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Abstract

Objective: Single-nucleotide polymorphisms (SNPs) associated with the response to recombinant human growth 

hormone (r-hGH) have previously been identified in growth hormone deficiency (GHD) and Turner syndrome (TS) 

children in the PREDICT long-term follow-up (LTFU) study (NCT00699855). Here, we describe the PREDICT validation 

(VAL) study (NCT01419249), which aimed to confirm these genetic associations.

Design and methods: Children with GHD (n = 293) or TS (n = 132) were recruited retrospectively from 29 sites in nine 

countries. All children had completed 1 year of r-hGH therapy. 48 SNPs previously identified as associated with first 

year growth response to r-hGH were genotyped. Regression analysis was used to assess the association between 

genotype and growth response using clinical/auxological variables as covariates. Further analysis was undertaken 

using random forest classification.

Results: The children were younger, and the growth response was higher in VAL study. Direct genotype analysis did 

not replicate what was found in the LTFU study. However, using exploratory regression models with covariates, a 

consistent relationship with growth response in both VAL and LTFU was shown for four genes – SOS1 and INPPL1 in 

GHD and ESR1 and PTPN1 in TS. The random forest analysis demonstrated that only clinical covariates were important 

in the prediction of growth response in mild GHD (>4 to <10 μg/L on GH stimulation test), however, in severe GHD 

(≤4 μg/L) several SNPs contributed (in IGF2, GRB10, FOS, IGFBP3 and GHRHR).

Conclusions: The PREDICT validation study supports, in an independent cohort, the association of four of 48 genetic 

markers with growth response to r-hGH treatment in both pre-pubertal GHD and TS children after controlling for 

clinical/auxological covariates. However, the contribution of these SNPs in a prediction model of first-year response is 

not sufficient for routine clinical use.

Introduction

Although therapy with recombinant human  
growth hormone (r-hGH) is efficacious, there is 

substantial interindividual and interdisease variability 
in growth response to r-hGH therapy (1, 2, 3).  
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Methods that predict growth response to r-hGH have 
been developed based on statistical models using 
baseline auxological and biochemical parameters  
(4, 5, 6, 7).

Genetic polymorphisms associated with response to 
r-hGH therapy are recognised, with the most extensively 
studied being the exon 3 GHR deletion (GHR-D3) 
(8). The possibility of using genetic markers in the 
prediction of response to r-hGH therapy, thus allowing 
early personalised dose optimisation (9), formed the 
underlying rationale for the PREDICT study designed to 
assess pharmacogenomic relationships with response to 
r-hGH in GHD and TS. This study had two components: 
(i) a phase IV, open-label, prospective multicentre study 
using GH-treatment-naïve children with GHD and TS 
over the first month of r-hGH treatment (NCT00256126) 
and (ii) a long-term follow-up (LTFU), which was an 
observational 5-year study collecting routine clinical 
and auxological information at the child’s standard 
annual visits during r-hGH treatment (NCT00699855). 
The association of genetic markers (single-nucleotide 
polymorphisms (SNPs)) within selected candidate 
genes (related to the GH/IGF1 axis, cell signalling and 
metabolism) with change in biomarkers (e.g. serum IGF-
I) over 1 month and growth response over 1 year have 
been reported (10, 11). The genetic associations with 
height velocity at year one of treatment with r-hGH 
implicated eleven genes in GHD and ten in TS (11). 
Different sets of SNPs were found to be related to the two 
conditions implying that genetic influence on growth 
response to r-hGH is disease specific (11).

Growth prediction models for the main growth 
disorders treated with r-hGH (4, 6, 12, 13) have been 
developed by the KIGS pharmacoepidemiological survey 
(Pfizer International Growth Study) (4). These statistical 
models provide the clinician with the ability to generate 
individualised data on short- and mid-term growth, which 
can be used for counselling, adjusting GH dosing (14) or 
categorising response after at least 1 year of treatment. The 
variability of growth response in the first year of treatment 
explained by the KIGS models has been calculated as 61 
and 46% for GHD (4) and TS (5) respectively. These models 
have not incorporated any direct genetic information 
although surrogate genetic markers, such as parental 
heights are used. The relationship between mid-parental 
height and the final height of offspring has been shown to 
explain 40% of the sex- and age-adjusted height variance 
in normal growth (15).

The use of genomic data to facilitate the prediction of 
growth response must account for the influence of many 

factors. Human gene expression has been shown to vary in 
response to the phase of physical development (infancy, 
childhood and puberty) implying that gene ontogeny is a 
factor in growth response (16). Within the PREDICT study, 
gene and environment interactions have been defined in 
children with GHD among SNP carriage, location where 
treatment was given (as measured by summer daylight 
exposure at that location) and first-year response to 
r-hGH (17). An interaction between GHD severity and 
the carriage of GHR-D3 has also been determined in the 
PREDICT study (18). Together these data support the need 
to consider the interaction factors in genomic analyses.

The identification of ‘good’ and ‘poor’ responders 
to therapy represents both a major clinical need and 
a challenge; for example, a child who is predicted to 
respond poorly may need to start r-hGH on a higher than 
average dose for that condition or should not be treated 
at all, whereas for a good responder, the dose can be 
reduced, avoiding exposure to supra-physiological IGF-I 
concentrations and reducing the overall cost of r-hGH 
therapy per patient.

The aim of this study was to validate the SNPs 
associated in the PREDICT LTFU study with growth 
response to r-hGH therapy in a second cohort of 
children with either GHD or TS. A secondary aim was 
to investigate potential gene × environment interactions 
within the data.

Methods

Study design

The PREDICT validation study (NCT01419249) was 
planned as a retrospective replication analysis of 48 
previously identified associations between SNPs and GH 
response (11). Two hundred and ninety three children 
with GHD and 132 children with TS were recruited from 
29 sites in nine countries. Three clinical endpoints – (i) 
change in height (cm); (ii) change in height SDS and 
(iii) height velocity SDS after 1 year of treatment – were 
categorised by quartiles such as (L)ow (Q1), (I)ntermediate 
(Q2 and Q3) and (H)igh (Q4) response for each patient, 
stratified by gender and by age group (<8 years, 8–12 years 
and >12 years). The study was powered to validate at least 
one SNP.

All patients were recruited through their local growth 
clinics; they were pre-pubertal when GH treatment was 
started. The diagnosis of GHD was based on two different 
stimulation tests with a peak GH < 10 µg/L, and patients 
were selected for r-hGH treatment by their local units. 

http://www.eje-online.org
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Subjects were excluded with acquired GHD due to central 
nervous system disorders, such as tumour, trauma, 
infection, infiltration, irradiation and cranial surgery. 
Other hormone deficiencies (cortisol and thyroxine), 
if present, were appropriately treated. The median peak 
GH value was 5.2 μg/L (Table 1). R-hGH was administered 
subcutaneously, once daily at bedtime.

This study was conducted in compliance with ethical 
principles based on the Declaration of Helsinki, the 
International Conference on Harmonization Tripartite 
Guideline for Good Clinical Practice and all applicable 
regulatory requirements.

Genetic analysis

Genotyping was performed centrally on DNA extracted 
from whole blood taken during a routine clinic visit 
before starting r-hGH therapy, using TaqMan probes (Life 
Technologies). All SNPs were checked for the proportion 
of missing data (<5%), the presence of Hardy–Weinberg 
equilibrium (HWE, P value >0.05 after multiple-testing 
correction) and minor allele frequency (MAF ≥10%).

Statistical analysis

First, as planned per protocol, all associations were tested 
by categorical analysis to investigate the basal association 
with growth endpoint categories and thus replicate at 
least one of the 48 genetic associations found in LTFU 
(11). This was performed using year 1 quartiles for growth 
response categorisation and an exact Fisher test on 2 × 2 
contingency tables. Both SNPs and growth endpoints were 
classified into two categories (Supplementary Table 1, see 
section on supplementary data given at the end of this 
article): dominant or recessive models for SNPS, and 

‘low’ (<Q1 first quartile) vs ‘intermediate + high’ (≥Q1) or 
‘high’ (≥Q3 third quartile) vs ‘low + intermediate’ (<Q3). 
Obtained P values were adjusted for multiple testing using 
a Benjamini–Hochberg correction based on the number 
of tested SNPs per disease (22 in GHD and 26 in TS) 
(Supplementary Table 1).

Second, a continuous association analysis on growth 
response was performed using the Kruskal–Wallis 
association test and three genetic models for each SNP 
coded AA/AB/BB, A being the major allele: genotypic (AA 
vs AB vs BB), dominant ((AA or AB) vs BB) and recessive 
(AA vs (AB or BB)).

Third, to account for differences between the LTFU 
and VAL cohorts, regression analysis was performed using 
models including gender (GHD), age, GH peak (GHD), 
mid-parental height SDS, distance to target height SDS 
(defined as (height SDS at baseline − mid-parental height 
SDS)), GH dose (average daily dose (mg/kg) by body 
weight) as covariates (Table 1), and interactions with and 
without the SNPs. A total of 729 and 81 models were tested 
respectively in GHD and TS. For each SNP, the model with 
the best SNP × covariate interaction term P value or the best 
SNP term P value was selected. This step accounted for the 
presence of gene interactions with patient variables.

Finally, a machine-learning approach, random forest 
classification (RFC) using 1000 trees, was used to predict 
growth endpoints (categorised into binary variables 
above and below the year 1 median) based on different 
combinations of auxological parameters and SNPs 
(Supplementary Table  1). The conditional importance 
was used to identify variables that contributed the most 
to the predictions. The predictions were assessed based 
on the accuracy (the sum of the true positives plus the 
sum of the true negatives divided by the total population) 
and area under the curve (AUC) of the receiver-operating 

Table 1 Demographic characteristics of the study populations at the start of r-hGH therapy. Data are presented as number (%) 

or median (minimum, maximum).

VAL GHD (n = 293) LTFU GHD (n = 115)† VAL TS (n = 132) LTFU TS (n = 67)†

Male (%) 208 (71)* 69 (60)* – –
Female (%) 85 (29)* 46 (40)* 132 (100)* 67 (100)*
Age (years) 6.2** (0.4, 16.3) 9.8 (2, 15) 5.8** (1.1, 14.4) 9.1 (3, 16)
Height SDS −2.5 (−7.2, −0.1) −2.1 (−6.5, −0.3) −2.2 (−5.9, 0.6) −2.4 (−5.4, −0.2)
MPH SDS −0.3** (−3.3, 3.1) −0.8 (−4, +2) 0.3** (−2.5, 3.6) −0.1 (−4, +2)
DTH SDS*** −2.3** (7.3, 1.1) −1.3 (−5.7, 3.3) −2.4** (6.5, 0.3) −2.2 (−7.8, 1.1)
GH dose (mg/kg.day) 0.026** (0.02, 0.05) 0.034 (0.01, 0.14) 0.046** (0.02, 0.08) 0.050 (0.01, 0.9)
GH peak (μg/L) 5.2** (0, 10) 4.1 (0, 9) – –

*All were Tanner Stage 1 at baseline; **P value ≤0.05 (t-test across studies); ***DTH SDS defined as height SDS at baseline – MPH SDS; †Numbers taken 
from Clayton et al. (11).
BMI, body mass index; DTH, distance to target height; GH, growth hormone; GHD, growth hormone deficiency; MPH, mid-parental height; Q, quartile; 
SDS, standard deviation score.

http://www.eje-online.org
http://www.eje-online.org/cgi/content/full/EJE-16-0357/DC1
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characteristic (ROC) (the probability that a classifier will 
rank a randomly chosen positive observation higher 
than a randomly chosen negative observation). The 
95% confidence interval of the AUC was computed with 
1000 stratified bootstrap replicates. A Z-score was used 
to compare the analysed AUC with a value of 50%, and 
the P value was reported. This approach was chosen to 
provide confirmation of observations from the regression 
analyses and to negate the need for significant numbers of 
regression models. In addition, RFC effectively accounts 
for co-linearity between variables and thereby generates a 
hierarchy of importance for variables.

Throughout the validation of SNP association, 
Y1 and VAL were used as individual datasets and as a 
combined dataset. For the random forest classification 
of GHD severity and SNP association, analysis was 
performed on the combined data. The RFC analysis 
was performed with three different sets of variables: 
auxological parameters only, SNPs only and auxological 
parameters and SNPs together.

All statistical analyses were performed using R 3.2.2.

Results

Auxology

The demographic characteristics of the study population 
are shown in Table 1. The demographics of the PREDICT 
LTFU have been previously published (11).

There were no differences in gender distribution 
and SNP allele frequencies between the LTFU and 
VAL studies (data not shown). The demographics and 
baseline clinical data for the children included in the 
PREDICT LTFU study differed from those included in the 
VAL study. Age was lower (Fig. 1A) and growth responses 
were higher (Fig. 1B) in the VAL study compared with 
those in the LTFU study. GH peak (GHD: P ≤ 6 × 10−5) 
and mid-parental height SDS (GHD: P ≤ 2 × 10−7, TS: 
P ≤ 3 × 10−3) were higher in the VAL study. Distance 
below target height SDS was greater in the VAL study 
in GHD (P ≤ 2 × 10−9) and GH dose was lower in the VAL 
study (GHD: P ≤ 4  × 10−21, TS: P ≤ 6 × 10−4) (Table 1).

There was no genetic or gender bias between studies 
(data not shown).

Categorical analysis of genetic associations with 
growth response endpoints

Within the VAL study, categorical analysis found  
no SNPs within genes that were significant using 

the year 1 quartiles. Two SNPs were significant in  
GHD before correction for multiple testing (P < 0.05). 
The rs3213221 SNP within IGF2 was associated with 
both change in height (cm) and change in height SDS 
(CC genotype). The rs2267723 SNP within GHRHR was 
associated with height velocity SDS (carriage of the  
A allele).

Figure 1

Comparison of demographics and growth end points between 

the PREDICT LTFU study and the VAL study. (A) Age 

distribution in GHD and TS children. (B) Growth response end 

point distribution after 1 year of treatment with r-hGH in GHD 

and TS children. Growth response end points used were, 

change in height (cm), change in height (SDS) and height 

velocity SDS.

http://www.eje-online.org
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Continuous analysis of genetic associations with 
growth response endpoints

Continuous analysis revealed a set of significant 
associations with growth response endpoints (P < 0.05) 
(Table  2). No association withstood multiple-testing 
correction.

Regression modelling of the interaction between 
genetic markers of growth response and patient 
variables

In view of the significant difference in demographics 
and baseline clinical data, we performed the regression 
analysis (first-year growth response) in the VAL, LTFU and 
the combined datasets to identify consistent observations 
in modelling the effects of covariates.

Using regression modelling, multiple testing and 
overfitting were of concern (81 regression models analysed 
for TS and 729 for GHD). We therefore identified for both 
GHD and TS terms in the regression models common to 
one or more of the datasets (LFTU, VAL and combined 
datasets) using each of Δ height SDS, Δ height velocity 
SDS and Δ height in cm as outcomes. Visual inspections 
of associated genes per study were performed, and 
genes showing conflicting associations, e.g. in opposite 
direction, were discarded.

Terms consistently present in regression models of 
the three datasets for GHD children included SNPs within 
the INPPL1 and SOS1 genes. INPPL1 (rs2276048) was 
associated with change in height (cm) in interaction with 
distance to target height SDS: The negative correlation 
between distance to target height and growth (change in 
height (cm)) is decreased in the carriers of the AA genotype 
of INPPL1 ((rs2276048), P = 0.0057 VAL; P = 0.0144 LTFU)) 
(Fig. 2A). SOS1 (rs2888586) is associated with change in 
height (SDS and cm) in GHD alone and in interaction with 
GHD severity (GH peak): the T allele is associated with 
better outcome (P = 0.0036 VAL; 6.4 × 10−5 LTFU) (Fig. 2B). 

GRB10 (rs10248619) was associated with change in height 
(cm) in interaction with gender; however, the influence 
of genotype on response was not consistent between 
studies (Supplementary Fig. 1A). IGFBP3 (rs3110697) was 
associated with height velocity SDS, but the influence of 
genotype on response was also not consistent between 
studies (Supplementary Fig.  1B). CYP19A1 (rs10459592) 
was associated with height velocity SDS in interaction 
with gender but again, the influence of genotype on 
response was not consistent between studies (data not 
shown).

Terms consistently present in regression models for TS 
children included SNPs within the PTPN1 and ESR1 genes. 
SNP rs2038526 (PTPN1) was associated with change in 
height SDS in TS in interaction with mid-parental height 
SDS; the correlation between growth and mid-parental 
height SDS was strongly negative in TT carriers compared 
with close to null in non-carriers (P = 0.0113 VAL; 0.0055 
LTFU) (Fig. 3A). SNP rs2347867 (ESR1) was associated with 
height velocity SDS in TS; the GG genotype was associated 
with better outcome (P = 0.0304 VAL; 6.2 × 10−6 LTFU) 
(Fig. 3B). LHX4 (rs3845395) was associated with change 
in height (cm) in interaction with GH dose; however, the 
influence of genotype on response was not consistent 
between studies (data not shown).

In summary, analysis of the regression models 
provided modest validation of INPPL1 (rs2276048) in 
GHD and ESR1 (rs2347867) in TS. In combination with 
previous results, the regression analysis provides good 
validation of SOS1 (rs2888586) in GHD and PTPN1 
(rs2038526) in TS.

The use of random forest classification to investigate 
the interaction between genetic markers of growth 
response and patient variables

To further investigate the consistent genetic 
associations identified using the regression modelling, 

Table 2 Association of SNP markers with growth endpoints as continuous variables.

Disease Endpoint Gene (SNP) Marker (response)

P value

Dominant Genotypic Recessive

GHD Change in height SDS SOS1 (rs2888586) TT (high) 0.111 0.0507 0.0225*
Change in height (cm) SOS1 (rs2888586) TT (high) 0.2142 0.0795 0.0287*

TS RB1 (rs9568036) A (high) 0.5783 0.0219* 0.0222*
Change in height (cm) SOS1 (rs2168043) CC (high) 0.0140* 0.0402* 0.1990
HV SDS IRS4 (rs2073115) CC (high) 0.0414* 0.0861 0.2951

RB1 (rs9568036) GG (low) 0.9052 0.0654 0.0350*

*P value ≤0.05 (Kruskal–Wallis association test) not corrected for multiple testing.

http://www.eje-online.org
http://www.eje-online.org/cgi/content/full/EJE-16-0357/DC1
http://www.eje-online.org/cgi/content/full/EJE-16-0357/DC1
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it was decided to test an independent machine 
learning-based classification method: random forests. 
The random forest approach operates by constructing 
many decision trees to generate an ensemble learning 
method for classification and is resistant to overfitting 
and co-linearity.

The set of clinical variables used (gender, age 
at baseline, GH peak, distance to target height SDS,  

mid-parental height SDS and GH dose) was shown to be 
a very good predictor of growth response after 1 year of 
treatment with r-hGH: Receiver-operator characteristic 
(ROC) analysis indicated very high levels of sensitivity 
and specificity (area under the curve (AUC) ~90% in all 
cases) (Fig. 4 and Table 3A) with an accuracy of 70–80%. 
Age was found to be an important variable in several 

Figure 3

Replicated genetic associations in TS using regression 

modelling. (A) Regression of distance to target height and 

growth response (change in height SDS) in the three 

genotypes of rs2038526 in both the Y1 of the PREDICT LTFU 

and the VAL studies (numbers of patients in brackets). (B) Box 

and whisker plots (median ± interquartile range) of growth 

response (height velocity SDS) by genotype of rs2347867 in 

both the Y1 of the PREDICT LTFU and the VAL studies 

(numbers of patients (genotype colour)).

Figure 2

Replicated genetic associations in GHD. (A) Regression of 

mid-parental height and growth response (change in height 

(cm)) in the three genotypes of rs2276048 in both the Y1 of 

the PREDICT LTFU and the VAL studies (numbers of patients in 

brackets). (B) Box and whisker plots (median ± interquartile 

range) of growth response (change in height SDS) by 

genotype of rs2888586 in both the Y1 of the PREDICT LTFU 

and the VAL studies (numbers of patients (genotype colour)).

http://www.eje-online.org


Eu
ro

p
ea

n
 J

o
u

rn
al

 o
f 

En
d

o
cr

in
o

lo
g

y
175:6 639Clinical Study A Stevens and others Validating genetic markers of 

response to hGH

www.eje-online.org

classifiers (Table  3A), indicating that the correction of 
growth response by age category is imperfect.

SNP-only models using the full range of gene 
associations identified a number of the SNPs as being 
significantly important variables, which were acting as 
weak but distinct predictors with accuracies of 55–66% 
(Table  3B). SOS1 identified by the regression analysis 

was retrieved as an important variable for change in 
height SDS in the absence of clinical covariates in GHD 
(Table 3B). ESR1 and PTPN1 SNPs were retrieved among 
the important variables in TS models of height velocity 
SDS (Table 3B).

In a full random forest model (all SNPs + all clinical 
covariates), the two previously identified SNPs (in PTPN1 

Figure 4

Receiver-operator curve analysis of the 

random forest modelling of growth 

response to r-hGH after 1 year of 

treatment using basal clinical 

measurements. The receiver-operator 

curve and associated area under the curve 

(AUC) are shown for all growth response 

end points (change in height (cm), change 

in height SDS and height velocity SDS). A 

Z-score was used to compare the AUC 

data with the 50% level (dotted line) and 

used to generate a P value.

Table 3 Random forest performance (RFP) on auxological parameters, SNPs, auxological parameters and SNPs.

Disease Endpoint AUC (95% CI) Accuracy Important variables

(A) RFP on auxological parameters
 GHD Change in height (cm) 0.88 (0.87–0.90)* 0.80 GH peak, gender

Change in height SDS 0.89 (0.87–0.90)* 0.80 GH peak, distance to target Ht SDS, age, GH dose, gender
HV SDS 0.90 (0.88–0.91)* 0.80 GH peak, age, gender, distance to target Ht SDS, GH dose

 TS Change in height (cm) 0.86 (0.84–0.89)* 0.77 Distance to target Ht SDS, MPH SDS, GH dose
Change in height SDS 0.89 (0.87–0.92)* 0.83 Age, distance to target Ht SDS, GH dose
HV SDS 0.91 (0.88–0.93)* 0.80 Age, Distance to target Ht SDS

(B) RFP on SNPs
 GHD Change in height (cm) 0.72 (0.69–0.74)* 0.65 IGF2 (rs3213221)

Change in height SDS 0.60 (0.57–0.62)* 0.56 IGF2 (rs3213221), SOS1 (rs2888586)
HV SDS 0.61 (0.58–0.64)* 0.57 HRAS (rs11246176)

 TS Change in height (cm) 0.79 (0.76–0.82)* 0.66 LHX4 (rs4652492), RARB (rs4681028), MYOD1 (rs3911833)
Change in height SDS 0.58 (0.54–0.62) 0.55 (none)
HV SDS 0.66 (0.63–0.70)* 0.63 PTPN1 (rs2038526), ESR1 (rs2347887 and rs6927072)

(C) RFP on auxological parameters and SNPs
 GHD Change in height (cm) 0.88 (0.86–0.90)* 0.80 GH peak, distance to target Ht SDS, GH dose, MPH SDS

Change in height SDS 0.89 (0.87–0.91)* 0.81 GH peak, age, distance to target Ht SDS, age
HV SDS 0.86 (0.84–0.88)* 0.77 GH peak, age, MPH SDS, GH dose, distance to target Ht 

SDS
 TS Change in height (cm) 0.91 (0.88–0.93)* 0.73 LHX4 (rs4652492), RARB (rs4681028), MYOD1 (rs3911833), 

MPH SDS, GH dose, distance to target Ht SDS, age
Change in height SDS 0.84 (0.82–0.87)* 0.73 Age
HV SDS 0.87 (0.84–0.89)* 0.78 Age, PTPN1 (rs2038526), ESR1 (rs2347887 and rs6927072)

*P value ≤0.05 (Z-test); 95% CI, 95% confidence interval.

http://www.eje-online.org
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and ESR1) were also retrieved among the most important 
variables in TS. In contrast, the two other SNPs (in INPPL1 
and SOS1) that were found associated in regression 
analyses in GHD in interaction with a clinical covariate 
were not retrieved as important (Table 3C).

The use of random forest classification in subgroups 
of GHD severity

Random forest analysis was also used to examine GHD 
clinical models in the context of GHD severity. GHD 
models were stratified by GH peak into severe (≤4 μg/L) vs 
mild (>4 and <10 μg/L) using the merged GHD data.

Prediction of growth response by random forest 
analysis was similarly good in severity-stratified sub-
populations (AUC 85–90%, accuracy 70–75%). Only 
clinical covariates were important in the mild sub-
population, in particular GH dose, age and mid-parental 
height (Fig.  5). However, in the severe sub-population, 
there was a contribution of several SNPs identified in the 
LTFU study (Supplementary Table  1) to the prediction 
of growth response; the important SNPs were rs3213221 
(IGF2), rs1024531 (GRB10) and rs7101 (FOS) in change 
in height (cm) and rs10255707 (IGFBP3) and rs2267723 
(GHRHR, borderline) in height velocity SDS (Fig. 5).

Discussion

This study was designed to validate the SNPs identified 
within the original PREDICT LTFU study as being 
associated with response to r-hGH therapy in children 
with either GHD or TS. Although the PREDICT LTFU 
study was a prospective observational study, the 
validation study was conducted retrospectively. The main 
advantage of this retrospective design was that the time 
taken to collect a second large cohort of children with 
GHD and TS with data on response to GH therapy was 
much shorter than would have been required with a 
second prospective study. Although the inclusion criteria 
for both the PREDICT LTFU and PREDICT validation 
studies were identical, the two cohorts of children 
differed significantly in their baseline auxology. The 
GHD validation (VAL) cohort was younger at start of GH 
therapy (by 3.6 years), had a greater mid-parental height 
SDS and a greater distance to target height (Table 1). The 
latter was the result of the baseline median height SDS 
in the VAL cohort being −2.5 and in the LTFU being −2.1 
(11). Growth hormone peak level in stimulation testing 
was however higher in the VAL cohort than that in the 

Figure 5

Random forest modelling of growth response to r-hGH after 1 

year of treatment in GHD children categorised by GHD 

severity (severe ≤4 µg/L, mild >4 and <10 µg/L GH peak). 

Prediction of growth response by random forest analysis in 

GHD severity-stratified sub-populations. Variable importance 

scores used to rank variables were derived using the R 

package random forest. P. Height = mid-parental height SDS, 

Dist Target = distance to target height SDS.
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LTFU, but the difference was only 1.1 µg/L (Table 1). The 
patients in TS VAL cohort were also younger (by 3.3 years) 
and had a greater mid-parental height SDS (Table 1). The 
baseline median height SDS in the VAL cohort was −2.2 
and in the LTFU cohort was −2.4 (11). Both VAL cohorts 
were treated with lower doses of r-hGH and demonstrated 
better overall response to treatment compared with the 
PREDICT LTFU cohort (Table 1).

The reasons for the differences in the cohorts 
are not clear. All recruits to both studies fulfilled the 
identical inclusion and exclusion criteria. For the GHD 
VAL cohort, there may have been an unconscious bias 
to recruit those with more severe GHD. This would 
explain the lower age, lower height SDS, greater 
distance to target height and better response to r-hGH 
with lower GH doses. It would not explain the higher 
peak GH levels in the VAL cohort. This observation 
could be explained however by different GH assays, and 
the ~1 µg/L difference in peak GH may not be clinically 
significant. The TS VAL cohort was also younger and 
responded better to a lower dose of r-hGH but was not 
shorter than the LTFU cohort. The markedly younger 
age in the VAL cohorts may be sufficient to explain a 
better response as age weighs more than GH dose or 
peak GH when referring to Ranke’s models predictors 
(4, 6). As both cohorts were recruited from similar 
centres, it is likely that patients treated in recent years 
were recruited to the prospective LTFU study, leaving 
patients treated several years previously to be recruited 
to the retrospective validation study.

Given the observed differences outlined previously, 
we needed to use regression analysis with covariates to 
validate SNPs identified in the PREDICT LTFU study. 
Using this approach in children with GHD, it was possible 
to identify SNPs in INPPL1, SOS1, GRB10, IGFBP3 and 
CYP19A1 associated with growth response in all datasets. 
However, SOS1 (rs2888586) and INPPL1 (rs 2276048) 
were the only two SNPs, which showed consistent 
effects in both studies. Both encode proteins involved in 
modulating response to growth hormone/factors (GH for 
SOS1 and insulin/IGF1 for INPPL1). Both SOS1 and INPPL1 
are associated with growth disorders – Noonan syndrome 
(19) and opsismodysplasia (20). It is therefore likely that 
these SNPs modulate the GH or IGF1 signal transduction 
pathways either directly or indirectly.

For TS, two SNPs were consistently associated with 
GH response, these SNPs were in PTPN1 (rs2038526) and 
ESR1 (rs2347867). ESR1 encodes the oestrogen receptor 
α, and thus may affect GH response by modulating the 
actions of oestrogen, which affects GH signal transduction 

and bone growth (21). PTPN1 encodes a protein tyrosine 
phosphatase central to growth factor signalling (21).

The in silico assessment of SNP variant function 
identified that rs2038526 within the PTPN1 gene was 
located intronically within a MYC transcription factor-
binding site, implying possible direct modulation of 
transcriptional regulation. The other SNPs were either 
situated in the coding region of the gene but did not 
alter the amino acid sequence (INPPL1 (rs 2276048)) or 
in non-coding regions without evidence of associated 
transcription factor binding – in the 5′ untranslated 
region for SOS1 (rs2888586) and intronically for ESR1 
(rs2347867). It is therefore likely that these SNPs exert 
their functional influence through more complex 
genetic mechanisms.

Regression modelling suffers from overfitting and 
a tendency to underestimate effect sizes if co-linear 
variables are used. The use of clinical variables alone 
fails to explain 40–60% of the variability in GH response 
in established regression models (4, 5). To account for 
possible overfitting, we have also used a random forest 
method to predict growth response to r-hGH. The random 
forest approach operates by constructing multiple 
decision trees, providing each tree with a random subset 
of the original data and aggregating the output. Random 
forests are resistant to overfitting, provide greater accuracy 
than regression analysis and are efficient with large 
volumes of data. Using the genomic information alone 
with a random forest approach, SNPs were identified as 
important variables, including SOS1 in the change in 
height SDS GHD model, strengthening further the validity 
of SOS1 identified in the regression modelling. These SNPs 
however predicted response to growth in the first year of 
treatment with a very modest AUC of 0.58–0.79 (Table 3B). 
Using the baseline clinical and biochemical data, the 
random forest gave an AUC of 0.84–0.91 for prediction of 
growth response in GHD and TS. In addition in TS, PTPN1 
and ESR1 were identified as important SNPs (Table 3C). 
In the GHD random forest, SNPs were not found to be 
important. It is therefore clear that although we can show 
that genetic variants are associated with GH response, 
their effects can be attenuated when using a random 
forest classification. This suggests that in GHD, the effect 
of SNPs may already be accounted for by variables such 
mid-parental height SDS and height SDS itself. This was 
also seen when undertaking a random forest classification 
(RFC) on the GHD cohort stratified by GHD severity: only 
clinical variables predicted growth responses in those with 
mild GHD (Fig. 5). In contrast in those with severe GHD, 
RFC identified IGF2, GRB10 and FOS (change in height 
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(cms)), and IGFBP-3 and GHRHR (HV SDS) as contributing 
to growth responses alongside auxological variables, 
indicating that in these circumstances, the influence of 
these genes is not co-linear with the auxological variables.

The important question that the PREDICT programme 
addressed was whether knowledge of an individual genetic 
background could contribute to prediction of response 
to r-hGH treatment. Large candidate gene analyses have 
evolved into genome-wide association studies (GWAS) 
over the last 10 years, which have demonstrated success 
at detecting highly significant effects of common gene 
variants (22), but which have generally failed to explain 
more than a small amount of the phenotypic variability 
within datasets (23). Nevertheless, recent analysis has 
shown that up to 30% of the phenotypic variance in 
normal adult height can be explained by SNP associations 
(24). We have now demonstrated that using a candidate 
gene approach to identify polymorphisms that might 
relate to growth response to r-hGH we can identify genes 
in GHD and TS; however, their influence is modest and 
complicated by interaction with auxological variables 
that in themselves are related to genetic background. At 
present, these genes could not be used in a predictive test. 
We have also shown that random forest classification may 
be a more robust analytical approach when combining 
genetic and phenotypic datasets.

Using current technology, a GWAS approach would be 
preferable and could reveal genes that hitherto have not 
been implicated in growth mechanisms. An even better 
approach may be the use of baseline gene expression 
profiling, which takes a whole genome approach and 
captures the combined impact of gene and environment 
on mRNA levels. Using this technique in the PREDICT 
LTFU cohort, we have previously demonstrated the 
potential to identify poor responders to r-hGH in GHD 
and TS (11).

Paediatric pharmacogenomics therefore has the 
potential to improve the personalisation of medical 
treatment in growth disorders. The demonstration of 
clinical utility, however, will require further prospective 
studies.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/
EJE-16-0357.
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