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Abstract

Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise
function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most
abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address
the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-
relBE2Spn wild type strain with that of an isogenic derivative, DrelB2Spn under different stress conditions such as carbon and
amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found
only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of
clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including
clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity
of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus
sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn
region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide
additional advantages to the bacteria for colonization and/or infection.
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Introduction

Chromosomally-encoded Type II toxin-antitoxin systems (TAS),

composed of two proteins, are widely spread among Bacteria and

Archaea. Typically, they are organized as operons in which the first

gene encodes the antitoxin (A) and the second the toxin (T). Both

proteins interact to generate a harmless TA complex that auto-

regulate their own synthesis. The A protein by itself is metabolically

unstable and is constitutively degraded by ATP-dependent proteases,

releasing a free and stable T protein that would kill or stop the growth

of the cells by disruption of key cellular processes [1]. A puzzling

observation derived from bio-informatics approaches is that many

bacteria and archaea harbour multiple copies of various TAS (e.g.

around 60 TAS in Mycobacterium tuberculosis [2]), being even more

abundant than previously envisaged [3,4]. Notwithstanding the

knowledge on the mechanisms of action of TAS [5] and the three-

dimensional structure of various TA protein complexes [6–12], little

is known on the role of these systems in the bacterial cell lifestyle. In

the case of plasmid-encoded TAS, they seem to be involved in the

stable maintenance (‘‘addiction’’) of the replicons by increasing their

chances of vertical transmission [13]. For the chromosomally-

encoded TAS, several interpretations have been given to their

ubiquity and abundance, though none has been demonstrated thus

far [14]. First, it has been proposed that TAS could act as stress

response elements that modulate growth by reducing macromolec-

ular synthesis. Hence, induction of these systems results in cell stasis

rather than in cell death, leading to viable but not cultivable cells

[5,15]. Inhibition of bacterial growth induced by the toxin was

reversed by expression of the cognate antitoxin or by the transfer-

messenger mRNA (tmRNA). Thus, toxins would induce a reversible

stasis that improves bacterial cell survival under extreme conditions

[15–17]. Second, some chromosomal TAS such as mazEF has been

considered as mediators of bacterial programmed cell death [18,19].

Unfavourable cell growth conditions could trigger this pathway and,

as a consequence, a subpopulation of bacterial cells would die. Death

of these cells would i) preserve the food for the remaining population,

ii) serve as a defence mechanism to restrict phage spreading, and iii)

act as a mechanism to eliminate cells with deleterious mutations. It

would seem that mazEF-mediated cell death is a population-

dependent phenomenon requiring a quorum sensing molecule,

termed extracellular death factor, which is a linear pentapeptide

(NNWNN) important for mazEF-mediating killing activity [20]. E. coli

strains defective in mazEF showed lower sensitivity to antibiotics than

the wild type, indicating that antibiotic addition could induce mazEF-

mediated cell death [21]. And third, comparison of the fitness of two

isogenic E. coli strains, one wild type (wt) and the other having

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11289



deletions in five TAS (mazEF, relBE, chpBK, yefM-yoeB, dinJ-yafQ)

subjected to short-term stress conditions (amino acid starvation, acidic

stress, antibiotic treatment, and long-term stationary phase) showed

no significant differences among them [22], pointing that TAS could

be involved only in long-term evolution [1]. However, some findings

have complicated further the interpretation of the TAS role: i) TAS-

defective cells showed a reduced ability for biofilm formation [23,24];

ii) TA-cassettes have been localized in both integrative and

conjugative genome elements that could have incorporated into the

bacterial chromosome and, within this context, they could promote

plasmid maintenance [2,25–28]; iii) TAS can work as anti-addiction

modules [29]; iv) they may play an essential role in development of

programmed cell death which leads to Myxococcus multicellular

development [30], and v) they may be linked to bacterial persistence

upon antibiotic exposure [31].

Genes for at least eight putative TAS are present in the

chromosome of the Gram-positive bacterium Streptococcus pneumoniae

(the pneumococcus): relBE1Spn, relBE2Spn, yefMyoeBSpn, higAB, phd/

doc, pezAT, tasAB, and hicAB [3,17,32]. Among these, only three of

them, namely relBE2Spn [33], yefM-yoeBSpn [34], and pezAT [7] have

been shown to be genuine TAS, whereas relBE1Spn was shown to be

non-functional [33]. Exposure of E. coli cells to RelE2Spn toxin

resulted in the arrest of cell growth, which was rescued by induction

of RelB2Spn antitoxin but only within a time-frame window: long-

time exposure to the toxin led to cultures unable to resume growth

[33]. We report here on the role of the pneumococcal relBE2Spn TAS

in the bacteria lifestyle. We have compared the behaviour of two

pneumococcal isogenic strains, wild type (wt) R6 and a relBE2Spn

mutant derivative (R6DrelB2Spn) [33] under different growth

conditions, and differences were found when cells were subjected to

stress conditions that impaired protein synthesis. The RelE2Spn toxin

could act as a modulator of protein synthesis under stress, but it could

also induce cell death when the level of protein synthesis was

dramatically reduced. Further, if relBE2Spn played a role in bacterial

fitness, then it should contribute to colonization and survival after

infection (an important part of the switch from commensal to

infective for a bacterium like S. pneumoniae). If this was the case, the

relBE2Spn genes should be ubiquitous in the S. pneumoniae population.

Thus, the presence and integrity of the relBE2Spn locus was tested in

100 strains from different sources. Unlike E. coli, where several strains

lacked the relBE operon [1,14], all pneumococcal strains analyzed

retained this locus in their chromosome. Although the relBE2Spn

operon exhibited various degrees of polymorphisms in the different

isolates, none of the changes impaired the functionality of the

relBE2Spn locus. A molecular model of the pneumococcal RelE2Spn

protein was constructed based on the three dimensional structure of

the RelBE complexes from Pyrococcus horikoshii (PhRelE) [10] and

compared with that of Methanococcus jannaschii (MjRelE) [11]. The

modelled RelE2Spn kept several residues related to the catalytic

activity of ribonucleases, which are also present in MjRelE. However,

these residues are missing in EcoRelE and PhRelE proteins

[10,35,36], raising the possibility that the two former RelE proteins,

albeit being ribonucleases, could use a mechanism of action different

than the one proposed for EcoRelE [12].

Results

Mutation of the relBE2Spn operon has no effect on
pneumococcal cell viability under either regular
conditions of growth or carbon starvation

We first tested the differences in growth (optical density at

650 nm, OD650) and viability (measured by determination of the

colony-forming units, cfu) between the two strains, R6 wt and its

relBE2Spn mutant derivative, R6DrelB2Spn (Table 1). The

mutant strain contains two mutated copies of the relB2 gene,

and has the relE2 gene placed away from its promoter, also

disrupting the translational coupling that appears to exist in this

pneumococcal operon [33]. RT-PCR assays showed that in the

mutant strain there was not detectable synthesis of relE2 mRNA

(not shown). To perform the experiments, cultures of both

strains were grown 24 h, and OD650 and cfu were determined at

time intervals. No differences were found between the strains

during the entire period in which the cultures passed through

exponential (0–2 hrs), stationary (2–8 hrs), and autolysis (8–

24 hrs) phases of growth (Figure S1 A, B). Autolysis is a

distinctive property of S. pneumoniae whose cells show a tendency

to spontaneously lyse when the culture reaches the stationary

phase [37]. Autolysis plays an important role in the bacterial

infection by the release of virulence factors which may modulate

the inflammatory response [38]. Glucose starvation activates

relBE transcription in E. coli, probably because of degradation of

RelB by the protease Lon, an event that would lead to an

increase in free RelE toxin and a reduction in the number of cfu

[39]. In the case of S. pneumoniae, the sugars routinely used as a

carbon source are di-saccharides (sucrose or maltose) rather

than glucose because of poorer utilization of the latter [40].

Carbon-starved cultures of either wt or DrelB2Spn mutant cells

showed no differences although cessation of growth was

observed for either strain as compared to sucrose-grown

cultures, and no decrease in viability was observed in either

sucrose-depleted culture (Figure S1 C, D).

The relBE2Spn operon modulates pneumococcal growth
under amino acid starvation

Serine hydroxamate (SHT) induces amino acid starvation

because it blocks incorporation of Ser residues into proteins by

interfering with the load of seryl-tRNA [41,42]. In E. coli,

addition of SHT (similarly to carbon starvation) resulted in an

increase of relBE transcription leading to the increase of free

RelE due to RelB Lon-dependent proteolysis [39]. Thus, we

Table 1. Bacterial strains and plasmids.

Bacteria Genotype
Reference/
source

E. coli TOP10 F-mcrA, D(mrr-hsdRMS-mcrBC),
W80lacZDM15DlacX74, recA1, deoR, araD
139D(ara-leu)7697, galU, galK, rpsL(StR),
endA1, nupG

Invitrogen

S. pneumoniae R6 Wild type [40]

S. pneumoniae
R6DrelB2Spn

R6, DrelB2Spn, CmR [33]

Plasmid Features
Reference/
source

pFUS2 pMB1, PBAD, araC, neo [50]

pNM220 mini-R1, pA1/O4/O3, bla, lacIq [51]

pE2wt pFUS2, relE2Spnwt This work

pE71 pFUS2, relE2Spn7153 This work

pE81 pFUS2, relE2Spn8651 This work

pE600 pFUS2, relE2SpnK-600 This work

pEter pFUS2, relE2Spn7153ter This work

pB2wt pNM220, relB2Spnwt This work

doi:10.1371/journal.pone.0011289.t001

Pneumococcal Polymorphisms

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e11289



followed growth and viability of the wt and the mutant strains of

S. pneumoniae under a SHT-mediated amino acid starvation. The

results (Figure 1A) showed that the growth of both cultures

almost stopped, quickly and in a similar manner, indicating that

cells entered into stasis. In contrast to sucrose starvation,

differences in viability between both strains were observed

(Figure 1B). In the mutant strain, a 50%-reduction in cfu was

detected during the first 90 min of SHT treatment, followed by

a slight recovery at longer times. Such a recovery was not

detected for the wt strain, in which a continuous reduction in

cfu was seen; these differences were more evident when the cfu

were plotted on a linear, rather than logarithmic scale

(Figure 1C). After the 180 min starvation period, SHT was

removed, cells were resuspended in fresh pre-warmed medium,

and incubation was continued for additional 180 min

(Figures 2A and 2B). SHT withdrawal allowed resumption of

bacterial growth. However, the mutant cells recovered and

entered into stationary phase faster than the wt, whereas the

latter showed a more prolonged exponential phase (Figure 2B,

inset). These results suggested to us that i) the mutant strain

could recover faster because it lacked toxin RelE, and ii) the wt

cells could have saved more efficiently their physiological

resources during stasis, allowing a full recovery after amino

acid starvation.

Blocking protein synthesis by erythromycin or
streptomycin treatment leads to antibiotic tolerance in
the relBE2Spn mutant

In addition to carbon- and amino acid-induced starvation,

treatment with inhibitors of protein synthesis also caused a relBE

transcriptional induction in E. coli [39]. We employed erythromy-

cin (Erm) which inhibits protein synthesis by binding to the 23S

rRNA, interfering with the amino acyl translocation [43]. Erm is

an effective agent against streptococcal infections and its minimal

inhibitory concentration (MIC) is low, since for selection for

pneumococcal Erm-resistant transformants, the concentration

1 mg.ml21 is sufficient [44] and MIC for the majority of wild-

type isolates fall in the range of 0.032–0,125 mg.ml21 (http://

www.eucast.org/mic_distributions/). To test whether the muta-

tion of relBESpn had any effect on cell-response to blocking protein

synthesis, pneumococcal cultures (wt and DrelB2Spn strains) were

challenged with two dosages of Erm, 0.1 and 1 mg.ml21 (that is 10

and 100 fold MIC for R6, respectively), followed by OD650 and

cfu determination at different times. After the 20 min treatment,

growth of both cultures was stopped, concomitantly with a

progressive reduction in cfu (Figures 3A and 3B). At the end of the

incubation period (180 min), a 10 to 1000-fold reduction in cfu

was observed. Interestingly, the reduction in cfu was much more

pronounced (10- to 100-fold difference) in the wt than in the

Figure 1. Changes in the growth profile of S. pneumoniae cells of the R6 or the R6DrelB2Spn mutant strains after inhibition of protein
synthesis by SHT. S. pneumoniae cultures, wt (#) and mutant (D) cells, were grown exponentially until an OD650 = 0.2. Then, SHT (1.5 mg.ml21)
was added, and incubation proceeded. Growth was monitored by determination of the OD650 of the cultures treated (filled symbols) or untreated
(open symbols) with SHT (A). At the times indicated, the numbers of cfu were determined by plating appropriate cell dilutions on SHT-free medium,
and incubation for 36 h at 37uC (B). Percentages of viable cells from wt (x) or mutant (*) strains upon SHT-treatment (C) were calculated considering
the number of cfu at time zero of the treatment as 100%.
doi:10.1371/journal.pone.0011289.g001
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mutant strain. These findings indicate that activation of RelE after

antibiotic treatment would induce a complete shut-off in protein

synthesis leading to cell stasis or even cell death. Then, lack of the

relBE2Spn operon would lead to antibiotic tolerance.

To confirm these observations, a test of bacterial viability was

performed by employment of the LIVE/DEAD Baclight (Invitro-

gen) stain method. The pneumococcal cultures were stained and

examined under the microscope: living cells were stained in green,

whereas dead cells were stained in red. Micrographs of the

pneumococcal cultures were taken at 0 and after 180 min of Erm

treatment. The results showed no significant differences between

both strains when the cultures were challenged with 0.1 mg.ml21

of Erm (Figure 3C upper panel). When Erm concentration was

raised to 1 mg.ml21, a drastic loss of viability in the wt strain was

found, which was not observed in the mutant cells (Figure 3C,

lower panel). We performed a similar experiment using strepto-

mycin (Sm), another protein synthesis inhibitor, at 20 mg.ml21

(selection for transformants to Sm-resistance is 100 mg.ml21). In

this case, we observed, again, that the mutant cells were more

tolerant to Sm-treatment than the wild type strain (Figure S2). We

conclude that the relBE2Spn operon seems to be activated when

protein synthesis is inhibited, so that under these unfavourable

Figure 2. Recovery of cell growth after removal of SHT. SHT-amino acid starved pneumococcal cells (180 minutes of starvation) were washed
twice and suspended into pre-warmed fresh medium, and incubation proceeded for the indicated times. Recovery of starvation was followed by
turbidity of the cultures (OD650) of wt (#) and mutant (D) strains (A). The number of cfu was determined by plating appropriate dilutions of the cells
at the times indicated (B). Inset: Linear plot showing cell viability evolution after SHT removal in wt (#) or mutant (D) cultures.
doi:10.1371/journal.pone.0011289.g002
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conditions this TAS could contribute to modulate the survival

response through stasis.

The relBE2Spn locus is conserved among S. pneumoniae
clinical isolates

We reasoned that if the expression of relBE2Spn could confer a

selective advantage to the pneumococcus, then a conservation of

this locus in the bacterial chromosome of most, if not all, isolates

should be expected, in spite of hyper-recombination typical for this

species [45]. A preliminary analysis was performed in a small set of

five Spanish clinical isolates, for which the presence of the

relBE2Spn and the yefM-yoeBSpn loci (another pneumococcal

TAS that was used as a control), was tested by PCR using

the oligonucleotide pairs relB2p/relE2c and yefMN/yoeBC,

respectively. The first pair was previously used to amplify the

relBE2Spn locus of R6 strain [33], the relE2c primer annealing

partially into the region encoding RelE2Spn toxin (Figure 4A). In

these five strains, amplification of the yefM-yoeBSpn locus was

feasible, in contrast to relBE2Spn (Figure 4B, left panel). However,

when oligonucleotide relE2tga (fully complementary to the 39

region encoding the toxin gene) was used instead of primer relE2C,

a PCR product was detected (Figure 4B, right panel). The size of

Figure 3. Inhibition of protein synthesis by Erm treatment. Cultures of R6 (#) or R6DrelB2Spn mutant (D) cells were treated with two
concentrations of Erm, 1 mg.ml21 (black symbols) or 0.1 mg.ml21 (grey symbols). Growth was followed by absorbance at OD650 (A) of untreated (open
symbols) and treated (filled symbols) cultures. At the indicated times, appropriate dilutions of cells were plated and incubated as above (B) All
experiments were performed at least three times. LIVE/DEAD-staining of wt and the R6DrelBE2Spn cells (C). The cultures were harvested 180 min after
addition of Erm and stained with Baclight Bacterial viability Kit (Invitrogen). Live cells show green fluorescence, whereas dead cells fluoresce red.
Percentages of viable cells in every assay, calculated from the results of Figure 3B are indicated in parentheses.
doi:10.1371/journal.pone.0011289.g003
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one of the PCR products was bigger than expected (around

2000 bp instead 650 bp), due to the presence of the IS1167

sequence (see below). The results obtained for the Spanish isolates

demonstrated that the five strains analyzed contained the

relBE2Spn locus and all but one (strain CipR-25) exhibited changes

compared to strain R6 in the chromosomal regions flanking the

relBE2Spn operon, whereas the region around the yefM-yoeBSpn

locus was kept intact.

These initial polymorphisms prompted us to perform a similar

search in a variety of clinical isolates. To this end, we chose more

strains from well-characterized collections of clinical isolates from

Spain and Poland [46–48]. The Spanish collection (Table S1)

consisted of 12 more isolates whose serotypes and majority of

sequence types (STs) had been characterized, with the exception of

four isolates for which STs were established in this study (Table S1).

Apart from its role in epidemiology, multi-locus sequence typing

(MLST) provides genetic information of the population structure

[45]. MLST is performed by comparison of the DNA sequences of

internal fragments of seven housekeeping genes of an isolate with

these available at the MLST database (http://spneumoniae.mlst.net/

). Spanish strains were isolated from blood and sputum in the years

2002 and 2006. The Polish clinical isolates proceeded from the

National Medicines Institute pneumococcal collection, and amount-

ed to 58 isolates representing 37 serotypes and 52 different STs [48].

Figure 4. Presence of the reBE2Spn operon in the chromosome of isolates of S. pneumoniae. Genetic organization of the relBE2Spn and
yefM-yoeBSpn loci in the R6 strain; the position of promoters Prel and Pmb, respectively, are shown (A). The primers used in the PCR amplifications are
drawn as arrows, and the expected sizes of the corresponding PCR fragments are shown below. The PCR products detected using the oligonucleotide
pairs relB2p /relE2c and yefMN /yoeBC (left panel) or the oligonucleotide pair relB2p/relE2tga (right panel) were separated on agarose gels (B). DNAs
from loci relBE2Spn (r) or from yefM-yoeBSpn (y) were isolated from different S. pneumoniae macrolide-resistant strains, as follows: CipR-67 (1); CipR-25
(2); CipR-22 (3); CipR-14 (4); CipR-23 (5); R6wt (C); Mr. Molecular weight standard, Hyper ladder I (BIOLINE).
doi:10.1371/journal.pone.0011289.g004
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These strains were mainly isolated from cerebral spinal fluid during

the years 1997 to 2002. Spanish and Polish isolates were tested for

presence of the relBE2Spn locus and its flanking regions by

amplification with different oligonucleotides spanning the appropri-

ate regions (Figure 5A). In addition to those, we checked, through bio-

informatics procedures, the presence of the relBE2Spn operon in

another 31 strains whose sequences are available at the NCBI

Genome Project (http://www.ncbi.nlm.nih.gov/) and at the Sanger

Institute (http://www.sanger.ac.uk/Projects/S_pneumoniae/), thus

making a total of 100 strains analyzed (Table S1). In addition, STs of

sequenced pneumococcal strains for which MLST data was not

available were determined in silico.

The results of the global PCR analyses of the chromosomal

structure of S. pneumoniae around the relBE2Spn locus allowed us to

classify the 100 isolates tested into three categories (Figure 5B and

Table S1): Type I shared the genetic organization found in known

strains (TIGR4, D39, and R6). Type II lacked the open reading

frames (orf) SP1222 and SP1221, which were replaced by an orf

homologous with the cation channel protein family. The genetic

organization of Type III was similar to Type II but, in addition, it

contained a 1200 bp sequence insertion located upstream the

promoter of the relBE2Spn operon. The nucleotide sequence of this

insertion corresponded to the IS1167 transposon sequence, which

includes inverted repeats flanking the transposase [49]. There was

no association of the TAS types with pneumococcal serotypes.

However, a very good concordance was observed in all cases when

more than a single representative of a given ST was analyzed.

Altogether, the latter observation was made for 15 STs that

included 44 isolates. Determination of the nucleotide sequence of

several of the clinical isolates belonging to the three pneumococcal

relBE Types (Table S1) showed no sequence changes in the

antitoxin-encoding relB2Spn gene. However, in the region

encoding the RelE2Spn toxin, several nucleotide changes were

detected. Some of them corresponded to silent mutations (GTC to

GTT at V74; ATC to ATT at I65; GAC to GAT at D39, and

TGA to TAA at the stop codon of the gene). Two other

polymorphisms in which minor amino acid changes occurred were

also found (T34I, and D39G), whereas some strains, like CipR-25

(Figure 5B), exhibited changes in the region spanning the -35 and

-10 region of the relBE2Spn promoter, a region probably involved

in the transcriptional self-regulation of the operon (I. Moreno, C.

Nieto and M. Espinosa, unpublished).

Even though the nucleotide sequence of the relBE2Spn promoter

region in the different types was not essentially modified, synthesis

of the relBE2Spn mRNA (and hence the expression of these two

proteins) could be affected. To detect the relBE2Spn mRNA in

several clinical isolates, primer extension analyses were carried out.

Total RNA was isolated from selected strains belonging to the

three genomic types: i) from Type I, strains R6, and CipR-25, the

latter containing the A/G change at the position -28 in the

relBE2Spn proposed regulatory region; ii) from Type II, strains

CipR-31, CipR-67, and 2115, the latter harbouring also the same

change in the proposed regulatory region, and iii) from Type III,

CipR-51 and CipR-14. In all strains, a primer extension product

was detected (Figure S3) and its size was the same as the one

detected previously for the laboratory R6 strain [33].

Taken together, we can conclude that all strains analyzed

retained the relBE2Spn module, but exhibited three different

genetic arrangements: 21.5%, 61.3% and 17.2% of the analyzed

strains exhibited a genetic organization of the type I, II and III,

respectively; 36% of the sequenced strains bore mutations in the

gene encoding the RelE2Spn toxin. Furthermore, the operon

organization, and thus co-transcription of both genes, was

maintained in all strains tested.

Attenuated toxicity in relE2Spn mutants
As shown above, most of the nucleotide changes identified in the

sequence of the relBE2Spn locus were located within the relE2Spn

gene, two of them being missense mutations that affected the

RelE2Spn toxin: change D39G was found in three strains (Polish

7153, and the NCBI genome project P1031 and JJA), whereas

change T34I was relatively frequent (around 35% of the

sequenced isolates). To verify whether these changes affected the

toxic activity of RelE2Spn, and to elucidate their possible

physiological consequences, we tested toxicity on E. coli cells

based on two criteria previously used for the pneumococcal yefM-

yoeB operon [34]: i) inhibition of cell growth after expression of

either wild type or mutant RelE2Spn, and ii) ability of RelE2Spn to

interact with the cognate RelB2Spn antitoxin in cultures

harbouring uncoupled genes (relB2Spn and relE2Spn) cloned in

two different plasmids under inducible promoters. In the latter

conditions, induction of the antitoxin should neutralize the toxic

effect of RelE2Spn thus permitting bacterial growth. To this end,

DNA fragments containing genes relE2Spn, wt or mutants

harbouring the D39G, T34I, and, as a control, relE2ter (encoding

a truncated and inactive RelE2Spn protein) were cloned into

plasmid pFUS2 [50] under the control of the araBAD promoter

(PBAD), which is inducible by arabinose and repressed by glucose.

The resulting plasmids (Table 1) were termed pE2wt (wt

RelE2Spn), pE71 (D39G RelE2Spn), pE81 (from strain 8651) or

pE600 (from strain k-600), both harbouring the T34I RelE2Spn

mutation and pE2ter (truncated RelE2 protein). In addition, the

relB2Spn wt gene was cloned in plasmid pNM220 [51], which

allows IPTG-inducible expression of the antitoxin from the Plac

promoter; the resulting plasmid was termed pB2wt (Table 1). As

expected, no significant difference in growth rate was observed for

E. coli cells with the control pE2ter upon induction of PBAD.

However, a total growth arrest was observed for E. coli harbouring

the plasmids pE2wt, pE71(D39G), pE81(T34I), or pE600(T34I)

(Figure 6A). Additionally, a severe decrease in the number of

viable cells compared to cultures containing the pE2ter plasmid

was seen (Figure 6B). This reduction in cfu occurred in the

following order: relE2wt (almost four orders of magnitude) .

relE2T34I (nearly two orders) . relE2D39G (twofold). The toxicity

of the RelE2Spn toxin could be counteracted by its cognate

antitoxin, encoded in the pB2wt plasmid. Cells, containing the

different pairs of plasmids were streaked on plates supplemented

with 0.4% arabinose (induction of toxin synthesis) with or without

2 mM IPTG (induction of antitoxin synhtesis). Transformants

containing, in addition to pB2wt, plasmids encoding the toxin

(totally or partially functional) were able to grow only on plates

supplemented with IPTG while control cells harbouring pB2wt

and either pFUS or pE2ter did not show growth differences in the

presence or absence of IPTG (Figure 6C).

Discussion

The human upper respiratory tract is a natural environment for

S. pneumoniae from which these bacteria spread to other body parts

and to new hosts; hence an increase in pneumococcal persistence

during colonization may influence its virulence and epidemicity

[52]. Persistence may be one of the roles performed by the

bacterial TAS by allowing bacteria to survive under nutrient

limited conditions, thereby improving adaptability to selective

pressures and permitting the bacteria to retain their capacity to

colonize humans without reduction in virulence. The pneumo-

coccal relBE2Spn was identified in the chromosome of S. pneumoniae

and shown to be functional, in contrast to the pneumococcal

homologue termed relBE1Spn [16,33]. Cells lacking the relBE2Spn
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operon exhibited the same growth profile and response to sugar

starvation as the wt bacteria did (Figure S1). Differences were

found, however, when cells were subjected to protein synthesis

inhibition either by amino acid starvation or antibiotic treatment.

In the case of the E. coli RelBE, the toxin was activated because of

antitoxin RelB degradation subsequent to inhibition of protein

synthesis [39]. Toxicity of EcoRelE protein is due to cleavage of

translating mRNA at the ribosomal A site [12,53]; other RelE

homologues, including RelE2Spn seem to cleave RNA in a similar

manner, and thus cells exposed to the toxin showed a drastic

growth arrest [16,33]. Similarly, activation of RelE2Spn by SHT

treatment, led to reduction in the number of cfu (Figures 1 and 2),

but this reduction was not due to cell death as detected by the

LIVE/DEAD BacLight bacterial viability method (not shown), but

rather to a slower rate of cell growth. After SHT removal, cells

returned to normal growth, although two major differences were

observed between the wt and the mutant strains (Figures 1 and 2):

i) the wt cells recovered more slowly than the mutants, most likely

because recovery of cell growth of the former required prior

antitoxin synthesis to neutralize the RelE2Spn toxin, and ii) the wt

strain exhibited an exponential growth period after recovery which

was longer than that of the mutant. These results indicated that

the pneumococcal relBE2 system, under amino acid starvation,

could help the bacteria to divert the scarce resources to essential

processes, thus improving its survival potential. Treatment with

Erm (or with Sm) also resulted in a different response in the two

pneumococcal strains used. The wt showed a higher and quicker

reduction in cfu than the mutant (Figures 3B and S2) although, at

0.1 mg ml21 of Erm, it was not due to diminished cell viability.

However, at 1 mg ml21 of Erm, a clear loss in viability was

observed for the wt, which was not the case for the mutant

(Figure 3C). The higher sensitivity of the wt strain to a low dosage

of Erm can be explained as the result of RelE2Spn activation

subsequent to protein synthesis inhibition. When higher concen-

trations of the antibiotic were used, cell lysis was observed in the wt

after 180 minutes of treatment and, during the recovery period,

only the mutant cells were able to resume growth but only after

24 hours of Erm removal (not shown).Thus, activation of the

pneumococcal relBE2Spn operon subsequent to antibiotic treat-

ment appeared to induce an extreme interruption of the protein

synthesis, leaving the bacteria unable to recover viability or even

inducing cell death. Then, lack of the relBE2Spn operon in S.

pneumoniae would lead to antibiotic tolerance a role that coincides

with the one proposed for the E. coli mazEF TAS [21].

The pneumococcal relBE2Spn operon is not essential, at least under

the laboratory growth conditions used ([33] and Figure S1), but it

showed a functional conservation in all the strains tested (see below).

This was unlike the two other TAS characterized in S. pneumoniae,

namely pezAT and yoeB-yefMSpn. The former was found to be absent

in several clinical isolates of S. pneumoniae [7], whereas a search for the

presence of yoeB-yefMSpn in 31 pneumococcal strains sequenced

(NCBI project or Sanger institute) showed that more than 40% of

them lacked this TAS (not shown). In E. coli, the homologous relEB

TAS have been lost in several strains [14]. In addition, analyses of 395

E. coli strains showed decay in the chromosomally-encoded ccdAB

TAS and a molecular evolution analysis of these data suggests that

this TAS does not seem to retain any role in E. coli [54]. A recent

study on comparative metagenomic analyses of plasmid-encoded

functions in the human gut microbiome showed that the RelBE TAS,

as compared to other TAS, is relatively abundant and retains a broad

phylogenetic distribution in the human gut microbiome, suggesting

that prevalence of RelBE could be related to fitness of the bacterial

host [55]. Our analysis of the relBE2Spn locus showed the existence of

three different genetic organizations, although transcription of the

operon was not affected by these rearrangements (Figure S3). Type II

seems to be most divergent and most prevalent (Table S1). This may

suggest this is an ancestral type. It is easy to imagine how types I and

type III are made by single genetic events from II. Type III looks

homogenous but all the isolates of type III that were sequenced

originated from the same clone so this could have been expected.

In addition to the above arrangements, various isolates showed

several more polymorphisms at the relE2Spn gene, some of them

affecting the amino acid sequence of the protein. Two of them were

found to be relevant, namely changes T34I, and D39G, since toxin

activation in either of the two mutants led to growth arrest, although

their toxic effect was lower than the wt toxin (Figure 6), indicating that

these amino acid changes could affect critical residues of the toxin.

We constructed a molecular model of the pneumococcal RelESpn

based on the crystal structures of the RelBE protein complexes of P.

horikoshii (PhRelBE) [10] and the recently published structure of the

RelE protein from Methanococcus jannaschii (MjRelBE) [11]. Amino

acid sequence alignment and the structural model (Figure 7) indicated

that all R residues that were previously related to PhRelE toxicity

(R40, R58, R65, and R85) were conserved in RelE2Spn (R41, R56,

R63, and R83). Curiously, this R-distribution was not fully conserved

in the pneumococcal RelE1Spn (also present in the R6 strain; Figure 7)

perhaps causing its lack of functionality [33]. In the RelE2Spn

molecular model (Figure 7), residues T34 and D39 (changed in the

RelE2Spn low toxicity mutants to I and G, respectively) appeared to

be located close to the toxicity-related R residues. According to the

structure of toxins Kid and MazF [56–58], we can postulate that: i)

mutation T34I would allow the toxin to retain its RNase activity but

with slight changes in its substrate binding capacity, and ii) D39,

together with E38, are acidic residues that could act in the catalysis of

RNA in the active site of the toxin so that mutation D39G would

reduce the RelE2Spn mRNA cleavage activity, thereby diminishing

RelE2Spn toxicity (Figure 6). The model of RelE2Spn also sheds light

on some possible structural peculiarities of the toxin: unlike its E. coli

and P. horikoshii homologues, RelE2Spn would include in its catalytic

site (besides the conserved R residues), residues H43, Y31 and Y57,

and two acidic residues (E38 and D39) (Figure 7 and Figure S4).

These residues are present in the catalytic site of toxins with

ribosome-independent RNase activity, such as YoeB [6], Kid [57]

and MazF [58]. The presence of these additional residues allow us to

speculate that RelE2Spn could mediate the cleavage of translating

Figure 5. Polymorphisms found at the relBE2Spn locus in clinical isolates of S. pneumoniae. A genetic diagram of the chromosomal region
flanking the relBE2Spn locus in the R6 strain shows that this region includes genes encoding Ldh (lactate dehydrogenase), GyrA (the A subunit of DNA
gyrase), and SP1221 and SP1222 (putative type II restriction endonucleases). These orfs have been detected only in the pneumococcal strains belonging to
Type I, whereas the putative cation channel protein was found in those strains included in both Type II and Type III. Other genes identified in this region
were: relE2 (relBE2Spn locus encoding toxin RelE2), relB2 (relBE2Spn locus encoding antitoxin RelB2), and vicX (encoding VicX protein). The vicx gene
comprises part of the TCS02 operon (vicRKX) essential for pneumococcal viability. In addition, a RUP element has been identified between the ldh and the
sp1221 coding regions. RUP elements are an insertion sequence (IS)-derivative that could still be mobile [62]. The collection of oligonucleotides used are also
indicated by a number corresponding to the following oligonucleotides: 1, ldhter,; 2, SP1222; 3, relE2C; 4, relE2tga; 5, relB2C; 6, rel2p59; 7, relB2p; 8, relB2N, 9,
relE2N. The genetic organization of the three types of relBE2Spn loci is depicted (A). Illustration of the three types of relBE2Spn locus genetic organization
found out in a collection of S. pneumoniae clinical isolates (B) At the bottom, the region spanning the relBE2Spn promoter [33] is depicted. The location of
the IS1167 transposon and the mutation identified in strain 1531 (CipR-25) are highlighted.
doi:10.1371/journal.pone.0011289.g005
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mRNA [16] but also could have an intrinsic RNase activity able to

cleave untranslated mRNA, as shown for EcoliYoeB [6].

Concluding remarks
Our results indicate that the relBE2Spn locus could provide a

mechanism for S. pneumoniae to cope with unfavourable conditions,

allowing the bacteria to efficiently survive and colonize humans.

Further, the results show the importance of TAS as targets for

designing new antimicrobials, which is especially true for bacteria

like S. pneumoniae because of their high recombination rates and,

being naturally competent, horizontal transfer. As a consequence,

the appearance of new polymorphic and antibiotic resistant strains

poses a serious threat for infection management.

Materials and Methods

Bacterial strains, growth conditions and plasmid
constructions

Strains and plasmids used in this study are listed in Table 1. E. coli

cultures were grown in TY medium [59] with selection for ampicillin

resistance (AmpR, 150 mg.ml21), or kanamycin resistance (KmR,

50 mg.ml21). S. pneumoniae cells were grown in AGCH medium [40]

Figure 6. Functional analysis of RelE2Spn mutants in E. coli. Cell growth arrest subsequent to the expression of the relE2Spn wt gene or the
mutants T34I or D39G E. coli TOP-10 cells harbouring plasmids pE2wt (N), pE71(D39G mutant) (m), pE81(T34I mutant) (¤), pE600 (T34I mutant) (&) or
pEter as a control (o) were exponentially grown in TY medium containing 0.4% glucose and Km to an OD600 = 0.15. Then, cultures received 0.4%
arabinose and growth was measured by determination of the OD600 (A) and by counting the cfu (B), this latter by plating appropriate dilutions on
medium supplemented with 0.4% glucose and Km and incubated overnight at 37uC. All the experiments were performed at least in duplicate. The
effect of the separate and of combined expression of the relE2Spn or relB2Spn in E. coli was also tested on solid medium (C). E. coli TOP-10 cells
harbouring pB2wt and pEter (streak 1), pFSU2 (streak 2), pE2wt (streak 3), pE71 (streak 4); pE81 (streak 5); pE600 (streak 6) were streaked on TY plates
containing Km and Ap, supplemented with 0.4% arabinose and with or without IPTG (2 mM). Arabinose induces the toxin expression, whereas IPTG
(2 mM) promotes the antitoxin overproduction.
doi:10.1371/journal.pone.0011289.g006
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supplemented with 0.3% sucrose and 0.2% yeast extract (complete

AGCH) medium, with or without selection for resistance to

chloramphenicol (CmR, 2 mg. ml21). All cultures were grown at

37uC. The agar plates were incubated at 37uC in air. SHT (used at

1.5 mg.ml21; a compound which specifically blocks charging of

seryl-tRNA, thus inhibiting protein synthesis), Erm (used at 0.1 or

1 mg. ml21), and Sm (used at 20 mg.ml21) both of them blocking

bacterial ribosomes, were purchased from Sigma. We used Erm

instead Cm because the mutant strain, R6DrelB2Spn, harbours a

chromosomally-integrated copy of the cat gene (Table 1).

Plasmids used in this work were constructed as follows: pE2wt,

pE71, pE81, and pE600: The relE2Spn gene with its own ribosome

binding site was amplified by PCR from chromosomal DNAs of

strains R6 (pE2wt), 7153 (pE71), 8151 (pE81), or K-600 (pE600)

and amplified with primers relE2N (59-CGCG GATCCGATG-

CATGATTTAGGCTTGAAGGATGAATA-39) and relE2tga (59-

CGTGGTACCTCAATAAATATCTCTCCGATGACCAACT-

TC-39). The resulting 290-bp PCR products were digested with

EcoRI and KpnI before ligation into the equivalent sites of pFUS2.

Plasmid pE2ter was randomly isolated during construction of

pE71 and contains a mutation in the relE2sequence changing the

E38 residue for a termination codon, yielding a truncated RelE2

protein. Plasmid pB2wt was constructed by amplification of a

chromosomal DNA fragment encoding gene relB2Spn with its own

ribosome binding site using the primers relB2BamHI (59-

CGGGATCCGTGTTACCATTAAAAAAGGGAGCACA AA-

G-39) and relLCC (59-CGGGGTACCATCGCGAATTC-

TAAAACGTCTTGTT GGAACTAATTTATAC-39). The

resulting 310-bp DNA fragment was digested with BamHI and

EcoRI before ligation into the equivalent sites of pNM220. All

plasmids were rescued by transformation of competent E. coli cells.

Growth and recovery tests in S. pneumoniae cells
Cultures of S. pneumoniae R6 and R6DrelB2Spn were exponen-

tially grown in AGCH complete medium to OD650 = 0.2 at 37uC.

Then, half of each culture was exposed to the different

experimental conditions: carbon starvation, or addition of SHT

or Erm (or Sm). Growth of treated and untreated cultures was

followed by OD650 and the viability (number of cfu) was measured

by plating serial dilutions of each culture on AGCH plates. After

SHT-, Erm, or Sm-treatment, cultures were washed twice with

pre-warmed AGCH and suspended in the same volume of

complete AGCH drug-free medium. OD650 and viability was then

tested for at least 180 minutes. In the carbon starvation

experiments exponentially growing cultures (to OD650 = 0.2) were

washed twice in pre-warmed AGCH medium and finally

suspended in the same volume of AGCH medium supplemented

with 0.2% yeast extract and with or without sucrose. Cell growth

and viability were measured as above. All the experiments were

performed at least three times.

Fluorescence microscopy
Cultures of R6 and R6DrelB2Spn were exponentially grown at

OD650 = 0.25 in AGCH complete medium at 37uC and Erm was

added at two concentrations (0.1 mg.ml21 or 1 mg.ml21). After

180 min, cells were harvested by centrifugation, washed twice with

Figure 7. Molecular modelling of RelBE2Spn. Structure of RelE from P. hirokoshii (PhRelE) (A) and structural model obtained for the
pneumococcal toxin RelE2Spn (B). Residues important for protein synthesis inhibitory activity of PhRelE are displayed. In the case of RelE2Spn model,
the Arg residues which aligned with those of PhRelE involved in protein synthesis inhibition are shown. Residues changed in the RelE2 pneumococcal
mutants isolated here, T34 and D39, are indicated in red. The sequence alignment of PhRelE, RelE2Spn and RelE1Spn (a pneumococcal non-toxic
homolog) is shown in the bottom of the figure. Residues in the PhRelE, involved in toxin activity are red underlined and the corresponding residues in
RelE1Spn and RelE2Spn are highlighted in the same way. T34 and D39 positions in RelE2Spn are framed in green.
doi:10.1371/journal.pone.0011289.g007
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buffer (50 mM Tris-HCl pH 7.6, 100 mM NaCl, 8 mM MgSO4)

and stained with the LIVE/DEAD BacLight Bacterial viability kit

(Invitrogen) according to the manufacturer’s instructions. Cells were

visualized using a multidimensional AF6000 LX LEICA microscope

and filter cube L5 for green fluorescence or N5 to detect red

fluorescence.

PCR-based gene detection in S. pneumoniae and MLST
Chromosomal DNAs were extracted using the Bacterial

Genomic DNA Isolation Kit (NORGEN) and chromosomal

DNA (50–100 ng) was added to PCR reactions performed using

Phusion high fidelity DNA polymerase (Finnzymes) and, as

primers, the following oligonucleotides:

yefMN: 59-CGCGGATCCGCTTGTACAAGTTCCTGACA-

ATTTC-39

yoeBC: 59-CTGGAATTCCGGTAGAGACTTGAGAAAAA-

GCCTA-39

rel2p59: 59-CGGAATTCCGATCAGGTTCTTACGCTTG-

GCG-39

relB2p: 59-CAGATAC CGCAACACCATTGACAG-39

relB2N: 59-TGCTCCCGGGCTATTACATTAAAAGTTTC-

TGAA GCTG-39

relB2C: 59-CGCGAATTCCTTCCCAAGTAATGGGT TCA-

ACTCC-39

relE2N: 59-CGCGGATCCGATGCATGATTTAGGCTTGA-

AGGATGAATA-39

relE2tga: 59-CGTGGTACCTCAATAAATATCTCTCCGAT-

GACCAACTTC-39

SP1222: 59-CCTCACGACTAATCCGTTGCAG-39

ldhter: 59-GCATCTGCTAA AGAATTACAAGCATCATTG-39

To analyse the IS1167 transposon sequence, a 1750-bp PCR-

DNA fragment including this element was obtained using as

template chromosomal DNA isolated from strain 2167 and, as

primers, relB2p and relB2C. The sequence of this DNA fragment

was determined using primers relB2p, relB2C, and two specific

IS1167 primers: 2167N (59-GTCATAGTAAGGACTAAACATA

TCC-39) and 2167C (59-GAAAAGCGATCAAACAACTCAT-

TAG-39).

MLST based on sequencing of fragments of seven housekeeping

genes, aroE, gdh, gki, recP, spi, xpt and ddl was performed as

described by others [60]. The database http://spneumoniae.mlst.

net/was used to assign allele numbers and STs.

Primer extension analysis
Total RNA was isolated from R6 and from different

pneumococcal isolates with Aurum total RNA minikit (BIO-

RAD). For RNA extraction, 1.5–3 ml of the bacterial cultures in

late exponential phase were centrifuged and the cells were

resuspended in 100 ml of lysis buffer (50 m M Tris-HCl pH 7.6,

1 mM EDTA, 50 mM NaCl, 0.1% sodium deoxycholate). The

cell suspension was incubated 10 min at 30uC and further

preparation was done according to the manufacturer’s instruc-

tions. Primer extension assays were performed as described [61]

using either a radiolabelled relBE2Spn specific primer (relRNA, 59-

GAAACTCCTTCAAACTTAGCC-39) [33] or a malX specific

primer mal1, 59-GTGTAACAGTTCCAAGCACCG-39). The 39-

ends of primers were located 56 nt or 48 nt from the nucleotide A

of the ATG initiation codon of the relB2Spn gene or in the malX

ATG initiation codon, respectively [61].

Model construction
The three-dimensional model of RelE2Spn toxin was constructed

using Geno3D molecular modelling program (pBIL.icp.fr.Geno3D,

http://geno3d-pbil.ibcp.fr) and the 2.3 Å resolution X-ray

crystallographic structure of the P. horikoshii OT3 aRelBE complex

[10] (PDB ID:1wmi), and the 2.1 Å resolution X-ray crystallographic

structure of the M. jannaschii MjRelBE complex [11], (PDB ID:3BPQ)

as templates. The graphic display was performed with PyMOL

program (DeLano Scientific LLC, http://www.pymol.org).

Web sites
NCBI Genome Project: http://www.ncbi.nlm.nih.gov/

Pneumococcal MLST database: http://spneumoniae.mlst.net/

European Committee on Antimicrobial Susceptibility Testing:

http://www.eucast.org/mic_distributions/

PyMOL: http://www.pymol.org.

Sanger Institute: http://www.sanger.ac.uk/Projects/S_pneumoniae/

Geno 3D: http://geno3d-pbil.ibcp.fr

Supporting Information

Figure S1 Growth profile of S. pneumoniae cells wt and mutant

R6(capital delta)relB2Spn under normal or carbon-starvation

conditions. Pneumococcal strains R6 (triangles) or (capital

delta)relB2Spn (circles) were grown in AGCH complete medium

(A, B). In carbon-starvation conditions (panels C and D), cells

were exponentially grown in AGCH complete medium to an

OD650 = 0.2, twice washed, and suspended in the same medium

with (open symbols) or without sucrose (filled symbols). Growth of

the cultures was followed by measurement of OD650 nm (A, C) or

by determination of the number of cfu (B, D).

Found at: doi:10.1371/journal.pone.0011289.s001 (1.35 MB EPS)

Figure S2 Inhibition of protein synthesis mediated by Sm

treatment. S. pneumoniae cells from strains R6 (circles) or

R6(capital delta)relB2Spn (triangles) were grown exponentially

in complete AGCH medium to an OD650 = 0.120.14. Then,

Sm (20 (mu)g.ml21) was added, and incubation was continued

for 180 min more. Growth was followed by measurement of

OD650 nm of the cultures untreated (open symbols) or

treated (closed symbols) with Sm (A). At indicated times

appropriate dilutions of cells were plated and incubated as in

Figure 1 (B).

Found at: doi:10.1371/journal.pone.0011289.s002 (1.11 MB EPS)

Figure S3 Primer extension analysis using total RNA from

different S. pneumoniae clinical isolates. RNA samples from R6 (1)

and the following clinical isolates: CipR25 (2), 2115 (3), CipR67

(4), CipR31 (5); CipR14 (6), and CipR51 (7) were annealed with

[32P]-labelled specific primers mal1 (x; as a control) or with the

relRNA oligonucleotide (r) to detect relBE2Spn mRNA. Ct

Indicates a G+A Maxam and Gilbert sequencing reaction, used

as DNA size marker.

Found at: doi:10.1371/journal.pone.0011289.s003 (0.53 MB EPS)

Figure S4 RelE2Spn three dimensional structural model.

Location of R41, R56, R63, R83, and D39 residues is depicted.

Other residues (Y31 and Y57, H43 and E38) supposedly involved

in the catalytic mechanism are displayed in cyan.

Found at: doi:10.1371/journal.pone.0011289.s004 (1.06 MB EPS)

Table S1

Found at: doi:10.1371/journal.pone.0011289.s005 (0.04 MB

XLS)

Acknowledgments

We thank members of the author’s laboratories for suggestions and

comments. We acknowledge the use of the pneumococcal MLST database

which is located at the Imperial College, London (Wellcome Trust).

Pneumococcal Polymorphisms

PLoS ONE | www.plosone.org 12 June 2010 | Volume 5 | Issue 6 | e11289



Author Contributions

Conceived and designed the experiments: CN ES ME. Performed the

experiments: CN ES. Analyzed the data: CN ES AGdlC WH ME.

Contributed reagents/materials/analysis tools: AGdlC WH ME. Wrote

the paper: CN ES ME. Corrected the manuscript: AGdlC WH.

References

1. van Melderen L, Saavedra De Bast M (2009) Bacterial toxin–antitoxin systems:

more than selfish entities? PLoS Genetics 5: e1000437. doi:1000410.1001371.

2. Makarova K, Wolf YI, Koonin EV (2009) Comprehensive comparative-genomic

analysis of Type 2 toxin-antitoxin systems and related mobile stress response

systems in prokaryotes. Biology Direct 4: 19.

3. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-

living but lost from host-associated prokaryotes. Nucl Acids Res 33: 966–976.

4. Gupta A (2009) Killing activity and rescue function of genome-wide toxin-

antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol Lett 290: 45–53.

5. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin

stress response loci. Nat Rev Microbiol 3: 371–382.

6. Kamada K, Hanaoka F (2005) Conformational change in the catalytic site of the

ribonuclease YoeB toxin by YefM antitoxin. Molecular Cell 19: 497–509.

7. Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, et al. (2007) Molecular and

structural characterization of the PezAT chromosomal Toxin-Antitoxin system

of the human pathogen Streptococcus pneumoniae. J Biol Chem 282: 19606–19618.

8. Mattison K, Wilbur JS, So M, Brennan RG (2006) Structure of FitAB from

Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin

heterodimers containing PIN domains and Ribbon-Helix-Helix motifs. J Biol

Chem 281: 37942–37951.

9. Meinhart A, Alonso JC, Strater N, Saenger W (2003) Crystal structure of the

plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta

and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci USA

100: 1661–1666.

10. Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I, et al. (2005) Crystal structure

of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin

activity and antitoxin effects. Nat Struct Mol Biol 12: 327–331.

11. Francuski D, Saenger W (2009) Crystal structure of the antitoxin-toxin protein

complex RelB-RelE from Methanococcus jannaschii. J Mol Biol 393: 898–908.

12. Neubauer C, Gao Y-G, Andersen KR, Dunham CM, Kelley AC, et al. (2009)

The structural basis for mRNA recognition and cleavage by the ribosome-

dependent endonuclease RelE. Cell 139: 1084–1095.

13. Bravo A, Ortega S, de Torrontegui G, Dı́az R (1988) Killing of Escherichia coli

cells modulated by components of the stability system ParD of plasmid R1. Mol

Gen Genet 215: 146–151.

14. Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems.

J Bacteriol 189: 6089–6092.

15. Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a

bacteriostatic condition by controlled expression of toxins and antitoxins. Mol

Microbiol 45: 501–510.

16. Christensen SK, Gerdes K (2003) RelE toxins from Bacteria and Archaea cleave

mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol

48: 1389–1400.

17. Jorgensen MG, Pandey DP, Jaskolska M, Gerdes K (2009) HicA of Escherichia coli

defines a novel family of translation-independent mRNA interferases in bacteria

and archaea. J Bacteriol 191: 1191–1199.

18. Kolodkin-Gal I, Engelberg-Kulka H (2006) Induction of Escherichia coli

chromosomal mazEF by stressful conditions causes an irreversible loss of

viability. J Bacteriol 188: 3420–3423.

19. Engelberg-Kulka H, Hazan R, Amitai S (2005) mazEF: a chromosomal toxin-

antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 118:

4327–4332.

20. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A

linear pentapeptide Is a quorum-sensing factor required for mazEF-mediated cell

death in Escherichia coli. Science 318: 652–655.

21. Kolodkin-Gal I, Sat B, Keshet A, Engelberg-Kulka H (2008) The communi-

cation factor EDF and the toxin-antitoxin module mazEF determine the mode of

action of antibiotics. PLoS Biol 6: e319.

22. Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L (2007) What Is the

benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome?

J Bacteriol 189: 6101–6108.

23. Kim Y, Wang X, Ma Q, Zhang XS, Wood TK (2009) Toxin-antitoxin systems

in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae.

J Bacteriol 191: 1258–1267.

24. Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H (2009) A

differential effect of E. coli toxin-antitoxin systems on cell death in liquid media

and biofilm formation. PLoS ONE 4: e6785.

25. Budde PP, Davis BM, Yuan J, Waldor MK (2007) Characterization of a higBA

toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 189: 491–500.

26. Christensen-Dalsgaard M, Gerdes K (2006) Two higBA loci in the Vibrio cholerae

superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol

Microbiol 62: 397–411.

27. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA (2007)

Chromosomal toxin–antitoxin loci can diminish large-scale genome reductions

in the absence of selection. Mol Microbiol 63: 1588–1605.

28. Wozniak RAF, Waldor MK (2009) A toxin–antitoxin system promotes the

maintenance of an integrative conjugative element. PLoS Genetics 5: e1000439.
doi:1000410.1001371.

29. Saavedra De Bast M, Mine N, Van Melderen L (2008) Chromosomal toxin-
antitoxin systems may act as antiaddiction modules. J Bacteriol 190: 4603–4609.

30. Nariya H, Inouye M (2008) MazF, an mRNA Interferase, mediates programmed
cell death during multicellular myxococcus development. Cell 132: 55–66.

31. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas

aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:

6746–6751.

32. Fico S, Mahillon J (2006) tasA-tasB, a new putative toxin-antitoxin (TA) system

from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc

TA system. BMC Genomics 7: 259.

33. Nieto C, Pellicer T, Balsa D, Christensen SK, Gerdes K, et al. (2006) The

chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: character-
ization and use of a bioluminescence resonance energy transfer assay to detect

toxin-antitoxin interaction. Mol Microbiol 59: 1280–1296.

34. Nieto C, Cherny I, Khoo SK, de Lacoba MG, Chan WT, et al. (2007) The

yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae:
functional and structural correlation. J Bacteriol 189: 1266–1278.

35. Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R (2005) Toxin-antitoxin modules as
bacterial metabolic stress managers. Trends Biochem Sci 30: 672–679.

36. Condon C (2006) Shutdown decay of mRNA. Mol Microbiol 61: 573–583.

37. Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall

teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158:
1188–1190.

38. Martner A, Dahlgren C, Paton JC, Wold AE (2008) Pneumolysin released
during Streptococcus pneumoniae autolysis is a potent activator of intracellular

oxygen radical production in neutrophils. Infect Immun 76: 4079–4087.

39. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K (2001) RelE, a global

inhibitor of translation, is activated during nutritional stress. Proc Nati Acad Sci

USA 98: 14328–14333.

40. Lacks SA (1968) Genetic regulation of maltosaccaride utilization in pneumo-

coccus. Genetics 60: 685–706.

41. Tosa T, Pizer LI (1971) Biochemical bases for the antimetabolite action of L-

Serine hydroxamate. J Bacteriol 106: 972–982.

42. Tosa T, Pizer LI (1971) Effect of Serine hydroxamate on the growth of Escherichia

coli. J Bacteriol 106: 966–971.

43. Mankin AS (2008) Macrolide myths. Current Opinion in Microbiology 11:

414–421.

44. Acebo P, Alda NT, Espinosa M, del Solar G (1996) Isolation and

characterization of pLS1 plasmid mutants with increased copy numbers. FEMS
Microbiol Letters 140: 85–91.

45. Hanage WP, Fraser C, Tang J, Connor TR, Corander J (2009) Hyper-
recombination, diversity, and antibiotic resistance in pneumococcus. Science

324: 1454–1457.

46. de la Campa AG, Balsalobre L, Ardanuy C, Fenoll A, Pérez-Trallero E, et al.
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