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A B S T R A C T   

There is a need for accurate and rapid detection of renal cancer in clinic. Here, we integrated photoacoustic 
tomography (PAT) with ultrasound imaging in a single system, which achieved tissue imaging depth about 3 mm 
and imaging speed about 3.5 cm2/min. We used the wavelength at 1197 nm to map lipid distribution in normal 
renal tissues and clear cell renal cell carcinoma (ccRCC) tissues collected from 19 patients undergone ne-
phrectomy. Our results indicated that the photoacoustic signal from lipids was significantly higher in ccRCC 
tissues than that in normal tissues. Moreover, based on the quantification of lipid area ratio, we were able to 
differentiate normal and ccRCC with 100 % sensitivity, 80 % specificity, and area under receiver operating 
characteristic curve of 0.95. Our findings demonstrate that multimodal PAT can differentiate normal and ccRCC 
by integrating the morphologic information from ultrasound and lipid amount information from vibrational PAT.   

1. Introduction 

Among the current methods for renal cancer treatment, surgical 
resection (radical nephrectomy or partial nephrectomy) is still the most 
effective way [1,2]. Partial nephrectomy can maximize the preservation 
of kidney function while ensuring the therapeutic effect. However, there 
is an increased risk of local cancer recurrence and a lower survival rate 
for having cancer residues left inside the kidney during partial ne-
phrectomy [3,4]. The gold standard of tumor assessment for partial 
nephrectomy is postoperative histopathology examination. However, its 
turnaround time is 3–5 days. 

Currently, there have been several existing or emerging techniques 
for intraoperative renal cancer diagnosis. Frozen section analysis has 
been applied in clinic, and it usually takes 20− 30 min. However, the 
accuracy of frozen section analysis is argued because of the limited 
sampling of the excised tumor tissue [5–7]. Intraoperative ultrasound 
imaging has been used for the detection of renal masses, but it lacks 
chemical selectivity to identify the pathological lesions [8–10]. 

Structured light illumination microscopy was shown to image the edge 
of the renal parenchyma at a high speed, but it required the use of 
fluorescent contrast agent and had very limited imaging depth [11]. 
Raman spectroscopy and fluorescence diffuse reflectance spectroscopy 
were used to classify tumor and normal tissues, but could only focus on a 
few spots of interest [12,13]. More recently, some new techniques have 
been developed for intraoperative histological diagnosis, such as stim-
ulated Raman scattering microscopy [14], microtomy-assisted photo-
acoustic microscopy [15], spatial light interference microscopy [16], 
optical coherence microscopy [17], microscopy with ultraviolet surface 
excitation [18], but these technologies are limited by either slow im-
aging speed or small field-of-view. Taken together, these current tech-
niques for renal cancer detection are either limited to low sensitivity 
(<90 %) or long procedure time to image the entire resected tissue 
surface with deep tissue penetration. Considering that nephrectomy 
requires temporary artery block-off no longer than 30 min., a label-free 
imaging technique for renal cancer diagnosis with high sensitivity and 
fast speed is desirable. 
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Recently, photoacoustic tomography (PAT) has been emerging as an 
unique noninvasive biomedical imaging tool with strong molecular 
selectivity and deep tissue penetration [19–22]. In particular, melanoma 
can be detected based on photoacoustic signals from melanin [23,24]; 
Prostate cancer [25], ovarian cancer [26], colorectal cancer [27], skin 
cancer [28] and breast cancer [29,30], can be detected based on pho-
toacoustic signals from blood. As for vibrational PAT, a series of previ-
ous work has demonstrated that neutral lipids in biological tissues 
produce a strong photoacoustic signal at around 1200 nm due to the 2nd 
overtone absorption of CH stretching vibrations [31–34]. Specifically, 
the photoacoustic signal from adipose tissues is about 7 times higher 
than that from blood at around 1200 nm [31]. Based on vibrational PAT 
of neutral lipid accumulation, breast cancer can be identified, because 
normal breast tissues contain significantly higher amount of neutral 
lipids than breast cancer tissues [35,36]. Interestingly, an early study 
has reported that clear cell renal cell carcinoma (ccRCC), which is the 
most common and aggressive form of renal cancer [37], contains 
significantly more neutral lipids in the form of cholesteryl ester than 
normal renal tissues [38]. Thus, it is promising of using PAT for ccRCC 
detection based on lipid accumulation. 

Herein, we developed a multimodal PAT system that could provide 
both ultrasound images and 1197 nm wavelength PAT images. PAT 
images at 1197 nm specifically showed lipid accumulation in 32 intact 
human tissues collected from 19 patients undergone nephrectomy. Due 
to the big difference in lipid accumulation between normal and ccRCC 
tissues, we have achieved a 100 % sensitivity and 80 % specificity for 
ccRCC detection. This result demonstrated the capability of multimodal 
PAT to distinguish ccRCC tissues from normal tissues. 

2. Materials and methods 

2.1. Multimodal PAT system 

Our multimodal PAT system was developed based on a customized 
ultrasound system with 128-channel data acquisition board and a 
customized all-solid-state Raman laser, which generated 10 Hz pulses 
with wavelengths at 1197 nm (Fig. 1a). The Raman laser was built based 
on stimulated Raman scattering process in a gain medium. The output 
wavelength of Raman laser was determined by the pump wavelength 

and Raman shift of the medium. With 1064 nm laser light as pump, a Ba 
(NO3)2 crystal was used to produce a laser output at 1197 nm. The 
technical details about the Raman laser can be found in Ref [36]. The 
performance of the Raman laser, including laser pulse duration, pulse 
energy stability and laser output power at 1197 nm, was shown in 
Fig. A.1. The 128-element ultrasound transducer array sends and re-
ceives acoustic wave at 18.5 MHz center frequency and a bandwidth of 
14 MHz–22 MHz (L22− 14vX, Verasonics Inc.).The laser and ultrasound 
system were connected to a computer for synchronizing time trigger. 
The excitation laser beam was focused by a convex lens and then 
coupled into a multimode fiber bundle, which transmitted the light to 
the sample. As shown in Fig. 1b, Two 45-degree transparent glass slides 
were placed inside the probe holder to reflect the acoustic waves, 
making the light and the acoustic wave collinear for better adaptment to 
the unevenness of the tissue surface. The imaging probe was mounted on 
a 2D stage for X–Z scanning. The ultrasonic and PAT signals were 
detected by a 128-element ultrasound transducer array, and then were 
transmitted to the ultrasound system for post-processing and image 
reconstruction. To characterize the imaging depth, polyethylene tubes 
with 1.27 mm outer diameter were imaged in a 2.5 % agarose gel 
phantom. The SNR of polyethylene tubes was calculated from 20log10 
ratio of the mean of PA signal to the standard deviation of the back-
ground noise. 

2.2. Tissue imaging and processing 

This study was approved by an institutional review board. Frozen 
specimens of human renal tissues were obtained from the tissue bank of 
Department of Urology in Peking University First Hospital. Before im-
aging, frozen tissues were first fixed with 4% paraformaldehyde, and 
then embedded in 2.5 % agarose gel. During imaging, embedded tissues 
were placed in a bath containing phosphate buffered saline solution, and 
the front end of the probe was immersed into the solution. The 1197 nm 
laser with energy density of 82 mJ/cm2 were utilized for PAT signal 
excitation, which were below the American National Standards Institute 
(ANSI) safety standard (100 mJ/cm2 for nanosecond laser at 1197 nm) 
[32]. 

As shown in Fig. 1b, a series of two-dimensional ultrasound and PAT 
images in X–Y direction were acquired for each tissue by moving the 

Fig. 1. Schematic of the multimodal PAT system and the procedures of imaging. (a) The PAT system generates the laser output at 1197 nm. The collinear probe 
combines the optical fiber and the ultrasonic transducer to transmit and receive signals, which are processed by a high-frequency ultrasound imaging system. (b) 
Schematic to show acquisition of multimodal PAT images. US: ultrasound; PAT: photoacoustic tomography. 
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probe at a step size of 150 μm. Then, three-dimensional ultrasound and 
PAT images were reconstructed by ImageJ (NIH, USA), And a single 
image section from the tissue surface in the X–Z direction was selected 
for comparison with the histopathology image of the adjacent tissue 
slice. 

2.3. Histopathology 

Tissues were peeled from the agarose gel after imaging and dehy-
drated with a gradient of 30 % sucrose solution overnight at 4 degrees. 
Then, the tissues were sectioned along the X–Z direction and stained 
with hematoxylin and eosin (H&E). Finally, two professional patholo-
gists examined the H&E slides independently. According to Fuhrman 
grading system, renal cancers are given a grade from 1 to 4. Grade 1 and 
2 are considered low-grade, and Grade 3 and 4 are considered high- 
grade. 

2.4. Data quantification and statistical analysis 

The lipid amount was represented by area ratios between the cor-
responding areas covered by PAT signals and ultrasound signals. First, 
we defined the threshold to pick valid signal. The threshold is three 
times of the noise level, which is estimated as the standard deviation of 
the background. Then, we calculated the number of pixels from signal to 
represent the signal area. We defined the area of the PAT signal at 1197 
nm as A1 (1197 nm), and the area of the ultrasound signal as A2. Finally, 
the lipid area ratio was calculated by using the formula 100* A1 (1197 
nm)/A2. The calculation of the signal area was done by using ImageJ. To 
compare the lipid amount between different groups, two-sample, 
Welch’s t-test was used. p < 0.05 was considered statistically signifi-
cant. The exact p values are shown in the corresponding figure captions. 
To illustrate the ability of using the lipid area ratio to differentiate 
normal and ccRCC, a receiver operating characteristic (ROC) curve was 
generated by plotting sensitivity versus (1-specificity) and the area 
under curve (AUC) was calculated. 

3. Results 

3.1. Characterization of multimodal PAT system 

Our multimodal PAT system, which integrated ultrasound and PAT, 
was established based on a customized ultrasound system with 128- 
channel data acquisition and a customized all-solid-state Raman laser. 
The imaging depth of the system was first measured. The polyethylene 
tube, rich in C–H bonds, was used to characterize PAT imaging depth at 
1197 nm excitation. As shown in Fig. 2a-b, both of the upper and lower 
walls of the polyethylene tubes at different depths can be clearly visu-
alized by ultrasound and PAT. The PAT imaging depth could reach up to 
1 cm. The abundant absorption of laser light by the upper wall of the 
polyethylene tube resulted in the loss of laser energy, and so less laser 
energy transmitted to the lower wall of the tube. This further led to 
weaker signals from the lower wall of the tube and showed a thinner 
tube wall at the bottom. Signal to noise ratio of the PAT signals were 
then measured at different depths. As shown in Fig. 2c, the signal-to- 
noise ratio was around 38 dB at 2 mm depth and gradually decreased 
to 28 dB around 9 mm depth, presumably because the laser power 
reduced with depth. The spatial resolution was further characterized by 
imaging a 50 μm diameter tungsten wire placed at ~1 mm beneath the 
ultrasound transducer. Based on the PAT image of the tungsten wire 
(Fig. 2d), the lateral and axial resolution was 372 μm and 230 μm, 
respectively, as shown in Fig. 2e-f. 

Before multimodal PAT imaging of human renal tissues, we used a 
beef tissue to test the imaging capabilities. As shown in Fig. A.2, by 
using laser excitation at 1197 nm, we were able to detect strong signals 
from lipid deposition with ~3 mm depth and reconstruct 3D multimodal 
PAT image, which was consistent with the photograph of the beef tissue. 
Moreover, with 12.8 mm * 40 mm field of view and 450 μm/second 
scanning speed along the z-direction at 150 μm translational step size, 
the system could assess ~3.5 cm2 tissue area per minute. 

3.2. Multimodal PAT of normal and ccRCC tissues 

In order to demonstrate the capability of multimodal PAT system for 

Fig. 2. Characterization of multimodal PAT system performance. (a-b) Ultrasound and PAT images of five polyethylene tubes in an agarose gel phantom at different 
depths. The PAT images of polyethylene tubes were taken by excitation at 1197 nm. (c) Signal-to-noise ratios of PAT images of polyethylene tubes at different depths. 
(d) PAT image of a 50 μm tungsten ~1 mm beneath the probe in water. (e) Axial resolution measured at 1 mm depth. (f) Lateral resolution measured at 1 mm depth. 
The color bar shows the PA amplitude and the unit for the color bar is arbitrary unit. Black spot: experimental data; Red curve: Gaussian fitting curve; US: ultrasound; 
PAT: photoacoustic tomography. 

L. Li et al.                                                                                                                                                                                                                                        



Photoacoustics 21 (2021) 100221

4

ccRCC detection, we compared the multimodal PAT images with the 
histological images at the same location. In total, 32 human renal tissues 
(15 normal, 12 low-grade ccRCC, 4 high-grade ccRCC and 1 sample 
containing both cancer and normal tissue) from 19 patients were 
imaged. The patients information was listed in Table A.1. The PAT 
image at 1197 nm showed the distribution of lipids. Diagnosis was 
confirmed by histopathology. As shown in Fig. 3, we found abundant 
lipid signals in the ccRCC tissue, but very little or no detectable lipid 
signals in the normal tissue. This finding was consistent throughout most 
of the patient tissues. An enlarged histopathological image of the ccRCC 
is shown in Fig. A.3. More representative images are shown in Fig. A.4. 
Moreover, we assessed the tissue from patient #19, which contained 
both normal and ccRCC tissue, and found that the lipid signal in the 
ccRCC area was higher than that in the normal area, consistent with 
previous results. This demonstrated that multimodal PAT system was 
able to differentiate normal and ccRCC on the same tissue sample 
(Fig. A.5). 

3.3. Differentiation between normal and ccRCC by multimodal PAT 

The lipid amount was quantified by the area ratios between the 
corresponding areas covered by PAT signals and those covered by ul-
trasound signals. The lipid area ratio was found to be significantly 
higher (~9 times) in ccRCC tissues than that in normal tissues (Fig. 4a). 
Although the lipid area ratio was higher in high-grade ccRCC compared 
to low-grade ccRCC, there was no statistical difference (Fig. A.6). 
Detailed information about lipid area ratios are listed in Table 1 and 
Table A.2. 

To test the ability of using the lipid area ratio to differentiate ccRCC 
from normal tissues, the ROC curve was generated by plotting sensitivity 
versus (1-specificity), as shown in Fig. 4b. The large area under curve 
(AUC = 0.95) demonstrated that the lipid area ratio can accurately 
differentiate between normal and ccRCC tissues. Moreover, the ROC 
curve provided a way to obtain the desired degree of sensitivity at the 
cost of specificity. Because detection sensitivity is more important for 
ccRCC detection, the threshold of lipid area ratio was chosen to be 7.62 
% to achieve 100 % sensitivity and 80 % specificity. 

4. Discussion 

There is a need for accurate and rapid detection of renal cancer in 
clinic. In this work, we developed a customized multimodal PAT system 
at 1197 nm to detect lipid distribution respectively, at an imaging speed 
of 3.5 cm2 tissue area per minute. Our data from 32 intact human tissues 
demonstrated that the PAT signal of lipids was significantly higher in 
ccRCC tissues than that in normal tissues. By collecting the morphologic 
information from ultrasound imaging and lipid area ratio information 
from vibrational PAT, multimodal PAT can identify ccRCC from normal 
renal tissues with 100 % sensitivity, 80 % specificity, and the AUC of 
0.95. As discussed below, these results demonstrated the potential of 
using multimodal PAT system for intraoperative ccRCC detection. 

First, lipid accumulation can serve as a marker for ccRCC detection. 
Our data has shown significantly stronger vibrational photoacoustic 
signals from neutral lipids in ccRCC compared to the normal counter-
parts, although there is indeed a variation of lipid signal level among 
different patients. As for the ccRCC tissues with small amount of lipid 
accumulation, photoacoustic microscopy could help accurate detection 
owing to high spatial resolution [39–43]. 

Second, high sensitivity makes our multimodal PAT system a 
promising way for sensitive ccRCC detection. Tumor residue in partial 
nephrectomy increases the risk of local cancer recurrence and results in 
a lower survival rate [3,4].Therefore, it is essential to get high sensitivity 
of renal cancer detection. In this study, based on the morphological 
information provided by ultrasound imaging and the lipid amount in-
formation provided by PAT imaging, we were able to differentiate 
normal and ccRCC tissues with 100 % sensitivity and 80 % specificity. 
Such high sensitivity could help surgeons to remove ccRCC, the most 
common and aggressive form of renal cancer, as much as possible and 
leave a healthy kidney. 

Third, high speed of our multimodal PAT system fulfills the 
requirement for intraoperative cancer detection. Since renal tumor 
masses smaller than 4 cm in diameter can be usually treated by partial 
nephrectomy, the maximal surface area of the resected renal tumor 
tissue is about 50 cm2. With an imaging speed at 3.5 cm2/min of our 
system, the whole surface area of the resected tissue can be assessed 
within 15 min. Such high imaging speed meets the current clinical need 

Fig. 3. Representative multimodal PAT images of normal and ccRCC tissues. (a-b) Multimodal PAT images of the normal tissue. (c) H&E image of the corresponding 
normal tissue. (d-e) Multimodal PAT images of the ccRCC tissue. (f) H&E image of the corresponding ccRCC tissue. Grey color: US image; Green color: PAT image at 
1197 nm; Scalar bars, 1 mm. ccRCC: clear cell renal cell carcinoma; The color bar shows the PA amplitude and the unit for the color bar is arbitrary unit. US: 
ultrasound; PAT: photoacoustic tomography. 
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for rapid intraoperative renal cancer detection. 
Finally, we utilized a customized Raman laser as the excitation light 

source, which showed greater efficiency to generate 1197 nm laser light 
output for photoacoustic imaging of lipids, compared with traditional 
optical parametric oscillator. Due to its excellent performance, the 
Raman laser-based photoacoustic imaging has been reported in many 
previous work [36,46,47]. Owing to the compact size and cost-effective 
feature, the Raman laser shows great promise for clinical translation. 

5. Conclusions 

In this study, we developed a multimodal PAT system with 1197 nm 
excitation to map both lipid distribution in intact human renal tissues 
collected from nephrectomy. Our data indicated that the PAT signal 
from lipids was significantly higher in ccRCC tissues than that in normal 
tissues. Based on the lipid amount information obtained from PAT and 
the morphological information provided by ultrasound imaging, we 
were able to differentiate normal and ccRCC tissues with 100 % sensi-
tivity and 80 % specificity. Our results show promise of using multi-
modal PAT system for intraoperative ccRCC detection. 
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