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Abstract: Uveal melanoma (UM) is the most common primary intraocular malignant tumor in
adults and, although its genetic background has been extensively studied, little is known about
the contribution of non-coding RNAs (ncRNAs) to its pathogenesis. Indeed, its competitive en-
dogenous RNA (ceRNA) regulatory network comprising microRNAs (miRNAs), long non-coding
RNAs (lncRNAs) and mRNAs has been insufficiently explored. Thanks to UM findings from The
Cancer Genome Atlas (TCGA), it is now possible to statistically elaborate these data to identify the
expression relationships among RNAs and correlative interaction data. In the present work, we
propose the VECTOR (uVeal mElanoma Correlation NeTwORk) database, an interactive tool that
identifies and visualizes the relationships among RNA molecules, based on the ceRNA model. The
VECTOR database contains: (i) the TCGA-derived expression correlation values of miRNA-mRNA,
miRNA-lncRNA and lncRNA-mRNA pairs combined with predicted or validated RNA-RNA interac-
tions; (ii) data of sense-antisense sequence overlapping; (iii) correlation values of Transcription Factor
(TF)-miRNA, TF-lncRNA, and TF-mRNA pairs associated with ChiPseq data; (iv) expression data of
miRNAs, lncRNAs and mRNAs both in UM and physiological tissues. The VECTOR web interface
can be queried, by inputting the gene name, to retrieve all the information about RNA signaling and
visualize this as a graph. Finally, VECTOR provides a very detailed picture of ceRNA networks in
UM and could be a very useful tool for researchers studying RNA signaling in UM. The web version
of Vector is freely available at the URL reported at the end of the Introduction.

Keywords: ncRNA; ceRNA; miRNA; lncRNA; bioinformatics; cancer; network

1. Introduction

Uveal melanoma (UM) is the second most common type of human melanoma and the
most frequent primary tumor of the eye in adults, with an annual incidence of 6–7 cases
per million per year [1]. It mainly affects the choroid and its early metastasis, mostly to the
liver, leads to 50% of the death rate in patients [2]. Several molecular alterations have been
associated with the development of UM; however, its etiology remains unclear. Monosomy
of chromosome 3 and gain of 8q are often found in UM patients [3]. Similarly, UM progres-
sion is frequently linked to oncogenic mutations of some genes, such as G protein subunit α
q (GNAQ), G protein subunit α 11 (GNA11) and BRCA associated protein 1 (BAP1), related
to transcriptional, post-transcriptional and post-translational dysregulations impairing
cell cycle and apoptosis [4]. Understanding UM tumorigenesis solely by investigating
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genetic mechanisms is too limiting. Epigenetic alterations may be considered an impor-
tant hallmark of cancer because of their critical role in the initiation of tumorigenesis [5];
however, these mechanisms are not well characterized in the onset and progression of
UM. Cancer-related epigenetic phenomena include altered methylation of oncogenes and
tumor suppressor genes, irregular histone modification pattern and aberrant expression
of non-coding RNAs (ncRNAs) [6,7]. This last issue has been extensively explored in the
last two decades in the most common types of cancer. NcRNAs mainly include microR-
NAs (miRNAs) and long non-coding RNAs (lncRNAs). More specifically, miRNAs are
18–25 nucleotide RNA molecules inducing mRNA degradation or translation inhibition
through binding to the miRNA response element (MRE) at 3′ untranslated regions (3′-
UTRs) of mRNAs. LncRNAs are the most functionally heterogeneous class of ncRNAs,
with lengths ranging from 200 nt to 100,000 nt. They also contain MREs and, accordingly,
can sequester specific miRNAs preventing them from binding mRNAs. On the other hand,
miRNA binding to lncRNAs could promote their decay, under specific stoichiometric
conditions [8,9]. In other words, some lncRNAs and mRNAs can share the same MRE and
compete for binding to the same miRNAs, creating, in this way, a competitive endogenous
RNA (ceRNA) regulatory network. Through such a competitive mechanism of RNA-RNA
interactions, increased levels of lncRNAs decrease the quantity of available miRNAs and
prevent mRNA degradation or translation block. Conversely, downregulation of a specific
lncRNA induces miRNA release and mRNA degradation or reduced translation [9]. This
“miRNA sponge” function operated by lncRNAs has been described in many cancer mod-
els [10–13], including UM [14,15]. It has been reported that perturbations of the ceRNA
network influence all the cellular signaling underlying cancer phenotypes; however, this
topic is currently still poorly investigated in UM. With the advances in RNA sequencing
technology and the emergence of public cancer genomics projects, such as The Cancer
Genome Atlas (TCGA), a huge amount of transcriptomic data from tumor specimens has
been generated and made publicly available for anyone in the research community to use.
These data can be computationally elaborated and combined with other data of a different
nature, such as RNA-RNA binding and regulation by transcription factors, to build ncRNA
networks allowing researchers to in silico explore cancer-related RNA signaling. For this
purpose, we calculated the expression correlation of miRNAs, lncRNAs and mRNAs from
the UM TCGA dataset [16], consisting of 80 UM patients. This information was combined
with data (where available) of RNA-RNA interactions, regulation by transcription factors,
and genomic positions. All these data have been collected and stored in a novel database
called VECTOR (uVeal mElanoma Correlation neTwORk). VECTOR, through specific
RNA-species queries, can identify new RNA circuits and their regulation signaling in
UM. VECTOR makes UM RNA networks available to cancer researchers who intend to
computationally explore the potential cross-talking between ncRNAs and mRNAs before
performing in vitro or in vivo experiments on ocular melanoma models.

2. Materials and Methods
2.1. Data Collection

All the normalized expression data about TCGA UM (80 tumor tissue samples) were
extracted from the UCSC Xena Server (https://xena.ucsc.edu, accessed on 28 December
2020). Normalization was performed by the TCGA Consortium. MiRNA expression data
of physiological tissues were retrieved from Human miRNA tissue atlas (https://ccb-
web.cs.uni-saarland.de/tissueatlas/, accessed on 28 December 2020) [17], while mRNAs
and lncRNAs expression data were from Expression Atlas (https://www.ebi.ac.uk/gxa/
home, accessed on 28 December 2020) (accession E-MTAB-2836) [18–20]. Validated or
predicted interactions between miRNAs and mRNAs were retrieved by DIANA-TarBase
v8 (https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8
%2Findex, accessed on 28 December 2020) [21] and miRTarBase (http://miRTarBase.
cuhk.edu.cn, accessed on 28 December 2020) [22]; while, lncRNA:miRNA interaction data
were from miRcode (www.mircode.org, accessed on 28 December 2020), Encori (http://
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starbase.sysu.edu.cn, accessed on 28 December 2020) [23], DIANA-LncBase v3 (https://
diana.e-ce.uth.gr/lncbasev3, accessed on 28 December 2020) [24]. Information on binding
of transcription factors to promoters of miRNAs, lncRNAs, mRNAs were extracted as
ChiPseq data elaborated by TransmiR v2.0 (http://www.cuilab.cn/transmir, accessed
on 28 December 2020) [25], ENCODE (https://www.encodeproject.org, accessed on 28
December 2020) [26] and ChEA (http://amp.pharm.mssm.edu/Enrichr, accessed on 28
December 2020) [27,28]. Genomic positions were retrieved by using the UCSC genome
browser (https://genome.ucsc.edu, accessed on 28 December 2020) [29].

2.2. Data Elaboration

Expression data retrieved from the TCGA dataset were filtered. To avoid any statistical
confounding effect, null expression values were excluded: we arbitrarily chose to maintain
for successive analyses only RNAs showing expression values greater than 0 in at least
60 out of 80 samples (75% of samples). Then, expression correlation matrices based on
the Pearson calculation were computed between (a) miRNAs and mRNAs, (b) miRNAs
and lncRNAs, and (c) lncRNAs and mRNAs. Based on the “miRNA sponge model”, we
considered those RNA axes characterized by the following mathematical correlation as
consistent: miRNAx:lncRNAy (negative Pearson) + miRNAx:mRNAz (negative Pearson)
+ lncRNAy:mRNAz (positive Pearson). Separately, we extracted from the mRNA dataset
the expression of transcription factors (TFs) according to the list deposited on The Human
Transcription Factors website (humantfs.ccbr.utoronto.ca). We then computed the expres-
sion correlation matrix between TFs and all the other RNA classes, for each correlation
coefficient, a p-value was calculated.

2.3. VECTOR Data and Architecture

The VECTOR database has been built on top of the Laravel model-view-controller
framework. All the data have been collected into a Neo4j database. Data processing has
been carried out in R, Python and PHP. All the components of the Web Interface have been
implemented in React native to ensure high modularity and dynamicity (Figure 1).

VECTOR stores the following information:

• The correlation values (Pearson coefficients) of miRNA-mRNA, miRNA-lncRNA and
lncRNA-mRNA pairs in UM samples. These correlations are used to create correlation
networks, which show feedback loops involving the three classes of RNAs. The
above-mentioned pairs of molecules are associated with data coming from miRBase,
miRTarBase, LncBase, miRcode and Encori databases, also storing information about
the predicted or validated RNA-RNA interactions. All correlation values can be
downloaded by users at the “Download” section.

• Overlapping of genomic positions between mRNAs and lncRNAs, in order to find
couples of sense-antisense transcripts.

• Correlation coefficients of TF-miRNA, TF-lncRNA, and TF-mRNA pairs in UM sam-
ples. These TF:RNA couples were associated with ChiPseq data of TF binding from
TransmiR, ENCODE, and ChEA, in order to corroborate the potential TF regulation
on miRNAs, lncRNAs and mRNAs.

• The expression values of miRNAs, expressed as log2(RPM + 1), mRNAs and lncRNAs,
expressed as log2(x + 1) normalized count, were retrieved from the TCGA dataset.
Assitionally, VECTOR includes expression data of miRNAs, mRNAs and lncRNAs in
several physiological tissues, reported as quantile normalized expression (miRNAs)
and TPM (Transcripts Per Kilobase Million) (mRNAs and lncRNAs). Clinicopathologi-
cal parameters of UM patients included in the UM TCGA dataset were collected and
stored in VECTOR.

http://starbase.sysu.edu.cn
http://starbase.sysu.edu.cn
https://diana.e-ce.uth.gr/lncbasev3
https://diana.e-ce.uth.gr/lncbasev3
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2.4. VECTOR Web Interface

The GUI consists of two sections: the Menu section (Figure 2) and the Results section
(Figure 3).

The Menu section (Figure 2) enables a user to provide the searching parameters
through the following query types:

• The “Circuits” menu allows users to look for the molecular axes generated by lncRNA-
mRNA-miRNA correlations. Users have to provide the name of at least one element
that is part of the circuit (official gene symbol for mRNAs and lncRNAs, miRBase ID
for miRNAs) (Figure 2A, red rectangle), and the minimum correlation coefficient of
the miRNA-mRNA, lncRNA-mRNA and miRNA-lncRNA pairs. Alternatively, users
can filter the output by p-value. (Figure 2A, yellow rectangle). The last parameter,
named “Top n” (Figure 2A, green rectangle), limits the number of returned “triangular
RNA circuits” in order to ensure a better readability of the plotted results, as well as a
shorter processing time.

• The “Antisense” menu enables users to look for the sense-antisense sequence overlap-
ping between mRNAs and lncRNAs. In this case, the user has to provide the mRNA
and/or lncRNA name (Figure 2B).

• The “TF search” menu enables users to extract from our database the TF-mRNA,
TF-miRNA and TF-lncRNA pairs in terms of correlation data and ChiPseq information
about a given transcription factor. Therefore, the user has to provide the TF name (offi-
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cial gene symbol) and/or the name of a lncRNA, miRNA, and/or mRNA (Figure 2C)
before submitting the search form.

• The “Expression” menu allows users to evaluate the expression levels of a selected
mRNA, lncRNA or miRNA in the UM TCGA dataset and in several physiological
tissues. The users have to choose the RNA molecule for which expression values
in both UM and physiological tissues will be shown as histograms. To infer the
potential association between the expression of a specific RNA molecule in UM and
the clinicopathological parameters of UM patients, the users can select the intended
parameter and VECTOR will return a new histogram graph, where UM samples are
shown grouped for the selected parameter.

• The Results section (Figure 3) plots the obtained results as a network or a table.
• Once the “Circuits” or “Antisense” searching query is submitted, results will be shown

through an interactive network comprising nodes and edges (Figures 3 and 4). The
nodes represent the RNA species: the mRNAs are shown with blue circles, the miRNAs
with red triangles, and the lncRNAs with orange squares. These can be inspected
(by clicking on them) to get a table listing all the TFs they interact with. The edges
represent the relationships between two RNA molecules (i.e., expression correlation
and potential physical interaction). Different styles and colors discriminate the kind of
relationship between RNAs: red edges imply a positive expression correlation between
two RNA elements, while green edges show the anti-correlation of an expression. In
addition to the color, each edge is also marked with the correlation or anti-correlation
numeric value, while the p-value is shown in a small pop-up window which appears
by clicking on the edge. Moreover, in the “Circuits” section, when the expression
relationship is confirmed by at least one of the databases (miRBase, miRTarBase,
LncBase, miRcode, and Encori), the edge is depicted as a solid line; otherwise it is a
dotted line. The database confirming the expression relationship is shown in a small
pop-up window which appears by clicking on the edge.

Together with each circuit, VECTOR generates a heatmap showing the expression of
each member of each circuit in the UM TCGA dataset. Expression values will be represented
as a color-coded scale ranging from the minimum (green) to the median (black) to the
maximum (red) expression value for each RNA molecule. The heatmaps are then shown
below the network image.

• When a “TF searching” query is submitted, the obtained records are shown in a
tabular format (Figure 5). Such tables contain the TF-mRNA, TF-lncRNA, or TF-
miRNA expression correlations and potential physical interactions between TFs and
gene promoters. TF binding to the promoter is linked to ChIPseq data from ENCODE,
ChEA, and TransmiR, reported as a binary table (i.e., 0: no ChIPseq data; 1: ChIPseq
data demonstrating the TF interaction on the gene promoter).

• Expression of the chosen RNA molecule in both the UM TCGA dataset and physiolog-
ical tissues is shown as a histogram (Figure 6). For the UM expression data, samples
are shown grouped according to a specific clinicopathological parameter, which can
be selected by the user. Selecting a different parameter, samples will be reorganized
in order to group all samples sharing that clinical feature. For numerical parameters,
samples are shown in ascending order for the parameter. This function will allow
users to observe potential expression trends for a chosen RNA molecule in association
with a specific clinical feature.
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Figure 6. Results section of the VECTOR database for the “Expression” query. (A) The expression of the selected RNA
molecule in UM samples from TCGA is shown as histograms. The color of the histogram allows to classify each sample
according to the selected clinicopathological parameter. (B) The expression of the selected RNA molecule in a set of
physiological tissues is shown as histograms.
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3. Results
3.1. Global Identification of lncRNA–miRNA–mRNA Axes in UM

Following our filtering approach, we built correlation matrices made up of 14,500 mRNAs,
733 lncRNAs, and 612 miRNAs. We obtained from three different matrices (i.e., mRNAs:miRNAs,
mRNAs:lncRNAs, lncRNAs:miRNAs) 8,568,000, 10,628,500 and 448,596 correlation coefficients,
respectively. All possible Mrna–miRNA pairs from correlation matrices were matched with
mRNA–miRNA interaction data from TarBase and miRTarBase, while all lncRNA–miRNA
couples were matched with lncRNA–miRNA interaction data from miRcode, lncBase and
Encori. By this approach, we obtained multiple sets of triangle-shaped network motifs
composed as follows: (1) miRNA–lncRNA axis (negatively correlated and interacting
with each other), (2) miRNA–mRNA axis (negatively correlated and interacting with each
other), (3) lncRNA–mRNA axis (positively correlated RNAs). According to the correlation
thresholds applied to all pairs of the network motifs (from |0.2| to |0.7| for both positive
and negative correlations), we generated different numbers of network motifs, as shown
in Figure 7. By using a low-moderate threshold (correlation coefficient >0.4 or <−0.4),
we obtained 1,806,064 correlation-based lncRNA-miRNA-mRNA network motifs, 5412 of
which were characterized by a physical interaction according to at least one database in the
miRNA–lncRNA axis and one in the miRNA–mRNA axis. The high-moderate threshold
(correlation coefficient >0.5 or <−0.5) provided 199,594 correlation-based network motifs,
467 of which featuring physical interactions. The most stringent threshold (correlation
coefficient >0.6 or <−0.6) featuring physical interactions between RNA molecules provided
the 11 RNA network motifs reported in Table 1. The threshold correlation coefficient >0.7
resulted in 81 lncRNA–miRNA–mRNA network motifs that did not show predicted or
validated RNA–RNA interactions.
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Table 1. LncRNA–miRNA–mRNA axes featuring physical interactions calculated by using the most stringent threshold
(correlation coefficient > 0.6).

miRNA
Pearson
miRNA–
mRNA

mRNA TarB mirTar lncRNA
Pearson
miRNA–
lncRNA

miRc lncB-V lncB-P En
Pearson
lncRNA–
mRNA

hsa-miR-199a-5p −0.65 CDCA7L 1 0 LINC00518 −0.66 1 0 0 0 0.65
hsa-miR-199a-5p −0.65 CDCA7L 1 0 SNHG7 −0.69 1 0 0 0 0.73
hsa-miR-195-5p −0.60 SDC3 1 0 LINC01128 −0.67 0 0 0 1 0.72

hsa-miR-199a-5p −0.66 RPL15 1 0 LINC00518 −0.66 1 0 0 0 0.64
hsa-miR-199a-5p −0.66 RPL15 1 0 SNHG7 −0.69 1 0 0 0 0.80
hsa-miR-199a-5p −0.66 RPL15 1 0 WDFY3-AS2 −0.63 1 0 0 0 0.62
hsa-miR-199a-5p −0.63 ZNF415 0 1 LINC00518 −0.66 1 0 0 0 0.72
hsa-miR-195-5p −0.66 TPRG1L 1 0 LINC01128 −0.66 0 0 0 1 0.82
hsa-miR-508-3p −0.61 GPR176 0 1 HCP5 −0.70 1 0 0 0 0.63
hsa-miR-195-5p –0.65 BSDC1 1 0 LINC01128 –0.67 0 0 0 1 0.61
hsa-miR-195-5p –0.65 CTNNBIP1 1 0 LINC01128 –0.67 0 0 0 1 0.72

lncRNA-miRNA-mRNA network motifs were calculated by (1) retrieving the miRNA–mRNA, miRNA–lncRNA, and lncRNA–mRNA pairs
with correlation coefficients of <−0.6 and >0.6, respectively; (2) identifying miRNA–mRNA and miRNA–lncRNA axes with at least one
predicted or validated interaction from Tarbase (TarB), miRTarBase (mirTar), miRcode (miRc), lncBase (lncB-V: validated modules; lncB-P:
predicted modules), and Encori (En).

3.2. Relationship Between Genomic Overlapping and Expression of Sense-Antisense
Transcript Pairs

The overlapping of genomic positions of lncRNAs and mRNAs and its combination
with expression correlation data allowed us to explore the possibility of UM expression
regulation mediated by sequence complementarity between genes that partially share the
same locus on opposite DNA strands. Genomic positions of mRNAs were superimposed
on those of lncRNAs, obtaining 198 matches. Specifically, 143 lncRNA:mRNA pairs
(72.2%) showed partial overlapping, while 55 (27.8%) included one shorter locus that
totally overlapped a longer one. Considering all 198 pairs, 60 pairs (30.3%) overlapped
in the 3′ regions (convergent pairs), 83 (41.9%) overlapped in the 5′ regions (divergent
pairs), 40 (20.2%) included lncRNA loci totally overlapped the mRNA loci, and 15
(7.6%) mRNA loci totally overlapping lncRNA loci (Figure 8A). We also divided each
overlapped the class into subgroups according to the trend of expression correlation
(i.e., positive and negative correlations), and observed that lncRNA and mRNA pairs
mostly showed a positive rather than a negative expression correlation, particularly in
divergent pairs (Figure 8B).

To investigate whether the percentage of sequence overlapping affects the direc-
tion of expression correlation between lncRNA and mRNA, we calculated the Pearson
coefficient between the expression correlation values and the number of overlapping
bases. For pairs including multiple splicing variants for lncRNA and/or mRNA, the
length of overlapping regions was calculated as mean, minimum and maximum; in these
cases, three correlation coefficients were computed. We observed a negative correlation
between the expression correlation and all length values of overlapping regions: mean:
−0.23; minimum: −0.19; maximum: −0.23 (Figure 8C). These results would suggest that
the lower the overlapping length for two sense-antisense sequences, the stronger their
expression correlation.
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3.3. The Genome-Wide Identification of TFs Regulating mRNAs, lncRNAs and miRNAs in UM

We built three different correlation matrices made up of (1) 1278 TFs and 14,500 mRNAs;
(2) 1278 TFs and 612 miRNAs; and (3) 1278 TFs and 733 lncRNAs. By this approach, we
obtained 1,853,1000 correlation coefficients for the TF:mRNA matrix, 782,136 for TF–miRNA
matrix, and 936,774 for TF–lncRNA. All TF–xRNA couples were screened for binding of
TFs on promoters of xRNA genes (xRNA = any type of RNA), according to ChiPseq
data from ENCODE, ChEA, and TransmiR. Finally, we obtained several sets of positively
or negatively correlated TF–xRNA pairs, whose TF potentially binds the promoter of
xRNA genes (Figure 9). According to the most stringent negative and positive correlation
coefficient thresholds and the presence of ChiPseq hits, we retrieved potential UM TF–
target pairs. More specifically, we obtained 631 TF–mRNA, 18 TF–miRNA, 42 TF–lncRNA
pairs. From these data, we extrapolated the 23 most frequent TFs regulating mRNAs,
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miRNAs and lncRNAs in UM (Table 2). Unsurprisingly, most TFs reported in Table 2 have
a confirmed oncogenic role in different types of neoplasia, including melanoma.
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Figure 9. Transcription factors and their potential targets in uveal melanoma retrieved by VECTOR. TFs regulating (a)
mRNA coding genes, (b) miRNA coding genes, (c) lncRNA coding genes are reported according to correlation coefficients
as the number of correlated TF:xRNA pairs (blue bar) and the number of correlated TF–xRNA pairs whose TF potentially
binds the promoter of xRNA genes (red bar).

Table 2. The most frequent TFs regulating mRNA, miRNA and lncRNA coding genes in UM according to the most stringent
parameters of VECTOR.

TFs mRNAs miRNAs lncRNAs Role in Cancer

CDC73 ATF2, BACH1, CREB1,
ELF1, MEF2A / /

Oncogene (29221126)/tumor-
suppressor
(24145611)

COG6 BACH1, CREB1, ELF1,
GABPA / / /

CREB1
CREB1 (15340044,
9790528), MEF2A

(26606046, 25809782)
/ SEPT7P2, SUZ12P1,

ZNF252P, ZNF37BP
Oncogene (17786359,
28498439, 27801665)

EPC2 ATF1, BACH1, CREB1,
ELF1, MEF2A, SMAD4 / / Oncogene (24166297)
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Table 2. Cont.

TFs mRNAs miRNAs lncRNAs Role in Cancer

GABPA GABPA (17277770,
21139080, 16309857) /

LOC407835(-), CCT6P1,
LOC100190986,

SUZ12P1, ZNF37BP

Tumor-suppressor (31802036,
28549418)

JUND JUND (8172655) / FAM35BP(-),
FAM35DP(-)

Oncogene (30763715,
27358408)/tumor-

suppressor
(18454173)

MAZ MAZ (11259406) /
BDNF-AS(-),

CCT6P1(-), SBDSP1(-),
SEPT7P2(-)

Oncogene (31488180,
29414775)

MORC3 BACH1, CREB1, ELF1,
GABPA / / /

NARFL ATF2(-), BACH1(-) / / /

PIKFYVE ATF2, CREB1, MEF2A,
ZFX / / Oncogene (17909029,

24840251, 23154468)

RELA RELA (24425788) / SEPT7P2(-), SNHG10(-),
ZNF37BP(-)

Oncogene (17622249,
12615723)/tumor-

suppressor
(11747334)

SF3B1 ATF2, BACH1, CREB1,
ZNF143 / / /

SOX2 SOX2 (16153702,
12136102)

hsa-miR-124-3p,
hsa-miR-183-5p,
hsa-miR-96-5p

/ Oncogene (31412296,
31748974, 30518951)

SP3 ATF2, CLOCK, CREB1,
MEF2A, YY1 / / Oncogene (20810260,

26967243, 26352013)

SPI1 SPI1 (7478579,
15767686, 20190819)

hsa-miR-146b-3p,
hsa-miR-146b-5p,
hsa-miR-150-5p

LOC606724, NCF1B,
NCF1C Oncogene (28415748)

TFAP2A /

hsa-miR-145-3p(-),
hsa-miR-199a-5p(-),
hsa-miR-4709-3p(-),
hsa-miR-708-5p(-),
hsa-miR-887-3p(-),
hsa-miR-937-3p(-),
hsa-miR-181a-5p

/

Oncogene (31772149,
30824562, 28412966)/tumor-

suppressor
(30824562)

TRAPPC8 ATF1, ATF2, CREB1,
MEF2A, YY1 / / /

USF2 USF2 / SBDSP1(-), SEPT7P2(-)
Oncogene (30244169)/tumor-

suppressor
(16186802)

XPO1 ATF2, BACH1, CEBPZ,
CREB1 / / Oncogene (32487143,

30976603, 24431073)

ZBTB45 CREB1(-), MEF2A(-) / /

ZFR ATF2, BACH1, CLOCK,
CREB1, ELF1, YY1 / / Oncogene (31010678)
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Table 2. Cont.

TFs mRNAs miRNAs lncRNAs Role in Cancer

ZNF143 ZNF143 /
LOC407835(-),

SEPT7P2, SUZ12P1,
ZNF37BP

Oncogene (27449034,
20860770, 32312832)

ZNF791 ATF2, BACH1, CREB1,
SP4, YY1 / / /

The most frequent TFs were retrieved by using the most stringent and evaluable parameters of TF querying by VECTOR (TF–mRNA = correlation
coefficient <−0.9 and >0.9; TF–miRNA = correlation coefficient <−0.6 and >0.7; TF–lncRNA= correlation coefficient <−0.7 and >0.8). From this
output, the TFs shows that at least three targets were retrieved. The negative expression correlation between TFs and targets are indicated with a
minus symbol between brackets (-) next to the target name. / = no data. Literature regulation mechanisms are highlighted in bold; references
reporting the role in cancer or the regulation of the transcript are shown as PubMed IDs.

The most frequent TFs were retrieved by using the most stringent and evaluable
parameters of TF querying by VECTOR (TF–mRNA = correlation coefficient <−0.9 and >0.9;
TF–miRNA = correlation coefficient <−0.6 and >0.7; TF–lncRNA = correlation coefficient
<−0.7 and >0.8). From this output, the TFs shows that at least three targets were retrieved.
The negative expression correlation between TFs and targets are indicated with a minus
symbol between brackets (-) next to the target name. / = no data. Literature regulation
mechanisms are highlighted in bold; references reporting the role in cancer or the regulation
of the transcript are shown as PubMed IDs.

4. Discussion

In the last decade, a growing number of experimental studies have demonstrated that
RNA-RNA crosstalk is implicated in cell-fate determination and in various human diseases,
including cancer. CeRNA mechanisms are able to modulate concentration and functions of
RNA elements from specific molecular axes and, accordingly, regulate essential biological
processes [9,30]. The combination of expression relationships among RNA molecules and
their complementarity-based binding provides a reliable scenario of RNA network structure
and represents a pivotal starting point for planning experimental procedures to validate
and functionally analyze RNA circuits. This methodological approach is very common in
most studies concerning the role of lncRNAs in cancer: researchers retrieve expression and
interaction data from different public databases and then compute and integrate them to
obtain an RNA signaling to experimentally evaluate [31–34]. This computational method
could take a few hours, depending on the amount of information available for a specific
cancer model and the researchers’ expertise. Based on these considerations, we created
VECTOR, a simple and intuitive database containing the elaboration and integration of
expression correlations and experimental and predicted interactions among lncRNAs,
miRNAs and mRNAs. Users are allowed to inspect expression of mRNAs, lncRNAs or
miRNAs not only in the UM TCGA dataset, but also in other physiological tissues, to
evaluate ubiquitarity or specificity of expression. Expression data are shown as histograms.
Additionally, VECTOR allows to observe potential association trends between expression
and clinical features of UM patients: indeed, the expression data of UM samples can
be shown by grouping or ordering samples according to a selected clinicopathological
parameter. This option allows to observe an increasing/decreasing expression trend in
association with tumor stage, tumor size (thickness or basal diameter), metastasis, and
other features. To investigate ceRNA networks, the query can be customized by choosing
the type and magnitude of correlations. The relationships among RNAs are visualized
as graphs featuring information about correlation and physical interaction in order to
make the output easier to understand; expression of each member of the network are
represented below as heatmaps. In addition to the classical ceRNA hypothesis view based
on the lncRNA-miRNA-mRNA axis, VECTOR also queries the relationships between
sense-antisense transcripts and the potential transcriptional regulations by transcription
factors in order to obtain a more systemic view of RNA signaling. The choice of UM as
the cancer model of VECTOR was dictated by the fact that it is a rare tumor and that
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there are not many studies on the ncRNAs involved in the onset and progression of this
neoplasm. Thanks to UM TCGA findings, it is now possible to statistically elaborate
these data to identify the expression relationships among RNA molecules and correlative
interaction data from other sources. Other previous studies reported a systemic integrated
view of RNA correlations in UM [35,36]; however, in this present work we propose the
most comprehensive analysis and make these elaborations available through an interactive
web-based user interface. The approach used to build VECTOR was already used in
our previous papers on both UM and other cancer models [12,15,37]. In these previous
studies, data about expression, interactions, and potential regulation operated by TFs
were retrieved from different sources and databases, making this analysis complicated
and time-consuming. The great advantage of VECTOR is the possibility to perform this
analysis with only a few clicks. The strength of our approach is given by several matches
observed between results obtained by using VECTOR and literature evidence. Indeed,
among the triangle-shaped network motifs resulting from the application of the most
stringent threshold of expression correlation, a molecular axis involving a miRNA sponge
function of LINC00518 (long intergenic non-protein coding RNA 518) for miR-199a-5p was
already reported in breast cancer [38]. Moreover, our previous paper on UM also suggested
that LINC00518 may exert a miRNA sponge function on six miRNAs, including miR-199a-
5p [15]. Similarly, several TFs identified by VECTOR as potential regulators of mRNA
expression are confirmed by reports in the literature: an autoregulative loop was previously
reported for CREB1 (cAMP responsive element binding protein 1) [39,40], GABPA (GA
binding protein transcription factor subunit α) [41–43], JUND (JunD proto-oncogene, AP-1
transcription factor subunit) [44], MAZ (MYC associated zinc finger protein) [45], RELA
(RELA proto-oncogene, NF-kB subunit) [46], SOX2 (SRY-box transcription factor 2) [47,48],
and SPI1 (Spi-1 proto-oncogene) [49–51]. Additionally, CREB1 was shown to induce
MEF2A (myocyte enhancer factor 2A) expression in human trophoblast stem cells and
T-cells [52,53].

Another feature of VECTOR is the possibility to identify sense-antisense pairs to
experimentally investigate their expression relationship. This aspect has been investigated
since the early 2000s, and several papers have reported that the majority of sense-antisense
pairs exhibit a positive correlation of expression [54–58]. A recent study showed that a
positive correlation occurred in divergent pairs more frequently than in convergent pairs,
likely because head-to-head overlap implies that genetic loci share a region with an open
chromatin structure and the same regulation; on the contrary, convergent pairs showed
both a positive and negative correlation [59]. Our analysis confirmed these observations in
UM, where a positive correlation of expression is the most common in all the overlapping
classes, but especially in divergent pairs (more than 80% showing a positive correlation of
expression). Moreover, in agreement with the literature, a negative correlation was more
frequent among convergent than divergent pairs (28.3% vs. 16.8%, respectively). The exact
molecular mechanism underlying the co-regulation or inverse correlation of sense and an-
tisense transcripts is still under investigation. Some studies showed that transient silencing
of sense or antisense transcript did not affect the expression of the other one [60], while
other papers demonstrated that the antisense transcript is responsible for the regulation of
sense transcript expression at both RNA [61] and protein levels [62]. This evidence suggests
very complex regulatory mechanisms that still need to be investigated. We also analyzed
expression correlation for pairs including a shorter RNA molecule that totally overlapped
a longer transcript. Our data showed that lncRNAs totally overlapping mRNAs are more
frequent that mRNAs totally overlapping lncRNAs (40 vs. 15, respectively), with a slightly
higher frequency of negative correlation in the first class (35% vs. 26.7%, respectively). For
these two overlapping classes, we investigated whether overlapping regions fell within
introns or exons, but the existence of multiple splicing variants for both sense and antisense
transcripts created a very complex and heterogeneous scenario, where no clear classifica-
tion (and consequent analysis) was possible. To our knowledge, no similar analysis has
been performed to date on human cancer.



Genes 2021, 12, 1004 16 of 19

VECTOR was built according to our experience in ceRNA network investigations.
However, some limits deriving from the available data should be discussed. The most
evident limit is related to the type of samples included in the UM TCGA dataset. Indeed,
when investigating the molecular bases of carcinogenesis, a researcher would first of all
perform a comparison between tumor and normal tissue to identify differentially expressed
molecules. Unfortunately, the UM TCGA dataset includes tumor tissue samples, but lacks
in data on physiological tissue. Therefore, such an analysis is impossible to perform with
this dataset. Other interesting analyses could be performed through the stratification of
tumor samples according to clinicopathological data; however, stratification would create
several subgroups consisting of a low number of samples, impairing the statistical power of
such analysis. For this reason, stratified analyses were not performed, but VECTOR allows
the users to inspect expression trends in the different subgroups obtained by stratifying
samples for the available clinicopathological features of patients.

5. Conclusions

Comprehensively, VECTOR provides a very detailed picture of ceRNA networks in
UM and we believe that it will represent a very useful tool for researchers studying RNA
signaling in UM. Moreover, the VECTOR approach could be used to build other tools for
different cancer models in order to make the tumor-related ceRNA circuits easily accessible
to non-expert biocomputational researchers willing to devise an experimental plan.
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