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Abstract: A gene expression signature (GES) is a group of genes that shows a unique expression
profile as a result of perturbations by drugs, genetic modification or diseases on the transcriptional
machinery. The comparisons between GES profiles have been used to investigate the relationships
between drugs, their targets and diseases with quite a few successful cases reported. Especially in
the study of GES-guided drugs–disease associations, researchers believe that if a GES induced by
a drug is opposite to a GES induced by a disease, the drug may have potential as a treatment of
that disease. In this study, we data-mined the crowd extracted expression of differential signatures
(CREEDS) database to evaluate the similarity between GES profiles from drugs and their indicated
diseases. Our study aims to explore the application domains of GES-guided drug–disease associations
through the analysis of the similarity of GES profiles on known pairs of drug–disease associations,
thereby identifying subgroups of drugs/diseases that are suitable for GES-guided drug repositioning
approaches. Our results supported our hypothesis that the GES-guided drug–disease association
method is better suited for some subgroups or pathways such as drugs and diseases associated
with the immune system, diseases of the nervous system, non-chemotherapy drugs or the mTOR
signaling pathway.

Keywords: gene expression signature; drug repositioning approaches; RNA expression regulation

1. Introduction

A gene expression signature (GES) is a set of comprehensive gene expression profiles that can
reveal the difference between stimulated and normal cell states [1]. Current applications of GES
analysis are fruitful in cancer-related areas for disease genotype classification and outcome predictions.
For example, Ramaswamy, S. et al. created a GES database for diagnosing and categorizing the tumour
type with an accuracy rate of 78% [2]. Wright, G. et al. developed a Bayesian rule-based algorithm
to classify diffuse large B cell lymphoma into two subgroups which have a significant difference in
the five-year survival rate [3]. Although the GES method is more commonly used in diagnosing
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cancer [2–5] and predicting the outcome of certain medical interventions [6,7], some successful cases of
application on drug development have also reported [8–10].

Generally, there are two major strategies for applying GES analysis on drug development:
drug–drug-based and drug–disease-based. The drug–drug-based method determines the mechanistic
actions of drugs by comparing the similarity between the GES induced by a drug of interest to those
of drugs with known mechanisms. If two different drugs have similar GES profiles, then they are
considered to have “functional similarity”, meaning they work in a similar manner. In contrast,
the drug–disease-based method compares the similarity between the GES of a drug to that of a disease
in order to determine its potential as a new therapeutic agent. If the GES profile of the drug is opposite
to opposite to the expression pattern of the disease, then the drug is considered to have a therapeutic
effect for the disease. However, if they have similar patterns, then this drug may exacerbate the disease.
Studies aimed at drug repurposing or repositioning based on GES analysis usually use one or both of
these strategies [8–10]. In addition, there are studies trying to combine the GES method with other
methods, such as machine learning, to increase the accuracy of compound indication prediction [11].
However, as those kinds of GES-guided drug repurposing studies usually just reported the successful
predicted cases, therefore, the true accuracy of these methods needs to be assessed.

Due to the different and complex mechanisms of disease processes, the idea of an “inverse
pattern of a GES between drugs and diseases for therapeutic effect” may not hold, or at least may
not be suitable for all categories of drugs and diseases. In other words, a GES may be useful for
certain diseases, but not for others. To our knowledge, the application domains of GES-guided
drug–disease associations have not been reported. Herein, we conducted a study to validate the power
of the GES-guided drug repositioning method and to further explore which specific subgroups of
drug–disease pairs are more suitable for this method. Moreover, the most significant subgroup was
selected as a case report of detailingwhich genes and/or pathways were more sensitive to the GES-guided
drug repositioning method.

2. Results

2.1. GES Profiles Enrollment and Drug–Disease Pairs

After removing signatures from non-human assays and signatures of non-FDA (the U.S. Food
and Drug Administration)-approved drugs, we found that GSE10432, GSE7036, GSE6264, GSE38713,
GSE31773, GSE11393, GSE8157, GSE13887 and GSE11223 were signatures of both drugs and diseases
from the same assays. We kept their disease labels except the CREEDS (crowd extracted expression
of differential signatures [12]) ID of dz:297 because this case had information mis-specified (wrong
disease information with its original experiment). Two GES profiles from mouse (drug:3288 and dz:724)
were mis-specified as human and were also excluded from analysis. The relationship between these
Gene Expression Omnibus (GEO) series (GSE) and CREEDS IDs is shown in Table 1. The proportion of
data that meets the inclusion criteria is shown in Figure 1.



Molecules 2020, 25, 2776 3 of 17

Table 1. The Gene Expression Omnibus (GEO) series with crowd extracted expression of differential
signatures (CREEDS) IDs excluded.

GEO Series CREEDS IDs Excluded CREEDS IDs

GSE10432 drug:2772, dz:297 dz:297
GSE7036 drug:3292, dz:181 drug:3292
GSE6264 drug:3064, dz:582 drug:3064

GSE38713 drug:3289, drug:3194, drug:3195, dz:810 drug:3289, drug:3194, drug:3195
GSE31773 drug:2485, dz:712, dz:713, dz:714, dz:715 drug:2485
GSE11393 drug:3401, drug:3196, dz:773, dz:267 drug:3401, drug:3196
GSE8157 drug:2796, dz:880 drug:2796

GSE13887 drug:3181, dz:450 drug:3181,

GSE11223
drug:3294, drug:3287, dz:590, dz:591,
dz:593, dz:589, dz:588, dz:587, dz:586,

dz:585
drug:3294, drug:3287

GSE7762 drug:3288 drug:3288
GSE3248 dz:724 dz:724
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0.12%(2)        Signatures with Information Mis-Specificed
0.76%(13)      Signatures from Same Assays but Labelled as Both 
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Figure 1. The proportion of data sourced from the crowd extracted expression of differential signatures
(CREEDS) database. Numbers of gene signatures are shown in parentheses. “Drug and Disease
Signatures Included in the Final Analysis”: The proportion of drug or disease gene signatures enrolled
in the final analysis. “Drug and Disease Signatures Extracted from Non-Human Assays”: The proportion
of drug or disease gene signatures extracted from non-human assays. “Signatures with Information
Mis-Specified”: The proportion of gene signatures with information errors. “Signatures from Same
Assays but Labelled as Both”: The proportion of gene signatures excluded because of both drug and
disease sourcing from the same assay. “Drug and Disease Signatures Because of Indication Not Found”:
The proportion of gene signatures excluded because no FDA-labelled indication of a relationship was
found for the drug or disease (including drugs not approved by FDA).

When the inclusion criteria were applied, and the signatures with no indication relationship
were excluded, 230 manual disease signatures and 244 manual drug perturbation signatures from 71
unique diseases and 56 unique drugs, respectively, were enrolled in the final analysis. The average
signed Jaccard indexes [12] (SJI) of 3976 unique drug–disease pairs were calculated. Among them,
there were 167 pairs with a drug–disease indication from the drug labels. The remaining 3809 unique
drug–disease pairs were used as the control group.

2.2. Subgroups Distribution

Among the 56 unique drugs analysed, 32 unique protein targets with 22 categories of Anatomical
Therapeutic Chemical (ATC) classification were assigned. Thirteen drugs are classified as chemotherapy
drugs, and 44 drugs are not (Methotrexate is both a chemotherapy and a non-chemotherapy drug
due to its different main therapeutic targets when against different diseases). For transcription factor
(TF) level, 12 drugs are labelled as “directly”, 39 drugs are labelled as “not-directly” and 5 drugs
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were labelled as “non-Human” (see section 4.4. subgroup classification for the detailed meanings of
labels). Further, 71 diseases are divided into 11 ICD-11 (International Classification of Diseases 11th
Revision) categories. In total, 70 subgroups belonging to five categories were assigned (Figure 2,
detailed information in Table S1 and Table S2).
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Figure 2. The subgroups proportion of unique 167 indicated drug–disease pairs of different categories.
(a) Disease classification. NEO: neoplasms, DMSCT: diseases of the musculoskeletal system or
connective tissue, DS: diseases of the skin, CIPD: certain infectious or parasitic diseases, DIS: diseases of
the immune system, ENMD: endocrine, nutritional or metabolic diseases, DBBO: diseases of the blood
or blood-forming organs, DRS: diseases of the respiratory system, DNS: diseases of the nervous
system, DDS: diseases of the digestive system, DCS: diseases of the circulatory system. (b) Drug
target. GLUR: glucocorticoid receptor, DNAtopo: DNA/topoisomerase-human, TYRK: tyrosine
kinase, DNAclak: DNA cross-linking/alkylation, CYC: cyclooxygenase, DNAlig: DNA/ligase, TOPOI:
topoisomerase-non-human, INTR: interferon receptor, MICROT: microtubules, NUCS: nucleotide
synthesis, TNF: tumor necrosis factor. (c) TF (transcription factor) level. “Directly”: drugs with TFs as
its main therapeutic targets. “Not-directly” indicates drugs with main therapeutic targets which are
human DNA structures or human proteins but not TFs. “Non-Human” represent drugs interacting
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with protein or structures of non-human (for example, from virus or bacterial) as main therapeutic
targets. (d) Chemotherapy. “YES” or “NO” indicates the drug is a chemotherapy drug or not.
(e) ATC classification. CORTI: corticosteroids for systemic use, plain, OAA: other antineoplastic
agents, CYTOANTIB: cytotoxic antibiotics and related substances, ANTIME: antimetabolites, IMMSUP:
immunosuppressants, NSAAP: anti-inflammatory and antirheumatic products, non-steroids, HAARA:
hormone antagonists and related agents, QUINA: quinolone antibacterial, IMMSTI: immunostimulants,
PAAAONP: plant alkaloids and other natural products, ALKA: alkylating agents.

2.3. Overall Score of GES Similarity of Drug-Indicted Disease Pairs Against Random Drug–Disease Pairs

We observed significantly lower SJI similarity scores of drug–disease indication pairs than those
of random drug–disease pairs (p-value of two-side t-test [13] equals to 0.02324). The average similarity
score of indicated pairs is −0.00386 with a standard deviation of 0.01794 and that of random control
pairs is −0.00072 with a standard deviation of 0.01750, indicating that the GES method can reflect
the therapeutic effects of the drugs (The distributions of SJI in both the indication group and the control
group are shown in Figure 3).

Molecules 2020, 25, x FOR PEER REVIEW 5 of 17 

 

drugs with TFs as its main therapeutic targets. “Not-directly” indicates drugs with main therapeutic 
targets which are human DNA structures or human proteins but not TFs. “Non-Human” represent 
drugs interacting with protein or structures of non-human (for example, from virus or bacterial) as 
main therapeutic targets. (d) Chemotherapy. “YES” or “NO” indicates the drug is a chemotherapy 
drug or not. (e) ATC classification. CORTI: corticosteroids for systemic use, plain, OAA: other 
antineoplastic agents, CYTOANTIB: cytotoxic antibiotics and related substances, ANTIME: 
antimetabolites, IMMSUP: immunosuppressants, NSAAP: anti-inflammatory and antirheumatic 
products, non-steroids, HAARA: hormone antagonists and related agents, QUINA: quinolone 
antibacterial, IMMSTI: immunostimulants, PAAAONP: plant alkaloids and other natural products, 
ALKA: alkylating agents. 

2.3. Overall Score of GES Similarity of Drug-Indicted Disease Pairs Against Random Drug–Disease Pairs 

We observed significantly lower SJI similarity scores of drug–disease indication pairs than those 
of random drug–disease pairs (p-value of two-side t-test [13] equals to 0.02324). The average 
similarity score of indicated pairs is −0.00386 with a standard deviation of 0.01794 and that of random 
control pairs is −0.00072 with a standard deviation of 0.01750, indicating that the GES method can 
reflect the therapeutic effects of the drugs (The distributions of SJI in both the indication group and 
the control group are shown in Figure 3).  

 
Figure 3. The distribution of signed Jaccard index in the indication group and the control group. 

2.4. Subgroup Scores of GES Similarity of Drug-Indicated Disease Pairs Against Random Drug–Disease 
Pairs 

We compared drugs from five different categories of subgroups: (1) disease classifications; (2) 
drug target; (3) TF level; (4) chemotherapy; and (5) ATC classification. The results are shown in Figure 
4, detail information is listed in Table S3 and Table S4. Subgroups with important or significant (q-
value according to false discover rate (FDR) lower than 0.05) results according to least squares mean 
partitions F tests of a generalized linear model (GLM) [14] are listed in Table 2.  
  

Figure 3. The distribution of signed Jaccard index in the indication group and the control group.

2.4. Subgroup Scores of GES Similarity of Drug-Indicated Disease Pairs Against Random Drug–Disease Pairs

We compared drugs from five different categories of subgroups: (1) disease classifications; (2)
drug target; (3) TF level; (4) chemotherapy; and (5) ATC classification. The results are shown in
Figure 4, detail information is listed in Table S3 and Table S4. Subgroups with important or significant
(q-value according to false discover rate (FDR) lower than 0.05) results according to least squares mean
partitions F tests of a generalized linear model (GLM) [14] are listed in Table 2.
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Table 2. Subgroups of generalized linear model (GLM) least squares mean partitions F tests results.

Classification Category Subgroups Average SJI of
Indicated Pairs ± SD N Average SJI of

Control Pairs ± SD N Q value

Disease classification

Diseases of the blood or
blood-forming organs −0.02368 ± 0.03746 6 0.00075 ± 0.02470 138 0.01322

Diseases of the nervous
system −0.03264 ± 0.03648 4 −0.00054 ± 0.01528 92 0.00704

Drug target classification Interferon receptor −0.02314 ± 0.03866 5 0.00916 ± 0.02849 115 0.00110

Kinase mTOR −0.05846 ±———- 1 0.00353 ± 0.01580 23 0.01755

Chemotherapy
classification

Chemotherapy drugs 0.00048 ± 0.00894 47 −0.00022 ± 0.01221 1049 0.99509

Non-chemotherapy drugs −0.00556 ± 0.02026 120 −0.00086 ± 0.01872 2760 0.03937

ATC classification
Immunostimulants −0.02314 ± 0.03866 5 0.00916 ± 0.02849 115 0.00110

Other dermatological
preparations −0.05846 ±———- 1 −0.00353 ± 0.01580 23 0.01755

Transcription factor level
Directly −0.00433 ± 0.02310 60 0.00070 ± 0.01671 1378 0.22309

Not-directly −0.00344 ± 0.01443 98 −0.00116 ± 0.01785 2224 0.99509

Non-Human −0.00533±0.01574 9 −0.00057 ± 0.01627 207 0.79080

Important subgroups or subgroups with false discover rate (FDR) q-value lower than 0.05 from GLM least squares mean partitions F tests for signed Jaccard index differences between
drug-indicted disease pairs and random drug–disease pairs. “———-” indicates that subgroups only have one unique drug–disease pair sample with no standard deviation.
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Figure 4. The average signed Jaccard index score of unique indicated drug–disease pairs split by
different categories of subgroups. ** indicates FDR Q < 0.01, * indicates FDR Q < 0.05. (a) ATC
classification. ADRI: adrenergics, inhalants, AAPS: anti-acne preparations for systemic use, EIBGLD:
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blood glucose-lowering drugs, excluding insulins, DAA: direct acting antivirals, ESTR: estrogens, INS:
insulins and analogues, LMA: lipid modifying agents, plain, ODP: other dermatological preparations,
TET: tetracyclines, VITAD: vitamins A and D, including combinations of the two. CORTI, OAA,
CYTOANTIB, ANTIME, IMMSUP, NSAAP, HAARA, QUINA, IMMSTI, PAAAONP, ALKA, see
Figure 1 legend. (b) Chemotherapy. “YES” or “NO” indicates the drug is a chemotherapy drug
or not. (c) Disease classification. See Figure 1 for abbreviations. (d) Target. 16S: 16S ribosomal
RNA, ACRT: aminoimidazole caboxamide ribonucleotide transformylase, AMPAPK: AMP-activated
protein kinase, ADGR: androgen receptor, BETAR: beta adrenergic receptor, CD20: CD20 antigen, CYP:
cytochromes P450, DAAD: delta-aminolevulinic acid dehydratase, DNMT: DNA/methyltransferase,
DNApo: DNA/polymerase, ESR: estrogen receptor, HMG-CoAR: HMG-CoA reductase, I5MD:
inosine-5’-monophosphate dehydrogenase, INSR: insulin receptor, mTOR: kinase mTOR, PPAR:
peroxisome proliferator-activated receptors, PSB: proteasome subunit beta, RAR: retinoic acid receptor,
B-raf: serine/threonine-protein kinase B-raf, THYS: thymidylate synthase, D3: vitamin D3 receptor;
GLUR, DNAtopo, TYRK, DNAclak, CYC, DNAlig, TOPOI, INTR, MICROT, NUCS, TNF see Figure 1
legend. (e) TF (transcription factor) level. “Directly”: drugs with TFs as their main therapeutic targets.
“Not-directly” indicates drugs with main therapeutic targets which are human DNA structures or
human proteins but not TFs. “Non-Human” represents drugs interacting with non-human proteins or
structures (for example, from viruses or bacteria) as main therapeutic targets.

2.5. Gene and Pathway Analysis on an Example Drug–Disease GES Pair

Interferon receptor (with the same drug–disease pair content as the immunostimulants subgroup),
the subgroup with the lowest q-value, was chosen as a case report for the pathway analysis. The top 5%
(93/1898) genes with a relatively reversed expression probability according to the relatively expression
probability of a gene’s (GI-R%, an indicator of the relative possibility difference of gene expression
between the indicated group and the random control group, see below 4.5) scores are shown in Table 3.
The top 10 significant biological pathways identified by the ingenuity pathway analysis are shown in
Table 4.

Table 3. Top 5% genes with relatively expression probability (GI-R%).

Gene GI-R% Gene GI-R% Gene GI-R% Gene GI-R%

MX1 −46.87% FTL −25.22% USP18 −19.56% DUSP6 −16.90%
IFIT3 −41.45% RPL24 −25.18% CERS2 −19.38% TPT1 −16.66%

NME1 −40.50% ERP29 −23.86% RPLP0 −19.36% RSAD2 −16.59%
RPL3 −39.19% RSL24D1 −23.86% KLRB1 −19.28% ADAR −16.48%
RPS5 −37.61% PTMA −23.65% ADM −19.23% DDX58 −16.44%
RPL6 −36.57% HLA-DRA −22.88% PLSCR1 −19.23% APOBEC3A −16.40%

MT1HL1 −35.52% IFIT1 −22.22% RPLP0P6 −19.14% PPIB −16.17%
MT2A −34.80% MX2 −22.22% RPS3A −19.07% RGS2 −16.09%
RPSA −33.55% LDHB −22.12% TRIM22 −19.00% IRF7 −16.08%
TGFBI −33.47% DYNLT1 −21.90% DDX21 −18.66% PSMA6 −16.00%
MT1X −32.30% ALDH1A1 −21.64% GCH1 −18.64% RPL9 −15.94%

HERC5 −32.15% HSPA1A −21.53% GAPDH −18.55% OAS1 −15.91%
FAU −31.82% SLC25A5 −21.53% OAS3 −18.48% RPL31 −15.74%
PLS3 −29.66% IFIT2 −21.38% RPS25 −18.40% PTTG1IP −15.74%

HLA-A −29.15% RPS4X −21.28% NDUFB11 −18.40% BIRC2 −15.74%
RPL22 −28.88% EIF3E −20.88% SNHG6 −18.15% MYD88 −15.67%

FBL −28.52% HMGN2 −20.88% PSAT1 −18.06% RPS14P3 −15.64%
RPS8 −27.57% FTH1P5 −20.80% IER2 −18.02% FTH1 −15.62%
ISG15 −26.91% YWHAZ −20.72% UXT −17.65% C4orf46 −15.45%

EEF1B2 −26.88% PFDN5 −20.57% PARP12 −17.58% PPT1 −15.42%
PHB2 −26.48% TMA7 −20.20% MAFB −17.40% YBX1 −15.33%
MT1H −26.29% CCT7 −20.12% LYZ −17.25%
RPL8 −26.11% OASL −19.89% NARS −17.15%
ATF4 −25.36% SNHG5 −19.64% AKR1B1 −17.02%
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Table 4. Top 10 significant biological pathways according to high relatively expression probability genes.

Ingenuity Canonical Pathways -log(p-value) Ratio Genes Overlapped with Datasets

EIF2 Signaling 16.50 8.02%
(17/212)

ATF4, EIF3E, FAU, RPL22, RPL24, RPL3,
RPL31, RPL6, RPL8, RPL9, RPLP0,
RPS25, RPS3A, RPS4X, RPS5, RPS8,

RPSA

Activation of IRF by Cytosolic
Pattern Recognition Receptors 6.60 9.84%

(6/61) ADAR, DDX58, IFIT2, IRF7, ISG15, PPIB

Regulation of eIF4 and p70S6K
Signaling 6.48 5.23%

(8/153)
EIF3E, FAU, RPS25, RPS3A, RPS4X,

RPS5, RPS8, RPSA

Interferon Signaling 6.34 13.90%
(5/36) IFIT1, IFIT3, ISG15, MX1, OAS1

mTOR Signaling 5.57 3.96%
(8/202)

EIF3E, FAU, RPS25, RPS3A, RPS4X,
RPS5, RPS8, RPSA

NRF2-mediated Oxidative Stress
Response 3.80 3.23%

(6/186) ATF4, CCT7, ERP29, FTH1, FTL, PPIB

Role of Pattern Recognition
Receptors in Recognition of

Bacteria and Viruses
3.39 3.47%

(5/144) DDX58, IRF7, MYD88, OAS1, OAS3

Neuroinflammation Signaling
Pathway 2.78 2.06%

(6/291)
ATF4, BIRC2, HLA-A, HLA-DRA, IRF7,

MYD88

SPINK1 General Cancer Pathway 2.63 4.92%
(3/61) MT1H, MT1X, MT2A

Systemic Lupus Erythematosus in
B Cell Signaling Pathway 2.23 1.89%

(5/265) IFIT2, IFIT3, IRF7, ISG15, MYD88

These 10 pathways are reported to be involved with interferon regulation [15–27]. within
inflammatory and immune responses (see Table 5).

Table 5. Top 10 pathways and their function labels.

Ingenuity Canonical Pathways Function Reference

EIF2 Signaling Immune Responses [28]

Activation of IRF by Cytosolic Pattern Recognition Receptors Regulate Interferon [17]

Regulation of eIF4 and p70S6K Signaling Inflammatory [18,29]

Interferon Signaling Immune Responses [30,31]

mTOR Signaling Immune Responses [19]

NRF2-mediated Oxidative Stress Response Antioxidant Response [21]

Role of Pattern Recognition Receptors in Recognition of
Bacteria and Viruses Regulate Interferon [22]

Neuroinflammation Signaling Pathway Inflammatory [23]

SPINK1 General Cancer Pathway Cancer Diagnose [32]

Systemic Lupus Erythematosus in B Cell Signaling Pathway Inflammatory [33]

3. Discussion

It is well-recognized that genes with similar gene expression patterns have a similar function [34].
From the overall score, we can see that FDA-approved drugs listed in the CREEDS database and
their indicated diseases generally have inverse GES patterns compared with the random controls.
However, the absolute difference between the indicated group and random control group is not
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very obvious. For example, in a recent study [35], a significant relationship was found between
drug–disease GES similarity and drug therapeutic effect using Cmap [36], with a relatively low overall
area under curve (AUC) of 0.57, indicating a real, albeit weak, inverse relationship. The treatment
effectors of the drugs identified in this study likely work via the interaction of the genes’ protein
products, with only a moderate correlation between gene expression and levels of the corresponding
protein(s) [37]. Thus, an association study between drugs/diseases and gene expression/pharmaceutical
effect is necessary. Also, other mechanisms, for instance, microRNA-based therapeutics, might directly
orchestrate the activation/deactivation of the gene expression. However, due to the limitation of
available sources, we were unable to investigate other mechanisms of action. Besides, the drugs’
TF-levels were not a significant factor that reflect the indication relationship (although drugs directly
interacting with TF perform slightly better with q-value of 0.22309 vs. q-value of 0.99509). In our
analyses, some subgroups of drugs–diseases pairs with indication associations have positive similarity
scores (which means that the drug may exacerbate the disease according to the assumption of gene
expression signature similarity) or a score higher than random drug–disease pairs, but these findings
were not statistically significant. On the other hand, 7 of 70 subgroups had a significantly lower
similarity score when a drug–disease association is indicated.

This study may provide some hints to other future studies utilizing the GES method strategies of
comparing drug–disease GES similarity for drug repositioning. That is, certain types of drugs may
have a stronger ability to reverse the GES of the diseases they treat, and the disease type may also
influence this ability. As such, in specific kinds of subgroups, the drug–disease pairs with higher
similarities of reversed GES patterns may have greater therapeutic relationships, which means that
focusing on certain kinds of diseases or drugs can increase the true positive rate of the GES-guided drug
repositioning method For example, over half (4/7) of the significant subgroups (immunostimulants,
interferon receptor, other dermatological preparations, and diseases of the blood or blood-forming
organs) are related to diseases associated with the immune system (the disease includes in “other
dermatological preparations” atopic dermatitis). This indicates that a drug with drug–disease pairs
associated with the immune system tends to have lower similarity scores when compared with
the diseases it indicated than random diseases. This means in a GES-guided drug repositioning
analysis, an immune-associated drug is more likely to have a potential therapeutic effect on diseases
that have a higher inverse similarity with it.

Chemotherapy drugs may not be as good as non-chemotherapy drugs for the GES-guided drug
repositioning method (q-values: 0.99509 vs. 0.03937). Unarguably, the high diversity of chemotherapy
responses to heterogenetic tumor tissues or even histologically similar tumors has been a challenging
problem for a long time [37,38]. The failure of controlling the process of programmed cell death in
tissue, one of the major causes of tumors, can be rectified or even overturned by activating/deactivating
different pathways under various conditions [39]. This may be the reason that chemotherapy drugs
are not good for the GES-guided repositioning approach. On the other hand, non-chemotherapy drugs
show a significant result as they interact with cancer cells through more specific mechanisms, such as
hormone regulation or mono-target therapy.

For the biological pathway analysis of the interferon receptor subgroup, we found that the genes
involved in pathways directly regulated by drugs have the lowest GI-R% scores. It is reasonable
that GES-guided drug repositioning methods are more sensitive to drugs directly targeting pathways
related to diseases. Furthermore, the significance of mTOR signaling is in accordance with the result
in which the subgroup kinase mTOR had a significant indicated-random drug–disease pairs’ SJI
difference. This result confirmed the high sensitivity of the GES-guided drug repositioning method to
this pathway on the other side.

There are some limitations in this study. First, the tissues used for testing the drug effects may
not match with the body parts/organs affected by the diseases.. Second, some bias may be caused
by the limited number of the CREEDS bio-assay collection which may not have the ability to fully
present the pattern of all kinds of drugs and diseases. Additionally, it is important to differentiate
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the types of “treatment effect”. Some drugs may cure a particular disease while others may just provide
symptomatic relief thereby resulting in different patterns of GES for the same disease. Also, some
indicated subgroups (“kinase mTOR”, and “other dermatological preparations”) have too few unique
drug–disease pairs (n = 1), which may weaken the analyses’ power.

In this study, we systematically analyzed the similarity of gene expression profiles from known
drug–disease associations, and we found that indicated pairs have a greater inverse similarity score.
We found seven subgroups in which their drugs or diseases may have a greater reversed GES pattern
when there is a clear therapeutic effect. These findings suggest that a GES-guided drug repositioning
method should be used based on the drug or disease type differences. For example, drugs or diseases
associated with the immune system, diseases of the nervous system or non-chemotherapy drugs may be
a better choice for drug repositioning. Moreover, our biological pathway enrichment analysis showed
that some pathways may be more sensitive to this method, such as the mTOR signaling pathway.

4. Materials and Methods

4.1. Gene Signature Data Collection and Filtering

In this study, all gene signature information was collected from a well-calibrated GES repository,
the crowd extracted expression of differential signatures (CREEDS) [12] database. The CREEDS database
is maintained by the Ma’ayan Lab of Icahn School of Medicine at Mount Sinai. CREEDS utilized
GEO2Enrichr [40] to extract GES profiles from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) and applied a characteristic direction (CD) model [41] to
identify differentially expressed genes. This database V1.0 includes 10,797 single-gene perturbations,
2258 disease signatures and 5516 drug perturbation gene signatures. Among these signatures, 2176
manual single-gene perturbations, 828 manual disease signatures and 875 manual drug perturbation
signatures were considered to be more accurate compared with the automatically generated GES by
the machine learning method. The CREEDS database allows users to compare the similarity between
the user-specified GES and the GESs processed and stored in the CREEDS.

We first selected the CREEDS manual GES profiles if the assays were from human tissues and/or
human cell linesand if the drugs had FDA approval.

Each GES profile includes a list of up- and down-regulated genes. The SJI [12] (see below),
a measurement for the similarity between two GES profiles from the paired drug–disease, was
calculated. When a drug or a disease had multiple GES profiles, we calculated the SJIs of all the possible
combinations, and an overall score for each unique drug–disease pair was calculated from the average
of all scores from pairs sharing the same drug–disease combination. All the disease signatures and
drug perturbation signatures were requested through the application program interface (API) provided
by CREEDS. GES profiles were removed if they labelled for both a drug treatment and for a disease,
because this may cause biased similarity. Under the criteria that (a) the GES profiles must come from
assays of human cells/tissues, and (b) drugs must be approved by FDA, the remaining signatures were
paired within drugs and diseases according to the indication associations. Signatures without any
indicated drug–disease relationship were also excluded from further analysis. For example, cocaine
was removed because its indication, local anesthesia, was not in the data of disease signatures and
could not be paired. The overall data process is shown in Figure 5.
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Figure 5. The flow chart of drug and disease gene signature data inclusion process. Numbers of
gene signatures left in each step are shown in parentheses: (Number of drug signatures/Number of
disease signatures) 1.1. and 1.2. All manual gene signatures retrieved from the CREEDS database.
2. Remove all signatures with assays not labelled as human. 3. Remove all drug signatures not from
FDA-approved drugs. 4. Remove signatures with information errors or signatures labelled as both
for a drug treatment and for a disease. 5. Remaining drug signatures were paired with each disease
signature. 6. Remove signatures with no FDA-labelled indication relationships of drug or disease.
7. Indicated group and control group were divided according to the indication relationship from
the FDA drug label. 8. Calculate the signed Jaccard index for each remaining drug–disease pair.

4.2. Similarity Calculation

In our analysis, SJI, which is based on the Jaccard similarity coefficient [42], was used to compute
the similarity between GES profiles from a drug and a disease. The Jaccard similarity coefficient
is a statistic used to gauge the similarity between different sample sets. It is defined as the size of
the intersection divided by the size of the union of two sample sets. It is calculated as follows:

Jaccard Similarity Coe f f icient(G1, G2) =
SAME
ALL

where G1 and G2 stand for two lists of differential expressed gene sets, “SAME” represents the number
of same genes between two given gene sets, and “ALL” stands for all the unique genes that appeared
in the two gene sets.

SJI, which combines the Jaccard similarity coefficient with the gene regulation direction is
calculated as follows:

Signed Jaccard index(G1, G2) =
J
(
Gup

1 , Gup
2

)
+ J
(
Gdown

1 , Gdown
2

)
− J
(
Gup

1 , Gdown
2

)
− J
(
Gdown

1 , Gup
2

)
2
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where J means Jaccard similarity coefficient, and Gup and Gdown are up- or down-regulated genes in
the given gene set G, respectively. The index ranges from +1 to −1, where +1 and −1 indicate a same
pattern and inverse pattern of two gene sets, respectively. Zero indicates that the two sets have no
associations, or the same part is cancelled out by the inverse part. The reason to use an unranked score
calculation method (SJI) is to keep in accordance with the same scoring method used in the CREEDS
database. The CREEDS API (application programming interface) offers the function to calculate the SJI
automatically. However, we found the API could not calculate the SJI correctly when two GES profiles
are highly overlapped., therefore, all the SJIs in this study were re-calculated.

4.3. Drug-Related Information Collection

In our analysis, the source of drug-related information is listed as follows:
1. Drug target information was collected from DrugBank [43,44] Release Version 5.1.4 [45]

(https://www.drugbank.ca/releases/latest#external-links). Only the targets with the main therapeutic
effect in the mechanism of action section were included;

2. The human TF list was collected from the paper published by Samuel A. Lambert et al. [46];
3. ATC classifications on level 3 were collected from the WHO official website (https://www.

whocc.no/atc_ddd_index/);
4. The drug indication was from section “indications and usage” of FDA label on FDA website

(https://labels.fda.gov/);
5. (Drug-indicated) Disease classification was assigned to each disease based on the International

Classification of Diseases 11th Revision (ICD-11), level 1.

4.4. Subgroup Classification

In our analysis, we assessed the following factors that might influence the power of the GES-guided
drug repositioning method:

1. Disease classifications: A subgroup was assigned to a disease in a drug–disease pair according to
the ICD-11-level 1 code of the disease;

2. Drug target subfamilies: Subgroups were divided by the main therapeutic target of each drug. To
avoid group splits being too small, some same subfamilies of targets are grouped as one, such as
“Beta-1 adrenergic receptor”, “Beta-2 adrenergic receptor” and “Beta-3 adrenergic receptor” are
grouped in the same subgroup “Beta adrenergic receptors”;

3. The relationship between the drug’s main therapeutic targets and human transcription factors:
A TF level was assigned according to the relationship between the drugs’ main therapeutic targets
and human TF. Drugs with main therapeutic targets that can directly interact with at least one
TF were labelled as “directly”. Drugs with main therapeutic targets which are human DNA
structures or human proteins but not TFs were labelled as “not-directly”. Drugs interacting with
non-human proteins or structures (for example, from viruses or bacteria) as main therapeutic
targets were labelled as “non-Human”;

4. The drug is a chemotherapy drug or not: Drugs with main therapeutic targets as
“DNA cross-linking/alkylation”, “DNA/ligase”, “DNA/methyltransferase”, “DNA/polymerase”,
“DNA/topoisomerase-human”, “micro-tubules”, “nucleotide synthesis” or “Thymidylate
synthase” were defined as chemotherapy drugs

5. The drug’s ATC classification: Subgroups were divided according to the Anatomical Therapeutic
Chemical classification system, level 3. Drugs with multiple classifications caused by different
administration routes were unified to systematic use.

4.5. Statistical Analysis and Pathway Analysis

The random control group was generated by calculating the average SJI of all possible drug–disease
pairs without indicated associations to imitate a GES-guided drug repositioning screening. A t-test [13]

https://www.drugbank.ca/releases/latest#external-links
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
https://labels.fda.gov/
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was applied to quantify the mean differences of the SJI between drug-indicated disease pairs and
random controls.

For subgroup analysis, GLM [14] least squares mean partitions F tests function was applied to
estimate the mean difference between the indicated and control group since the data was unbalanced
with multiple factors. A significant result of a certain subgroup indicated that the average SJI of this
subgroup was significant between two indication levels (Yes/No). False discovery rate (FDR) q-value
of the Benjamini–Hochberg procedure [47] was controlled to 0.05 to avoid an inflated experiment-wise
type I error rate caused by multiple comparisons among all subgroups.

Data processing and statistical analysis (student t-tests, GLM, FDR calculation) were conducted
using R studio 3.6.1 [48] and SAS software version 9.4. Copyright © 2019 SAS Institute Inc. Cary,
NC, USA.

Differentially reversed expression genes (top 5% negative score according to the relatively reverse
percentage) from the most significant subgroup will be chosen as examples to conduct biological
pathway enrichment analysis.

The relatively reverse percentage is calculated as

Relatively expression probability o f a gene
(
GI−R%

)
= DI%−DR%

where DI% and DR% stand for the percentage of the gene which is differentially expressed in all assays
of indicated/random drug–diseases pairs. It is calculated as

D% =
NS−NR

Total assays pairs

where NS and NR represent the number of times a gene showed a same or reverse regulation direction
between assays of drugs and diseases among all drug–disease assays pairs.

The GI-R% ranges from 100% to -100%. A higher positive score indicates that this gene is more
likely to be expressed in the same direction in indicated drug–disease assays compared with random
drug–disease assays. Likewise, a lower negative score indicates that this gene has a higher probability to
express reversely between indicated drug–disease assays compared with random drug–disease assays.

Biological pathway enrichment analysis was conducted by ingenuity pathway analysis (IPA,
QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/12/2776/s1,
Table S1: 70 subgroups with four drug categories, Table S2: 70 subgroups with disease category, Table S3: Indicated
drug–disease pair results, Table S4: Random drug–disease pair results.
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