate sub-
strates of the enzymatic activity of DPP-4, as they have 
proline in the second N-terminal position, where the exo-
peptidase activity of DPP-4 locates. Commercially avail-
able immuno-assays are presumably unable to distinguish 

between BNP1–32 and BNP3–32 [15], and they may even 
detect proBNP1–108/3–108, but not NT-proBNP [16]. As 
compared to BNP1–32, truncated BNP3–32 appears to have 
equal cGMP activating properties in vitro [17], but lower 
activity in vivo [18], probably because of a higher suscep-
tibility to degradation by other peptidases. Specificity of 
NT-proBNP immunoassays is unknown, but epitopes 
recognized by monoclonal antibodies do not appear to 
span the first 2 N-terminal residues. Based on these con-
siderations, the net effect of a DPP-4i therapy on diagnos-
tic BNP and NT-proBNP determinations is unpredictable 
(Fig. 1).

Available data on the effects of DPP-4i on proBNP-
derived peptides in T2D mostly come from large clini-
cal trials wherein NT-proBNP levels were measured 
years after therapy with a DPP-4i or placebo [19, 20]. 
Rather, if DPP-4i has direct effects on proBNP process-
ing, this should be detectable within a short time frame. 
To address the acute effects of DPP-4i on BNP and NT-
proBNP, we used samples from a placebo-controlled 
cross-over trial testing the effects of a 4-day therapy with 
the DPP-4i inhibitor linagliptin on humoral factors [21]. 
Differently from other DPP-4i, linagliptin has no renal 
excretion, and is thereby particularly suitable for the 
treatment of patients with chronic kidney disease (CKD) 
[22, 23], which is a major risk factor for HF [24].

Methods
Study design
The NCT01617824 was a randomized, single-blind, 
placebo-controlled, cross-over study designed to test 
the acute effects of the DPP-4 inhibitor linagliptin on 
cytokines, hormones, and inflammatory mediators. The 

Fig. 1  Sequential cleavage of proBNP to originate BNP, NT-proBNP and their by-products. Biological activity on cardiac function is reported. DPP-4 
can cleave the 2 N-terminal residues of proBNP, BNP, and NT-proBNP, generating inactive or less active peptides
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primary study results have been published before [21]. 
Briefly, T2D patients with or without CKD, received a 
4-day treatment with linagliptin 5  mg and placebo in a 
random order with a 14-day wash-out period. Before 
and at the 5th  day of each treatment period, fasting 
blood samples were drawn. Aliquots of EDTA and hep-
arin plasma were separated and stored at −80  °C until 
analyses. CKD was defined as an estimated glomerular 
filtration rate (eGFR) of less than 60  ml/min/1.73 mq, 
based on the CKD-EPI formula [25] and graded accord-
ing to the Kidney Disease Outcomes Quality Initiative 
(KDOQI) [26]. With this design, we were able to detect 
significant changes in DPP-4 activity, levels of intact 
(uncleaved) GLP-1 and SDF-1α, along with an increase in 
CD34+KDR+ cells, reflecting a biological consequence of 
elevated SDF-1α [21], an effect that was observed also for 
saxagliptin [27]. For this study, untouched frozen aliquots 
of plasma were thawed and used for the quantification of 
BNP and NT-proBNP.

Analytical methods
B-type natriuretic peptide was quantified in EDTA 
plasma using a chemiluminescent, microparticle-cap-
ture immunoassay (Abbott Diagnostics kit, #8K28) on 
the modular automated ARCHITECT iSystem platform. 
The range of plasma BNP concentrations revealed using 
this assay is 10–5000  pg/ml. The coefficient of varia-
tion (CV), as reported by the manufacturer, is <5%. This 
BNP assay results in no cross-reactivity with ANP, Angi-
otensin-I, Angiotensin-II, Angiotensin-III, CNP, and 
NT-proBNP.

NT-proBNP was quantified in heparinised plasma 
using a solid-phase two-site chemiluminescent immu-
nometric assay (Siemens IMMULITE 1000 Turbo). The 
sensitivity of this assay is 15  pg/ml, with a reportable 
range up to 35,000 pg/ml. The CV reported by the manu-
facturer is 9%. No cross-reactivity has been detected with 
ANP, NT-proANP, BNP, CNP, Adrenomedullin, Angi-
otensin-I, Angiotensin-II, Angiotensin-III, Endothelin, 
Renin, Urodilatin, and Arg-Vasopressin.

Statistical analysis
Data are expressed as mean ±  standard error if normal 
or as median (interquartile range) if not normal. Normal-
ity was checked using the Shapiro–Wilk test and non-
normal variables were log-transformed before analysis. 
Within-group changes in continuous variables were ana-
lyzed using the paired two-tail Student’s t test. For each 
patients in each group of treatment order, we calculated 
the effect of placebo, the effect of linagliptin, and the 
placebo-subtracted effect of linagliptin. The generalized 
linear model (GLM) was used to analyze the effect of 
treatment and order by the cross-over design. Statistical 

significance was accepted at p  <  0.05 and SPSS version 
22.0 was used.

Sample size was originally chosen to achieve a 80% 
power to detect a significant difference in the primary 
end-point (a difference in circulating CD34+KDR+ cells), 
which was fully satisfied. Based on within-patients stand-
ard deviations of 37% for BNP (26  pg/ml) and 40% for 
NT-proBNP (227 pg/ml), we calculated a priori that this 
study had 80% power to detect a treatment difference at 
a two-sided 0.05 significance level, if the true difference 
between treatments was 22% for BNP (15  pg/ml) and 
24% for NT-proBNP (136 pg/ml).

Results
Characteristics of study patients
A total of 46 patients completed the study. Detailed base-
line clinical characteristics of the participants have been 
reported previously [21] and are herein summarized in 
Table 1. There was no difference between patients rand-
omized to the placebo-linagliptin (n = 22) or the linaglip-
tin-placebo (n = 24) treatment order. No mild or severe 
averse event was reported during treatment or wash-out 
and no change in fasting metabolic variables (glucose, tri-
glycerides and fatty acids) was observed [21].

Baseline values of BNP and NT‑proBNP
As the distributions of BNP and NT-proBNP were highly 
skewed, data are presented as median (IQR) and values 
were log-transformed before statistical testing.

The median baseline plasma BNP level was 20.4  pg/
ml (IQR 10.0–43.3). BNP was below threshold (10  pg/
ml) in n =  15 patients (32.6%) and was above the deci-
sional cut-off (100  pg/ml) [28] in 6 patients (13.0%). 
BNP levels increased with age (r  =  0.40; p  =  0.003), 
were higher in patients with CKD than in those without 
(43.1 [IQR 22.1–98.5] versus 12.5 [IQR 10.0–23.0] pg/
ml; p = 0.0022) and were inversely correlated with eGFR 
(r = −0.45; p < 0.001).

The median baseline NT-proBNP level was 101.0  pg/
ml (IQR 35.3–314.8) and n = 5 patients (10.9% had val-
ues above the decisional cut-off (900  pg/ml) [28]. NT-
proBNP levels increased with age (r =  0.52; p  <  0.001), 
were higher in patients with CKD than in those without 
(238.5 [IQR 115.0–554.8] versus 44.0 [IQR 24.3–101.0] 
pg/ml; p  <  0.001) and were inversely correlated with 
eGFR (r = −0.50; p < 0.001).

Levels of BNP and NT-proBNP were highly correlated 
(r = 0.94).

Effects of DPP‑4 inhibition on BNP and NT‑proBNP
Overall, no significant change versus baseline was 
observed in BNP and NT-proBNP levels after treat-
ment with linagliptin or placebo (Fig.  2). The 
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placebo-subtracted effect of linagliptin on BNP and NT-
proBNP were 0.0 pg/ml (IRQ −19.0 to 1.7) and −19.5 pg/
ml (IQR −62.3 to 19.3), respectively. In patients with 
CKD (n  =  18) the change of NT-proBNP during lina-
gliptin treatment was not significant (−17.0; IRQ −59.3 
to 23.0  pg/ml), but was significantly different from the 
change during placebo (4.5; IQR −57.8 to 109.3  pg/ml; 
p  =  0.022). This resulted in a significant placebo-sub-
tracted reduction in NT-proBNP attributable to linaglip-
tin treatment (Table 2; Fig. 2). The post hoc power of the 
study to detect this finding was calculated to be  <20%. 
Two patients with CKD had a previous history of HF, 
but placebo-subtracted changes of BNP (−72.7 and 
+34.0  pg/ml) or NT-proBNP (−42 and +216  pg/ml) 
were inconsistent with an effect of DPP-4i.

No carry-over effect was noted for both BNP and NT-
proBNP. No correlation was detected between BNP or 
NT-proBNP and DPP-4 activity, nor between change in 
BNP or NT-proBNP and change in DPP-4 activity.

Discussion
We show that therapy with a DPP-4i has no acute effects 
on BNP and NT-proBNP levels measured with routine 
diagnostic immuno-assays. This study was not designed 
to test the acute effects of DPP-4i on cardiac function, 
but our findings re-assure on the safety of DPP-4i con-
cerning diagnosis and prognostic evaluation of HF.

The clinical relevance of the interplay between DPP-4i 
and BNP/NT-proBNP levels has emerged after publica-
tion of the results of SAVOR-TIMI trial, wherein patients 
treated with the DPP-4i saxagliptin exhibited a signifi-
cant 27% excess risk of hospitalization for HF compared 
to placebo [19, 29]. Meta-analyses of randomized con-
trolled trials were unable to rule out the concern that 
DPP-4i therapy may favour HF [4, 5]. Real-world data 
did not confirm an association between DPP-4i and 
hospitalization for HF [30, 31], nor show adverse prog-
nosis in HF patients treated with DPP-4i [32, 33]. Fur-
thermore, the eventual mechanisms remain elusive. In 
the SAVOR-TIMI trial, the risk of HF associated with 
saxagliptin therapy was almost exclusively observed in 
patients with a baseline NT-proBNP level within the 
most elevated quartile [19]. During a follow-up of about 
2  years, NT-proBNP levels increased in both the pla-
cebo and saxagliptin group, but the increase was slightly 
blunted by saxagliptin [19]. The relevance of this finding 
is limited because exceeding HF cases in saxagliptin-
treated patients were observed only in the first 6 months 
of therapy [19]. In another placebo-controlled trial con-
ducted on T2D patients after an acute coronary event, 
the DPP-4i alogliptin was associated with a non-signif-
icant increase in the risk of hospitalization for HF [34]. 
During an average 1.5 year follow-up, NT-proBNP con-
centrations decreased significantly and similarly in the 
two groups [20]. Our study shows for the first time that 
BNP and NT-proBNP are not directly affected by DPP-4i 
because no acute effect was detected. This suggests that 
the observed changes in NT-proBNP over the long run 
most likely reflect the natural history of HF, rather than 
effects of therapy.

Chronic kidney disease is a one of the strongest risk 
factors for HF [24]. As BNP and NT-proBNP levels were 
higher in CKD patients, the amplitude of their excursions 
after DPP-4i or placebo was also larger. Although con-
sistent with a study showing that linagliptin decreased 
BNP in an experimental model of uremic cardiomyopa-
thy [35], the modest placebo-subtracted effect of DPP-4i 
on NT-proBNP reduction we observe in CKD patients 

Table 1  Baseline characteristics of study patients

Data are presented as mean ± standard error, or as percentage, where 
appropriate. More details can be found in [21]

Variable All patients

 Number 46

 Age, years 63.7 ± 1.3

 Sex male,  % 71.7

 Body mass index, kg/m2 31.1 ± 0.7

 Waist, cm 105.4 ± 2.2

 HbA1c,  %
(mmol/mol)

7.6 ± 0.2
(60 ± 2)

Risk factors

 Smoking habit,  % 13.0

 Hypertension,  % 89.1

 Total cholesterol, mg/dl 165.3 ± 5.5

 HDL cholesterol, mg/dl 49.9 ± 2.2

 LDL cholesterol, mg/dl 91.6 ± 5.1

 Triglycerides, mg/dl 119.2 ± 8.5

 Albumin/creatinine ratio (mg/g) 129.5 ± 44.1

 Creatinine, mg/dl 1.11 ± 0.06

 eGFR, ml/min/1.73 mq 75.5 ± 3.9

Complications

 Retinopathy,  % 28.2

 Neuropathy,  % 17.9

 Coronary artery disease,  % 30.4

 Peripheral arterial disease,  % 21.7

 Cerebrovascular disease,  % 47.8

Medications

 Metformin,  % 65.2

 Sulphonylurea,  % 6.5

 Repaglinide,  % 4.3

 Pioglitazone,  % 6.5

 Insulin,  % 43.4

 ACE inhibitors/ARBs,  % 76.1

 Other anti-hypertensives,  % 78.2

 Statin,  % 80.4

 Anti-platelet agents,  % 56.5
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Fig. 2  BNP and NT-proBNP levels during treatment with placebo and linagliptin. Data are presented as baseline (pre) and end-of-treatment (post) 
values (a, d), and change from baseline (b, e) during placebo or linagliptin. c, f Show changes from baseline in BNP and NT-proBNP, respectively, in 
patients with (n = 18) CKD and in those without (n = 28; Ctrl). *p<0.05. The box plot shows median and IQR, whereas whiskers indicate Tukey range

Table 2  BNP and NT-proBNP levels, expressed as median (IQR) during treatment with placebo or linagliptin

* Significantly different from placebo treatment (p < 0.05 at paired t test on log-transformed data or Mann–Whitney test)
#   Significantly different from zero

Placebo Linagliptin Placebo-subtracted change

Pre Post Change Pre Post Change

BNP

 All 22.9
(10.0–42.8)

21.3
(10.0–52.6)

0.0
(−0.9 to 15.2)

19.6
(10.0–44.3)

22.6
(10.0–39.3)

0.0
(−2.7 to 7.8)

0.0
(−19.0 to 1.7)

 No CKD 11.4
(10.0–23.3)

11.9
(10.0–29.5)

0.0
(−0.9 to 0.3)

10.6
(10.0–21.8)

12.5
(10.0–27.4)

0.0
(0.0–4.6)

0.0
(−1.0 to 1.2)

 CKD 38.5
(26.8–80.3)

56.3
(24.6–107.1)

7.3
(−0.7 to 26.0)

44.2
(20.3–129.0)

37.4
(25.0–78.9)

0.0
(−9.5 to 12.1)

−17.6
(−46.8 to 0.8)

NT-proBNP 

 All 101.0
(36.5–314.5)

122.0
(38.0–267.0)

2.0
(−32.0 to 30.5)

101.0
(44.0–299.0)

78.0
(36.0–272.0)

−3.5
(−27.5 to 19.3)

−19.5
(−62.3 to 19.3)

 No CKD 46.0
(26.0–101.0)

57.0
(20.0–167.0)

0.0
(−12.0 to 20.0)

51.0
(28.5–121.5)

41.0
(26.5–99.0)

3.0
(−17.5 to 17.3)

−2.5
(−35.0 to 15.8)

 CKD 218.5
(108.8–554.8)

261.0
(130.0–696.5)

4.5
(−57.8 to 109.3)

238.5
(107.5–611.5)

184.0
(109.0–483.0)

−17.0*
(−59.3 to 23.0)

−50.0#

(−101.5 to 18.0)
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had very low statistical power, was no longer significant 
after adjusting for multiple testing, and is unlikely to be 
of any clinical meaning, as NT-proBNP is not biologically 
active.

The present study has limitations inherent to the small 
sample size, the fact that a minority of patients had 
CKD, thereby lowering power in this subgroup, and the 
lack of data in patients with decompensated HF. Finally, 
more subtle changes in BNP and NT-proBNP induced 
by DPP-4i may have been missed, since the study was 
powered for a minimal detectable change of 22 and 24%, 
respectively. Since clinical-grade commercially available 
immuno-assays do not distinguish the intact and cleaved 
forms of BNP and NT-proBNP, our data provide no clear 
indication of whether DPP-4i interferes with the in vivo 
processing of the two peptides, and whether it intervenes 
in the pathophysiology of HF. However, any eventual sig-
nificant change in the relative proportion of BNP1–32 and 
BNP3–32 or in the proportion of NT-proBNP1–76 and NT-
proBNP3–76 induced by DPP-4i may nonetheless result 
in modifications of immune-reactive (total) BNP and 
NT-proBNP levels, respectively. This has been shown for 
GLP-1 and SDF-1α [21], possibly reflecting compensa-
tory secretion and/or changes in sequential cleavage by 
different peptidases. Furthermore, experimental stud-
ies suggest that linagliptin exerts favourable effects on 
ischemia–reperfusion injury [36], which in the long-term 
can translate into protection from HF.

Conclusion
Although exact discrimination of the various proBNP-
derived peptides will require sophisticated, time consum-
ing and costly mass spectrometric approaches [15], data 
obtained with diagnostic assays indicate that DPP-4i has 
no clinically appreciable effects on BNP and NT-proBNP. 
Further studies will be needed to dissect whether DPP-4i 
interferes with the biological action of BNP and whether 
this is linked to HF risk in patients with T2D.
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