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Abstract: Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by
autosomal recessive mutations of the glucocerebrosidase gene, GBA1. In the majority of cases, GD
has a non-neuropathic chronic form with adult onset (GD1), while other cases are more acute and
severer neuropathic forms with early onset (GD2/3). Currently, no radical therapies are established
for GD2/3. Notably, GD1, but not GD2/3, is associated with increased risk of Parkinson’s disease
(PD), the elucidation of which might provide a clue for novel therapeutic strategies. In this context,
the objective of the present study is to discuss that the evolvability of α-synuclein (αS) might be dif-
ferentially involved in GD subtypes. Hypothetically, aging-associated PD features with accumulation
of αS, and the autophagy-lysosomal dysfunction might be an antagonistic pleiotropy phenomenon
derived from αS evolvability in the development in GD1, without which neuropathies like GD2/3
might be manifested due to the autophagy-lysosomal dysfunction. Supposing that the increased
severity of GD2/3 might be attributed to the decreased activity of αS evolvability, suppressing the
expression of β-synuclein (βS), a potential buffer against αS evolvability, might be therapeutically
efficient. Of interest, a similar view might be applicable to Niemann-Pick type C (NPC), another
LSD, given that the adult type of NPC, which is comorbid with Alzheimer’s disease, exhibits milder
medical symptoms compared with those of infantile NPC. Thus, it is predicted that the evolvability of
amyloid β and tau, might be beneficial for the adult type of NPC. Collectively, a better understanding
of amyloidogenic evolvability in the pathogenesis of LSD may inform rational therapy development.

Keywords: Gaucher disease (GD); Parkinson’s disease (PD); autosomal recessive; α-synuclein (αS);
evolvability; antagonistic pleiotropy; β-synuclein (βS)

1. Introduction

Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) [1].
Due to autosomal recessive mutations of glucocerebrosidase gene 1 (GBA1) encoding the
lysosomal hydrolase that is responsible for the degradation of glucosylceramide (GlcCer),
GlcCer accumulates intracellularly, leading to a form of sphingolipidosis [1]. Consequently,
patients typically manifest hepatosplenomegaly, hematological changes, anemia, and
orthopedic complications [2]. Depending on the presence or absence of neurological
involvement and on its overall severity, three different subtypes of GD may be recognized
(Figure 1a) [3,4]. GD1 is the most common (~90%) non-neuropathic form with adult onset.
The median age at diagnosis is 28 years of age, and life expectancy is mildly decreased [4].
In contrast, GD2 and GD3 are acute and sub-acute, respectively. GD2 displays severe
neurological involvement, leading to death within the first years of life in small children,
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while GD3 is a chronic neuronopathic form that exhibits systemic involvement of varying
degree with at least one neurological manifestation. This group develops the disease
somewhat later, but most patients die before their 30th birthday [4]. To date, the molecular
mechanisms underlying the different subtypes of GD are unclear.

Notably, GD1 may increase the risk of sporadic Parkinson’s disease (PD) characterized
by enhanced α-synuclein (αS) pathology in aging (Figure 1a), although the mechanisms
are elusive [4,5]. Given that various harmful molecules may be released through lysosomal
membrane permeabilization (LMP) [6,7], αS evolvability might be important particularly
under stressful conditions such as LSD. In this context, the main objective of the present
study was to discuss the possibility that αS evolvability might be differentially involved
in each GD subtype. Predictably, increased evolvability might protect lysosomes in the
brain with GD1, which might later dysregulate the autophagy-lysosomal pathway through
the antagonistic pleiotropy mechanism, leading to PD. In contrast to GD1, the decrease
in αS evolvability in both GD2/3 might account for the severity of these diseases. If
such a prediction might be the case, increasing αS evolvability through a decrease in
the buffering effect of β-synuclein (βS) might be therapeutically effective for GD2/3.
Collectively, a better understanding of αS evolvability in GD pathogenesis may inform
rational therapy development.
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Figure 1. Involvement of α-synuclein (αS) evolvability in the association of Parkinson’s disease (PD) with Gaucher disease
(GD). (a) Schematics of three subtypes of GD; GD1–3. (b) A “bidirectional feedback loop” hypothesis, the most widely
accepted rationale explaining the pathophysiological mechanism underlying the GD–PD association [4]. Conventionally,
it was thought that accumulation of glucocerebroside (GluCer) caused by the compromised glucocerebrosidase (GCase)
activity due to mutations of glucocerebrosidase (GBA) might result in stimulation of aggregation of αS, which then
exacerbates lysosomal function, thus leading to formation of a vicious cycle of neurodegeneration until manifestation
of PD. (c) Our amyloidogenic evolvability hypothesis; in the development/reproduction stage, αS evolvability (Evo) is
lysotrophic and lysoprotective against the multiple stressors caused by autophagy-lysosomal dysfunction, and the stress
information might be transgenerationally delivered to offspring. On the other hand, neurodegenerative diseases such as PD
that are associated with autophagy-lysosomal dysfunction might be manifested as an antagonistic pleiotropy mechanism
in aging. (d) Schematics of the differential role of αS evolvability in subtypes of GD. In GD1, αS Evo is upregulated to
mitigate the multiple stressors caused by autophagy-lysosomal dysfunction in development/reproduction, but PD is later
manifested through the antagonistic pleiotropy mechanism. By virtue of increased αS evolvability, GD1 is non-neuropathic.
In contrast, αS Evo is suppressed in GD2/3, with GD2 being stronger than GD3. Consequently, GD2/3 are neuropathic and
life expectancy is short, with GD2 being severer than GD3.
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2. Conventional View of the Relationship between GD and αS Pathology

Although the etiology of sporadic PD is obscure, recent research has revealed that
heterozygous mutations of GBA1, encoding for lysosomal enzyme GCase, might increase
the risk of PD in considerable cases [8–10].

2.1. Association of PD with GBA1 Mutations

Since the comorbidity of Parkinsonism among GD patients and GBA1 mutation car-
riers was first recognized in the clinics [11], the association of the GBA1 mutation with
PD development has been independently reported by many association studies [12]. In
particular, a meta-analysis of data collected from 16 centers established that there was a
strong association between GBA1 mutations and PD [13]. Thus, it was concluded that
GBA1 mutations were a major genetic risk factor for sporadic PD.

2.2. Proposed Mechanism of Association between GD and PD

Identification of the pathological mechanisms underlying GBA1-associated Parkin-
sonism might improve our understanding of the pathophysiology and treatment of GD in
aging (Figure 1a). Interestingly, however, the mechanisms underlying that process remain
unclear/elusive, even though a number of hypotheses have already been published [4]. It
was predicted that αS aggregation might be promoted due to a “gain-of-function” of GBA1
mutations [14]. It was also described that substrate accumulation due to enzymatic “loss-
of-function” caused by GBA1 mutations might affect processing and clearance of αS [15].
The most popular view is the “bidirectional feedback loop” hypothesis [16], proposing that
accumulation of GlcCer by the compromised activity of GCase due to the mutations of
GBA1 might stimulate the aggregation of αS (Figure 1b). Then, the increased neurotoxic αS
might exacerbate lysosomal functions, including GCase activity, leading to the formation
of a vicious cycle of neurodegeneration in aging (Figure 1b) [17,18].

Accordingly, PD is supposed to be situated downstream from GD. Since heterozy-
gotes of GD are asymptomatic, GD and its downstream PD might be not selected out in
evolution. Furthermore, GD 2/3 might not be associated with PD because life lengths of
these neuropathic types of GD are too short for manifestation of PD. Although such a view
is plausible, it cannot explain why so many mutations are accumulated in the GBA1.

3. Comorbidity of GD1 with PD from Viewpoint of αS Evolvability

The majority of αS studies have so far focused on the neurotoxic aspects of αS relevant
to neurodegenerative diseases. However, there are indeed several studies suggesting that
αS might also be beneficial, including its evolvability, a potential physiological function of
amyloidogenic proteins (APs).

3.1. Physiological Functions of αS

αS was previously identified as synelfin, the avian form of αS, which might be essential
for bird song memory formation during a critical period in development [19]. Thus, αS
might play a crucial role in learning and memory during mammalian neurodevelopment.
Consistent with this notion, αS was shown to cooperate with cysteine string protein α, the
co-chaperone that is essential for neuronal survival, synaptic protection, and preventing
neurodegeneration [20]. Collectively, these results in vivo suggest that αS might play a
beneficial role in development. In addition, it was previously shown that αS might be
involved in oxidative stress-resistance. αS was shown to protect against oxidative stress
in vitro [21,22]. Indeed, it was recently shown that αS prevented the formation of oxidative
stress-induced formation of spherically-shaped and hyperpolarized mitochondria, termed
“mitospheres”, leading to suppression of apoptosis under oxidative stress conditions [23].
Thus, αS may be physiologically beneficial in the brain.
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3.2. Evolvability of αS

So far, the physiological function of APs relevant to neurodegenerative diseases, such
as amyloid β (Aβ) and αS, has been obscure. In this regard, yeast prion is worth noting,
in which alteration of the aggregation states of APs act as a genetic switch in response
to the diverse environmental conditions [24]. Given the analogy that both the yeast and
the aged brain are in stressful conditions, we recently proposed that the evolvability of
APs might play an important role in the human brain [25]. Evolvability is defined as the
capacity of an organism for adaptive evolution [26]. More specifically, evolvability consists
of two steps; to generate a genetic diversity against environmental conditions including
stressors, and to deliver the information to progeny [26]. As described above, αS might
be involved in stress-resistance. Because of their intrinsically disordered structures [27],
APs including αS may show a diverse morphology in response to multiple stressors, such
as oxidative stress, kindling, physical stress, and neurotoxicity, followed by formation of
the stress-specific AP protofibrils, which might confer resistance against stressors in the
parental brain. The AP protofibrils are then subjected to transgenerational transmission via
germ cells in a prion-like fashion [28]. By virtue of the stress information of protofibrils
derived from parental brains, an offspring’s brain can better cope with forthcoming stresses
that otherwise would lead to the onset of neurodevelopmental disorders [28]. Yet, as a
negative consequence, neurodegeneration may manifest in the parental brain through the
antagonistic pleiotropy mechanism in aging [28]. Thus, it is predicted that amyloidogenic
evolvability may be an evolutionally beneficial physiological function.

3.3. Possible Relevance of αS Evolvability to Pathogenesis of GD

As described earlier, LMP underlies lysosomal release of various harmful molecules,
including reactive oxygen species, proteases, and lysosomal membrane lipid compositions.
Under such stressful conditions, stress information by αS transmission, conferring stress
resistance, might be important to deliver to offspring. Thus, αS evolvability could be
regarded as the inheritance of acquired characteristics related to environmental stresses
(Figure 1c) [25]. According to such a view, PD manifested in the aging stage of GD1 might
be interpreted as an antagonistic pleiotropy phenomenon of the increased αS evolvability,
which is lysosome-protective (Figure 1c,d). Considering that the onset of GD1 is approx-
imately in the late 20s, αS evolvability can be transmitted to offspring and is therefore
evolutionally beneficial. However, PD may manifest as a stable phenotype during the
aging of patients with GD1 (Figure 1c). Furthermore, given that GD1 is sometimes as-
sociated with other α-synucleinopathies, such as dementia with Lewy bodies (DLB) and
multiple system atrophy [29], similar mechanisms might be applied to other members of
the α-synucleinopathies. In contrast, neuropathies become severe and the length of life is
extremely short in GD 2/3 in which αS evolvability might be decreased (Figure 1c). From
the viewpoint of amyloid evolvability, it is assumed that a number of GBA mutations might
have accumulated as a result of adaptation.

3.4. βS as Buffer against αS Evolvability

The precise mechanism by which the alteration of αS evolvability might be differ-
ential depending on the type of GD is unclear. Among various factors that might affect
αS evolvability in the pathogenesis of GD, βS, a member of the αS family of peptides,
might be potentially interesting. βS is a non-amyloidogenic homologue of αS due to the
natural deletion of the central hydrophobic domain, known as NAC: non-Aβ component
of Alzheimer’s disease (AD) amyloid [30]. Given that αS aggregation is inhibited by wild
type βS [31,32], βS might exert a buffering effect on αS evolvability. Given that the risk of
PD occurs in only a subset of GD1 cases, it is possible that there might be other contributory
factors. In this regard, one may speculate that expression of βS might be decreased in GD1,
while it is increased in GD 2/3.
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3.5. Experimental Support of Pleiotropic Effects of αS in Terms of Lysosomal Activity

Previous experimental results are consistent with the role of αS evolvability in GD1.
Briefly, B103 neuroblastoma cells expressing αS exhibited increased lysosomal activity
(Figure 2a) [33], indicating that αS could be beneficial for lysosomes. Conversely, αS might
be detrimental to the lysosomal-autophagy pathway in DLB during aging based on the
expression levels of various molecules, including mTor, Atg7, cathepsin D (CatD), and LC3
(Figure 2b) [34], suggesting that αS could be detrimental to lysosomes in aging. Collectively,
it is predicted that the antagonistic pleiotropy relationship between αS evolvability and
α-Synucleinopathies might be at least in some parts through the dual effects of αS on
lysosomes. Of considerable interest, the increase in lysosomal activity was drastic in cells
expressing DLB-linked βS mutations (P123H, V70M) (Figure 2a) [33,35]. Supposing that
the βS mutations might increase αS evolvability, it is reasonable that these mutations might
manifest as DLB through the antagonistic pleiotropy mechanism in aging [36]. Thus, βS
might be involved in both stimulation and suppression of amyloidogenic evolvability
and neurodegeneration.
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Figure 2. Dual effects of αS on lysosome activity in cells and human brain. (a) Up-regulation of lysosomal activity in cells
overexpressing mutant αS [33]. Overexpression of A53TαS in B103 neuroblastoma cells resulted in increased lysosomal
activity (a, g). Notably, the increase in lysosome activity appeared more prominently in mutants (P123H and V70M) βS, but
not in wild type βS (b–d, g). Immunofluorescence with confocal microscopy (green: anti-αS; red: anti-βS) was performed
in a-e, while cathepsin B activity was measured using fluorogenic cathepsin B substrate. Fluorogenic intensity of each
time point was plotted, and the slope was calculated. Data are shown as means ± SD (n = 4). * p < 0.05, ** p < 0.01 versus
vector-transfected cells. (b) Selective molecular alterations in the autophagy pathway in patients with dementia with Lewy
bodies (DLB) [34]. Vibratome sections from the temporal cortex of non-demented controls and DLB patients were analyzed
by immunohistochemistry. Representative sections from control and DLB brains were immunolabeled with antibodies
against mTor (a, b), Atg7 (c, d), CatD (e, f), and LC3 (g, h). Semi-quantitative image analysis reveals a significant increase
in mTor levels and a reduction in Atg7 levels in DLB patients compared to controls (i). Similarly, both CatD (j) and LC3
(k) immunoreactivity levels in DLB brains were significantly increased compared to those of controls. Pyramidal neurons
in DLB cases show enlarged CatD-immunoreactive lysosomes (arrows). Scale bar in panel (b) represents 20 µm in all
microscopy images. * p < 0.05 compared to non-demented controls in one-way ANOVA with post-hoc Dunnett’s test.

4. Application of Evolvability Hypothesis to Other LSDs

Since LSD comprises about 50 rare inherited metabolic disorders that are caused by
lysosomal dysfunction as a consequence of deficiency of a single enzyme [1], it is natural
to predict that amyloid evolvability might also be involved in other LSD.
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4.1. Niemann-Pick Type C (NPC)

NPC is a rare progressive genetic disorder characterized by an inability of the body
to transport cholesterol and other lipids inside of cells because of the autosomal recessive
gene mutation of either NPC1 or NPC2. Consequently, the abnormal accumulation of these
lipids in various tissues of the body, including brain, damages the affected areas [37,38].
The age of onset of NPC is highly variable, ranging from a fatal disorder within the first
few months after birth (early infantile type) to a late-onset, chronic, progressive disorder
that remains undiagnosed well into adulthood (adult type) [37,38]. Most cases are detected
during childhood and progress to cause life-threatening complications by the second or
third decade of life [37].

4.2. NPC and Amyloidogenic Evolvability

Interestingly, NPC has been well investigated in terms of the comorbidity with AD.
NPC is histologically associated with AD pathologies, including neurofibrillary tangle
formation and Aβ deposition in adulthood [39,40], suggesting that evolvability of APs,
including tau and Aβ, might play a role.

Given the analogy with GD, it is thought that accumulation of cholesterol by the
compromised activity of NPC1 (or NPC2) due to gene mutations might stimulate the
aggregation of Aβ/tau. Then, the increased neurotoxic Aβ/tau might exacerbate lysosomal
functions, including NPC1 (or NPC2) activity, leading to the formation of a vicious cycle of
neurodegeneration in aging. According to our view of the “evolvability hypothesis,” the
increased APs (Aβ/tau) evolvability might mitigate the disease severity in development,
while leading to the manifestation of AD through antagonistic pleiotropy in the adult
type. Conversely, the decreased APs evolvability in development might be relevant to the
increased disease severity in the early infantile type.

Notably, the results of animal experiments are consistent with the current hypothesis.
For instance, cross-breeding of an amyloid precursor protein knockout mouse with a mouse
model of NPC disease exhibited exacerbation of its phenotypes, suggesting that absence of
Aβ evolvability failed to rescue the phenotype of NPC1 mouse [41]. Similarly, NPC1/tau
double-null mice exhibited an exacerbated NPC phenotype, including severe systemic
manifestations, and died significantly earlier than NPC1 single-null mutant mice [42].

Besides NPC, various types of LSDs, such as mucopolysaccharidoses (MPS), sialidosis,
and Krabbe disease, have been characterized by amyloidosis and α-synucleinopathies [43].
Thus, it is predicted that amyloidogenic evolvability may underlie the association of
neurodegenerative diseases with LSDs.

5. βS as Therapeutic Target

So far, symptomatic treatments, such as enzyme replacement therapy (ERT) and
substrate reduction therapy (SRT), have been developed successfully for GD1 [44], while
no radical treatments are available for GD2/3. Thus, it is expected that the concept of αS
evolvability might provide a clue for a novel therapy, especially for GD2/3.

5.1. Conventional Therapy

ERT is mainly provided for GD1 using recombinant GCase, which is not used for
GD2/3 because this protein does not pass through the blood-brain barrier [45]. Similar
strategies are applied to other non-neuropathic types of LSD to replace the deficient enzyme
with artificial ones [45]. These medications are given intravenously to outpatients, and
may occasionally cause an allergic or hypersensitivity reaction to treatment [44]. SRT is an
alternative oral treatment for GD1 to reduce the rate of biosynthesis of glycosphingolipids
to offset the catabolic defect [44]. Less frequently, other treatments such as bone marrow
transplant are performed for GD1 to remove and replace blood-forming cells that have
been damaged [44], but this is of little benefit to GD2/3. Collectively, there are currently no
effective treatments for GD2/3.
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5.2. Evolvability-Based Novel Therapy

If the severe phenotypes in GD2/3 compared to the mild symptoms in GD1 might
be attributed to the decreased αS evolvability, it is reasonable to predict that increasing
αS evolvability might be therapeutic for GD2/3 (Figure 3a). For this purpose, one possi-
ble strategy would be to supply exogeneous αS, especially the aggregate-prone species.
However, considering that active immunotherapy of amyloid β for AD patients caused
encephalomyelitis [46], the injection of αS recombinant proteins might be also harmful.
Alternatively, αS evolvability might be increased by reducing βS expression. This could be
performed by βS antisense oligonucleotide (ASO) at the mRNA level (Figure 3c) [47]. In this
regard, ASO has been well established and has been successfully used for various diseases,
including spinal muscular atrophy [48]. A similar strategy could be applicable to NPC
(Figure 3b) and perhaps other LSDs, including mucopolysaccharidoses (MPS) and Krabbe
disease. In case of NPC, evolvability of APs, such as Aβ and tau, might be upregulated
by downregulating the βS expression (Figure 3c). In support of this possibility, βS was
shown to associate with αS and Aβ in vitro [49]. It is unclear whether βS binds with tau.
However, given that αS stimulates tau aggregation in vivo [50], βS might either directly or
indirectly suppress tau aggregation/evolvability. Obviously, the current hypothesis will
require experimental demonstration. For this purpose, mice and small fish models [51–54]
might be suitable considering the endogenous expression of βS.
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Figure 3. Therapy strategy of LSDs based on αS evolvability. (a) Diagram of the increase of αS Evo in GD2/3. If decreased
Evo αS is causative for GD2/3, it is predicted that increasing αS Evo might be beneficial. Accordingly, the severity of GD2/3
neuropathy might be improved with extended life expectancy. (b) Diagram of the differential role of Aβ/tau evolvability
in subtypes of NPC. In the adult type of NPC, Aβ/tau Evo is upregulated to mitigate the multiple stressors caused by
autophagy-lysosomal dysfunction, but AD is later manifested through the antagonistic pleiotropy mechanism. The life
expectancy of NPC (adult type) patients is shorter than that of healthy controls. In contrast, Aβ/tau Evo is suppressed
in NPC (early infantile type), and life expectancy is very short. By therapeutically increasing Aβ/tau Evo, the severity of
NPC (early infantile type) might be improved with extended life expectancy. (c) Therapy strategy based on αS evolvability.
Since it is predicted that βS has a buffering effect on αS evolvability, αS evolvability might be increased by suppressing βS
expression by ASO (Therapy: Tx).



Biomolecules 2021, 11, 289 8 of 10

However, it is possible that therapeutically increased amyloidogenic evolvability in
young age might lead to neurodegenerative diseases through the antagonistic pleiotropy
mechanism in aging. Furthermore, since amyloidogenic evolvability also be involved in
various cancer phenotypes, such as cell proliferation, resistance against medical treatments
and metastasis [55,56], there is concern that the therapeutic increase of amyloidogenic evolv-
ability in GD might stimulate cancer. Thus, these possibilities should be well recognized,
and patients must be carefully followed-up after anti-βS treatment.

6. Conclusions

Based on previous studies describing that GD1 is a major risk factor of sporadic PD,
it is generally thought that GD1 might be situated upstream of the pathogenesis of PD.
However, distinct from such a conventional view, we propose the “evolvability hypothe-
sis,” in which a physiological role of αS evolvability is supposed, which is protective of
lysosomes, without which neuropathy might be promoted. Instead, the risk of PD might
be increased through an antagonistic phenomenon in aging. Thus, it is predicted that the
comorbidity of GD1 with PD might be attributed to the increased level of αS evolvability
in development/reproduction.

Our view is attractive from a therapeutic viewpoint. Compared to GD1, there are
currently fewer radical therapies established for GD2/3. If the decrease of αS evolvability
might be causative of GD2/3, increasing αS evolvability might be therapeutic in these dev-
astating diseases. Provided that βS may act as a buffer against αS evolvability, decreasing
βS expression by ASO might be efficient to increase αS evolvability. Finally, it is interesting
to speculate that an essentially similar view of αS evolvability could be applicable not only
to GD but also to other LSDs, such as NPC, MPS, sialidosis, and Krabbe disease. Thus, a
unified understanding of the mechanism and therapy of LSDs might be expected from a
viewpoint of amyloidogenic evolvability.
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