
Research Article
Development and Validation of a Robust Immune-Related
Prognostic Signature for Gastric Cancer

Junyu Huo ,1,2 Liqun Wu ,1 and Yunjin Zang 1

1Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China
2Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China

Correspondence should be addressed to Liqun Wu; wulq5810@126.com

Received 31 January 2021; Revised 11 April 2021; Accepted 13 April 2021; Published 3 May 2021

Academic Editor: Xiaofeng Yang

Copyright © 2021 Junyu Huo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the
prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods.
Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts
(GSE62254, n = 300; GSE15459, n = 191; and GSE26901, n = 109). After obtaining the intersecting prognostic genes, the three
independent cohorts were merged into a training cohort (n = 600) to establish a prognostic model. The risk score was
determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups
according to the median risk score. The risk score performance was validated externally in the three independent cohorts
(GSE26253, n = 432; GSE84437, n = 431; and TCGA, n = 336). Immune cell infiltration (ICI) was quantified by the CIBERSORT
method. Results. A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of
patients with GC in the training cohort (AUC > 0:7). The risk of death was found to have a positive correlation with the risk
score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the
prognosis of patients with GC (p < 0:001). External validation confirmed the universal applicability of the risk score. The low-risk
group presented a lower infiltration level of M2 macrophages than the high-risk group (p < 0:001), and the prognosis of patients
with GC with a higher infiltration level of M2 macrophages was poor (p = 0:011). According to clinical correlation analysis,
compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a
significantly lower risk score (p = 0:00085). The patients’ risk score increased with the progression of the clinicopathological stage.
Conclusion. In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the
prognostic assessment system and treatment strategy for GC.

1. Background

Gastric cancer (GC) originates from the most superficial
mucosal epithelial cells of the gastric wall [1]. GC develop-
ment is a progressive process involving many factors and
steps, such as genetic factors, Helicobacter pylori infections,
dietary or environmental factors, and precancerous states
[2, 3]. The latest statistical results showed that GC ranked
first among the malignant tumors of the digestive system,
representing a serious threat to human health [4, 5].
Although the overall survival (OS) of GC has been signifi-
cantly increased in recent years due to the diversification of
treatments, such as targeted therapy, angiogenic therapy,

and immunotherapy [6], there is still much room for prog-
ress in improving the prognosis of GC with a surgery-based
comprehensive treatment strategy.

Genetics were found to play a crucial role in the molecu-
lar mechanism responsible for GC occurrence and growth
[7]. At present, many genes related to GC have been found.
Some of these genes exist in the cell genome in the form of
oncogenes, encode proteins required for cell growth, and
drive carcinogenesis when they are activated by point muta-
tion, translocation, and amplification [8]. Some of the genes
are tumor suppressors, which play a negative regulatory role
in controlling cell growth, proliferation, and differentiation
[9]. Finally, some of the genes affect the biological process
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of GC by altering the drug resistance of the cancer cells [10].
Therefore, a full understanding of the function of genes in the
progression of GC is expected to enrich our understanding of
the therapeutic targets of GC.

A growing number of reports have revealed that
immune-related genes (IRGs) have a significant impact on
the prognosis of a variety of cancers [11–14]. However, the
prognostic value of IRGs for GC has not been fully eluci-
dated. In this study, we integrated and analyzed high-
throughput sequencing data from public databases and
provided a robust prognostic signature for GC based on nine
IRGs. The predictive power of the prognostic signature was
confirmed by internal and external validation. Meanwhile,
we explored the prognostic mechanism of the signature by
combining quantitative analysis regarding immune cell infil-
tration (ICI) with correlation analysis regarding clinical
features.

2. Materials and Methods

2.1. Data Collection. The Cancer Genome Atlas (https://
portal.gdc.cancer.gov/) and the Gene Expression Omnibus
(GEO) databases (https://www.ncbi.nlm.nih.gov/geo/) were
used for the collection of gene expression profiles and clinical
data. The data utilized in this study were obtained from pub-
lic databases. We complied with the access rules of TCGA
and GEO databases during the process of data collection,
and it was unnecessary to obtain approval from the local
ethics committee.

2.2. Identification of Prognostic Immune-Related Genes. We
extracted data on the immune-related genes of three inde-
pendent cohorts (GSE62254, n = 300; GSE15459, n = 191;
and GSE26901, n = 109) according to the immune-related
gene list acquired from the ImmPort database (https://
immport.niaid.nih.gov). Next, we set p < 0:05 as the screen-
ing criterion and screened the prognosis-related genes by
univariate Cox regression analysis in the three independent
cohorts.

2.3. Cluster Analysis of the Intersection Prognostic Genes. We
merged GSEE62254, GSE15459, and GSE26901 into a train-
ing cohort (n = 600), and the batch effects between different
datasets were removed by the “combat” function in the R
package “sva.” We conducted cluster analysis based on the
R package “consensusclusterplus” to further analyze the
prognostic value of overlapping prognostic genes.

2.4. Development and Validation of a Prognostic Signature.
Based on the least absolute shrinkage and selection operator
(LASSO) algorithm, we removed the overfitting between
prognosis-related genes by 10-fold cross-validation for pen-
alty parameter tuning and kept genes that had nonzero
regression coefficients for later multivariate Cox regression
analyses [15, 16]. Each gene’s regression coefficient obtained
from such analysis was multiplied by its expression level, thus
resulting in the risk score [16, 17]. Based on the median
score, we divided patients with GC into low- and high-risk
groups. The LASSO regression analysis was performed with
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Figure 1: Gene cluster analysis. (a) Venn plot of the 45 intersecting prognosis-related genes. (b) Heatmap of gene clusters. (c) Kaplan–Meier
survival analysis regarding gene clusters and OS in the training cohort.
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the “glmnet” R package, where the time-dependent ROC
curve was plotted with “survivalROC” and the Kaplan–Meier
survival curve was generated with “survminer.” This analysis

facilitated the evaluation of the risk score’s performance [14].
In addition, with the “rms” R package, the prognostic
signature was visualized in the form of a nomogram, and

Table 1: The 45 intersection prognosis-related genes identified by univariate Cox regression analysis in the training cohort.

Gene list Category HR HR.95L HR.95H

AGTR1 Cytokine_receptors 1.334317 1.217829 1.461947

AKT3 BCRSignalingPathway 1.761968 1.444244 2.149589

ANGPTL2 Cytokine_receptors 1.344887 1.192773 1.5164

BMPR2 Cytokine_receptors 2.362857 1.701484 3.28131

BPHL Antimicrobials 0.637487 0.504375 0.80573

CLEC11A Cytokines 1.516036 1.301901 1.765391

CMTM3 Cytokines 1.939969 1.499121 2.510458

CRIM1 Cytokine_receptors 1.923839 1.533551 2.413454

CTGF Cytokines 1.603191 1.381789 1.860068

CYR61 Cytokines 1.384955 1.224587 1.566325

DAK Antimicrobials 0.586742 0.442452 0.778088

DES Antimicrobials 1.205936 1.13654 1.279568

EDNRA Chemokine_receptors 1.499985 1.315628 1.710175

ELN Antimicrobials 1.490388 1.305397 1.701595

ENG Cytokine_receptors 1.391229 1.18348 1.635447

ESM1 Cytokines 1.462723 1.244433 1.719303

GNAI1 Antimicrobials 1.427925 1.196914 1.703522

GREM1 Cytokines 1.317087 1.181972 1.467647

GRP Cytokines 1.227876 1.140799 1.321601

HDGFRP3 Cytokines 1.603254 1.380716 1.86166

IL1R1 Cytokine_receptors 1.613095 1.373481 1.894511

INHBB TGFb_family_member 1.544374 1.362625 1.750365

LTBP3 Cytokines 1.722496 1.358221 2.184469

NOV Cytokines 1.563551 1.372153 1.781646

NOX4 Antimicrobials 1.639326 1.41234 1.902793

NPR3 Cytokine_receptors 1.849908 1.547669 2.21117

NR2F1 Cytokine_receptors 1.378966 1.224325 1.55314

NRP1 Cytokine_receptors 1.707208 1.420286 2.052093

NRP2 Cytokine_receptors 1.691583 1.393531 2.053385

OSMR Cytokine_receptors 1.74949 1.417618 2.159056

OXTR Cytokine_receptors 1.405633 1.201078 1.645026

PDGFC Cytokines 1.619596 1.361091 1.927198

PDGFRB Cytokines 1.508678 1.304742 1.744491

PTGER3 Cytokine_receptors 1.630084 1.371071 1.938027

RBP1 Antimicrobials 1.486226 1.289005 1.713621

SDC2 Cytokine_receptors 1.822409 1.522803 2.180962

SEMA4C Chemokines 2.225396 1.693848 2.92375

SHC4 NaturalKiller_cell_cytotoxicity 1.926967 1.615581 2.298371

SLIT2 Chemokines 1.469846 1.32759 1.627345

STC2 Cytokines 1.506128 1.26909 1.78744

TGFB2 Cytokines 2.056681 1.636983 2.583983

TGFB3 Cytokines 1.5918 1.342242 1.887756

THBS1 Antigen_processing_and_presentation 1.487585 1.310701 1.688341

TNC Chemokines 1.286883 1.174997 1.409424

TPM2 Antimicrobials 1.441131 1.297227 1.600998
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the calibration curve was used to evaluate the nomogram’s
predictive accuracy. The prognostic signature’s performance
was externally validated in the three independent cohorts
(GSE26253, n = 432; GSE84437, n = 431; and TCGA, n = 336).

2.5. Analysis of the Relationship between Immune Cell
Infiltration and the Prognostic Signature. Immune cell infil-
tration (ICI) was quantified by the CIBERSORT method,

and the sample filtration threshold was p < 0:05. We used
the Wilcox test to compare the ICI difference between
different risk groups, where the statistical significance was
expressed as p < 0:05.

2.6. Analysis of the Relationship between Clinical Characteristics
and Prognostic Signature. We analyzed the prognostic differ-
ences among patients with GC with different clinical features
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Figure 2: Construction of a nine-gene prognostic signature. (a, b) Kaplan–Meier survival analysis and time-dependent ROC analysis
regarding risk score and OS in the training cohort. (c, d) Prognostic signature visualized as a nomogram and tested by the calibration curve.
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Table 2: Univariate and multivariate Cox regression analyses.

Univariate Cox HR HR.95L HR.95H

Gender Male/female 1.109543 0.870532 1.414176

Age >65/≤65 1.312168 1.043428 1.650125

Stage IV/III/II/I 2.339875 2.041174 2.682288

Lauren classification Diffuse&mixed/intestinal 1.371609 1.092159 1.722562

Risk score High/low 2.677984 2.102358 3.411215

Multivariate Cox

Gender Male/female 1.015188 0.793251 1.29922

Age >65/≤65 1.541482 1.223368 1.942316

Stage IV/III/II/I 2.284629 1.984801 2.62975

Lauren classification Diffuse&mixed/intestinal 1.073366 0.85091 1.353981

Risk score High/low 2.370156 1.850191 3.036248
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and conducted a comparison of the low- and high-risk groups’
clinical characteristics. In addition, we assessed the distribution
of risk scores of patients with different clinical features.

2.7. Comparison of the Immune Response in Different Risk
Groups. To reveal the potential immune signature of the
prognostic model, we selected 93 immune-related gene sets
from “c5.all.v7.3.symbols.gmt” (downloaded from http://
www.gsea-msigdb.org/gsea) and conducted a gene set
enrichment analysis (GSEA) of the different risk groups. In
general, the higher the enrichment score (ES), the stronger
the activity of the pathway.

2.8. Analysis of the Relationship between Tumor
Microenvironment and Risk Score. The stromal cells and
immune cells were main components in the tumor microen-
vironment (TME). The ESTIMATE (Estimation of STromal
and Immune cells in MAlignant Tumor tissues using Expres-
sion data) algorithm could quantify the immune and stromal
components in the tumor microenvironment (TME) by ana-
lyzing the specific gene expression characteristics of immune
and stromal cells, which was employed to calculate the Stro-
mal Score (captures the presence of stroma in tumor tissue),
Immune Score (represents the infiltration of immune cells in
tumor tissue), and ESTIMATE Score (equaled the sum of
Stromal Score and Immune Score) [18]. We assigned patients
into high- and low-level groups by comparison to the median
value of the scores and performed Kaplan–Meier survival
analysis to investigate the relationship between the scores
and the GC prognosis. The Spearman correlation test was

used to analyze the association of the risk score with the
TME scores.

3. Results

3.1. Patients with GC Had Different Clinical Outcomes with
Different Gene Clusters. A total of 45 overlapping prognosis-
related genes were identified in the three independent cohorts
(GSE62254, GSE15459, and GSE26901) (Figure 1(a), Table 1).
The 600 patients with GC were divided into three subtypes
based on the 45 gene cluster analysis (Figure 1(b)). There were
significant differences in the OS among patients with different
subtypes of GC (Figure 1(c)), which preliminarily implied the
significant impact of the expression of the 45 genes on the
prognosis of GC.

3.2. A Nine-Gene Prognostic Signature Was Established in the
Training Cohort. The risk score established by LASSO regres-
sion and multivariate Cox regression analyses was calculated
as follows: ANGPTL2 ∗ −0:03827 + CTGF ∗ 0:004835 + ESM
1 ∗ 0:117437 + INHBB ∗ 0:0233 + NOX4 ∗ 0:17667 + OSMR
∗ 0:02425 + RBP1 ∗ 0:011599 + SLIT2 ∗ 0:18834 + TPM2 ∗
0:006843. The 600 patients with GC were divided into low-
and high-risk groups according to the median risk score
(0.966). The high-risk group had a lower OS than the low-
risk group (Figure 2(a)). The area under the curve (AUC)
values for the risk score predicting 3- and 5-year OS were
0.734 and 0.734, respectively (Figure 2(b)). The calibration
curve also revealed the consistency between the actual OS
and the signature-predicted OS (Figures 2(c) and 2(d)). The
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Figure 5: Continued.
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high-risk group presented upregulated expression levels of the
9 genes, and the patients’ risk of death increased as the risk
score increased (Figure 3). Univariate and multivariate Cox
regression identified the risk score as an independent indicator
for the prognosis of patients with GC (Table 2), and the
detailed clinical information is displayed in supplement
material 1.

3.3. The Prognostic Signature Showed High Accuracy for the
Prediction of the OS of Patients with GC in the GSE62254,
GSE15459, and GSE26901 Cohorts. The high-risk group had
a significantly lower OS than the low-risk group in each inde-
pendent cohort (Figures 4(a), 4(d), and 4(g)). The accuracy of
the risk score was higher than that of the gene cluster for the
stratification of the prognostic risk of patients with GC
(Figures 4(b), 4(c), 4(e), 4(f), 4(h), and 4(i)).

3.4. The Prognostic Signature Showed Robustness through
External Validation. Consistent with the results of internal
validation, compared with the low-risk group in each indepen-
dent cohort, the high-risk group had significantly reduced OS
and recurrence-free survival (RFS) (Figures 5(a)–5(c)). As the
risk score increased, so did the risk for death and recurrence
(Figures 5(d)–5(f)).

3.5. The High- and Low-Risk Groups Exhibited Differences in
Immune Cell Infiltration. The tissues from patients with
high-risk GC exhibited a lower infiltration level of resting
NK cells, activated memory CD4 T cells, and activated den-
dritic cells. However, the tissues from patients with low-risk
GC had a lower infiltration level of M2 macrophages than
the high-risk group (Figures 6(a) and 6(b)). The prognosis
of patients with GC with a higher infiltration level of M2 mac-
rophages was poor; patients with a higher infiltration level of
resting NK cells, activated memory CD4 T cells, and activated
dendritic cells had a better prognosis (Figure 6(c)).

3.6. The Risk Score Was Closely Related to the
Clinicopathological Features. The prognosis of patients with
the Lauren classification intestinal type of GC was better than
that of patients with the diffuse type and mixed type
(Figure 7(a)). The high-risk group had a lower proportion
of patients with the intestinal type than the low-risk group
(Figure 7(b)); patients with the intestinal type had a signifi-
cantly lower risk score compared to those with the diffuse type
and mixed type (Figure 7(c)). The OS of patients decreased
significantly with increasing disease stage (Figure 7(d)). The
high-risk group had a significantly lower proportion of early-
stage patients than the low-risk group, but almost double the
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Figure 5: External validation of the prognostic signature. (a–c) Kaplan–Meier survival analysis of the prognostic signature for predicting OS
in the GSE84437, GSE26253, and TCGA cohorts. (d–f) The risk score distribution and the survival status of patients in the GSE84437,
GSE26253, and TCGA cohorts.
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number of patients in stage IV (Figure 7(e)), in line with the
positive correlation between the risk score and disease stage
(Figure 7(f)).

3.7. The Immune Response of the Low-Risk Group Was
Stronger Than That of the High-Risk Group. In the six inde-
pendent cohorts, we found that immune response-related
pathway ESs in the high-risk group were lower than those
in the low-risk group, including the activation of the innate
immune response, regulation of the innate immune response,
and immune response to tumor cells (Figure 8).

3.8. The Risk Score Exhibited a Significant Positive
Correlation with the Stromal Score. We calculated the Stro-
mal Score, Immune Score, and ESTIMATE Score of the GC
samples with the ESTIMATE algorithm to facilitate the
quantification of immune and stromal components in the
TME in the six independent cohorts (Figure 9). Compared
with the GC patients with lower Stromal Score, we found
the GC patients with higher Stromal Score had a significantly
decreased OS and RFS in the six independent cohorts
(Figure 10). The Spearman correlation analysis suggested
that the risk score and the Stromal Score were significantly
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Figure 6: The immune cell infiltration landscape of all included samples. (a, b) Heatmap and the boxplot showing the difference in immune
cell infiltration in different risk groups. (c) Kaplan–Meier survival analysis regarding immune cell infiltration and OS.
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positively correlated with each other (Figure 11). These
results may indicate that the higher the risk score, the higher
the content of neovascularization, endothelial cells, and mes-
enchymal stem cells around the tumor, facilitating the forma-
tion of TME to promote tumor proliferation and metastasis.

4. Discussion

Gastric cancer (GC) is a prevailing malignant tumor and, sec-
ond to lung cancer, has the highest incidence and mortality
rates in the world [19]. Most patients with GC have
advanced-stage disease when they are diagnosed, which leads
to poor prognosis after surgery [20]. However, it is difficult to
accurately evaluate the prognosis of GC, namely, the risk for
recurrence andmetastasis and likely survival time, using con-
ventional TNM staging [21]. Therefore, identifying an effec-
tive prognosis evaluation scheme for GC remains a relevant
and challenging research topic.

Normally, the immune system can recognize and remove
tumor cells from the tumor microenvironment [22]. How-
ever, to survive and grow, tumors use multiple mechanisms
to develop immune tolerance and prevent the immune sys-
tem from effectively recognizing and killing tumor cells
[23]. Immune-related genes are crucial for the regulation of
tumor progression and the human immune response. It is
particularly important to identify how immune-related genes

affect the prognosis of GC to develop a prognostic evaluation
scheme for GC.

We identified 45 common prognostic immune-related
genes in three different independent cohorts. According
to the cluster analysis of the 45 overlapping genes, there
were significant differences in the OS among different
patients with different subtypes of GC. We integrated the
GSE62254, GSE15459, and GSE26901 cohorts into a train-
ing cohort, screened the above 45 intersecting genes again
by LASSO and multivariate Cox regression analyses, and
finally created a risk score comprising 9 genes. Compared
to gene cluster analysis, the risk score reduced the number
of genes that need to be sequenced, saved costs, and had
higher accuracy. The risk score showed universal applicabil-
ity via internal and external validation. The risk score is also
an independent prognostic indicator of the risk for death and
recurrence in patients with GC. Additionally, we found that
the risk score showed better performance than that of a pre-
vious study [24] in predicting RFS and OS in patients with
GC (supplemental material 2), especially for the GSE62254
[25], GSE26253 [26], and GSE26901 [26] cohorts. Consider-
ing that the above three datasets mainly originated from
Asian populations, we speculated that our model is superior
in evaluating the prognosis of Asian patients with GC. To test
our hypothesis, we observed the survival of Asian patients in
TCGA dataset. Although only 69 patients were included, we
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Figure 7: The correlation analysis between the risk score and clinical characteristics. (a) The Kaplan–Meier survival analysis regarding Lauren
classification and OS. (b) Barplot of proportions of different Lauren classification subtypes in high- and low-risk groups. (c) Boxplot of the risk
score difference in different Lauren classification subtypes. (d) Kaplan–Meier survival analysis regarding stage and OS. (e) Barplot of
proportions of different stages in high- and low-risk groups. (f) Boxplot of the risk score difference in different stages.
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found that the OS of 24 high-risk patients was significantly
(p < 0:001) lower than that of 45 low-risk patients, and the
time-dependent ROC analysis also demonstrated that the
risk score had high accuracy (supplement material 3). There-
fore, this evidence suggests that our model is a promising
prognostic predictor for Asian patients with GC.

Next, we assessed the potential mechanism of the risk
score with a focus on immune cell infiltration (ICI) and clin-
icopathology. The high-risk group presented a significant
increase in the infiltration level of M2 macrophages, and
M2 macrophages were a risk factor for GC prognosis. It is
generally believed that M2 macrophages play a leading role
in cancer progression and metastasis [27]. In addition, we
identified three kinds of immune cells, resting NK cells, acti-
vated memory CD4 T cells, and activated dendritic cells,
which were favorable for the prognosis of GC. They all
showed a higher infiltration degree in the low-risk group,
which has rarely been reported before. In terms of clinical

features, we focused on the correlation between the risk score
and the Lauren classification and clinicopathological stage.
Lauren classification is a method that combines cell mor-
phology and histochemistry to classify GC cells [28]. This
method divided GC into the intestinal type and the diffuse
type. Previous studies have shown that intestinal-type GC
has a higher degree of differentiation, is more common in
the elderly, has a low degree of malignancy, and has a better
prognosis [29], while diffuse-type GC is often undifferenti-
ated, has a poor prognosis, and is difficult to treat [30]. We
found that the risk score of intestinal-type GC was low, and
the prognosis was good, which was consistent with previous
reports. In clinical practice, the most popular prognostic
evaluation system for GC is still TNM staging [31]. We found
that the risk score increased with increasing stage, indicating
that the risk score was positively correlated with disease stage
but negatively correlated with prognosis. In addition, the
GSEA results showed that the activation of the immune
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Figure 8: Gene set enrichment analysis for immune-related pathways in different risk groups.

19Journal of Immunology Research



response in the high-risk group was weaker than that of the
low-risk group, which indicated that the poor prognosis of
the high-risk group may be related to immunosuppression.
In terms of TME, the GC patients with higher Stromal Score
had decreased OS and RFS, so targeted therapy of stromal
cells in TME may have a positive effect on the prognosis of

GC patients. Considering the risk score exhibited a signifi-
cantly positively correlation with the Stromal Score, we spec-
ulated that the higher risk score may facilitate the formation
of TME to promote tumor proliferation and metastasis; the
nine genes in the signature may be a promising target for
the treatment of GC.
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Therefore, compared with previous studies [32–34], this
research has the following advantages. First, a total of 1799
GC patients from six independent datasets were included in
this work, which was one of the largest GC prognostic model
development projects to our knowledge. Second, the pro-
posed signature has robustness in the prediction of the
prognosis of GC through internal and external validation,
especially for Asian GC patients. In view of the fact that the
Asian region has the highest incidence and death of GC all
over the world [35], the proposed prognostic model may
receive increasing attention in the future. Third, we found
the close correlation between the risk score and the stromal
cells by investigating the TME, which was also a novel finding
of this paper, considering similar reports were rare before,
which may provide new clues for targeted therapy of stromal
cells in GC.

Tumor cell-derived angiopoietin-like protein 2 (ANGPTL2)
activates tumor cell motility, invasiveness, and epithelial-
mesenchymal transition to accelerate tumor metastasis in an
autocrine/paracrine manner [36]. Recently, novel research
indicated that stroma-derived ANGPTL2 could drive the
production of immune-stimulated macrophages through the
NF-κB pathway and accelerate the activation of CD4 T helper
1 (Th1) cells to play an antitumor role [37]. Increasing evi-

dence has shown that connective tissue growth factor (CTGF)
is a multifunctional signal regulator that promotes the occur-
rence, progression, and metastasis of cancer by regulating
epithelial-mesenchymal transition (EMT), invasion, migra-
tion, cell proliferation, and drug resistance [38]. Esophageal
cancer (ESCA) was accompanied by high upregulation of
ESM1, which could be partly explained by cell proliferation
and migration and the regulation of the Janus kinase (JAK)
signaling pathway [39]. As a protein-coding gene, inhibin sub-
unit β B (INHBB) is involved in the synthesis of transforming
growth factor-β (TGF-β) family members. Yuan et al. found
that overexpression of INHBB largely contributed to macro-
phage infiltration and impeded the infiltration of memory T
cells, mast cells, and dendritic cells in colorectal cancer and
was correlated with worse OS and DFS [40]. According to
Chen et al. [41], the growth and metastasis of an orthotopic
hepatocellular carcinoma (HCC) tumor were promoted by
the Sox9/INHBB axis, which activated peritumoral hepatic
stellate cells (HSCs). NADPH oxidase 4 (NOX4) is a key reg-
ulator of reactive oxygen species production [42]. Ford et al.
[43] reported that NOX4 is essential for maintaining the
immunosuppressed tumor-associated fibroblast (CAF) phe-
notype in tumors. NOX4 inhibition could effectively over-
come the resistance of CAF-mediated immunotherapy and
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Figure 10: The Kaplan–Meier survival analysis of Stromal Score, Immune Score, and ESTIMATE Score in the six independent cohorts.
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improve the prognosis of many cancers. Sharanek et al. [44]
found that the cytokine receptor for oncostatin M (OSMR)
regulated the proliferation of glioblastoma by regulating oxi-
dative phosphorylation to resist ionizing radiation. Retinol
binding protein 1 (RBP1) plays a role in many physiological
functions, such as regulating retinol transport and metabo-
lism. Gao et al. [45] demonstrated that the overexpression of
RBP1 promoted the growth, invasion, and migration of oral
squamous cell carcinoma (OSCC) cells and that silencing
RBP1 inhibited tumor formation in xenograft mice. SLIT2 gly-
coprotein has been described to regulate the inflammatory
response and participate in autoimmune diseases [46]. The
endothelial-derived SLIT2 protein, together with its receptor
ROBO1, drove cancer cells to migrate and infiltrate into endo-
thelial tissue. In mouse models of breast cancer and lung can-
cer, the deletion of SLIT2 inhibited metastasis. In contrast,
when tumoral SLIT2 was blocked, metastatic progression
was enhanced [47]. The results of Zhou et al.’s single-cell mul-
tiomics sequencing revealed that TPM2 was a fibroblast-

specific biomarker associated with poor prognosis in colorec-
tal cancer [48].

In this study, we systematically analyzed the prognostic
value of immune-related genes in GC by integrating multiple
sequencing datasets and clinical information. A risk score
comprising 9 genes showed good performance in forecasting
the prognosis of GC, and internal and external validation
further confirmed its robustness. Since this study is retro-
spective, prospective clinical trials are still necessary in the
future. The specific function of the nine genes in the progres-
sion of GC is still unknown and needs to be verified via fur-
ther experiments.

5. Conclusion

In this study, we constructed and validated a robust prognos-
tic signature for GC by integrating multiple sequencing data-
sets and clinical information, which may help improve the
prognostic assessment system and treatment strategy for GC.
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Figure 11: The association between risk score and the Stromal Score, Immune Score, and ESTIMATE Score.
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