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Next-generation sequencing approaches have fundamentally changed the
types of questions that can be asked about gene function and regulation.
With the goal of approaching truly genome-wide quantifications of all the
interaction partners and downstream effects of particular genes, these quan-
titative assays have allowed for an unprecedented level of detail in exploring
biological interactions. However, many challenges remain in our ability to
accurately describe and quantify the interactions that take place in those
hard to reach and extremely repetitive regions of our genome comprised
mostly of transposable elements (TEs). Tools dedicated to TE-derived
sequences have lagged behind, making the inclusion of these sequences in
genome-wide analyses difficult. Recent improvements, both computational
and experimental, allow for the better inclusion of TE sequences in genomic
assays and a renewed appreciation for the importance of TE biology. This
review will discuss the recent improvements that have been made in the
computational analysis of TE-derived sequences as well as the areas where
such analysis still proves difficult.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Introduction
While several types of genomic repeated sequences exist, the largest fraction of
the human genome, approximately half, is comprised of transposable elements
(TEs) [1], though some groups estimate much larger TE fractions [2]. These TEs,
often called transposons or jumping genes, are DNA sequences that have, or
once had, the ability to mobilize within the genome, either directly or through
an RNA intermediate. TEs are present, to varying degrees, in the genomes of all
known types of organisms, both prokaryotic and eukaryotic, with some species
showing more genomic transposons than host sequences [3]. Several excellent
reviews have discussed the many and varied types of TEs [4–6]. Briefly, TEs
come in two major types. Class I TEs, also called retrotransposons, first tran-
scribe an RNA copy that is then reverse transcribed to cDNA before inserting
elsewhere in the genome. Class II TEs, also called DNA transposons, directly
excise themselves from one location before reinsertion. In the human genome,
the vast majority of TEs are of Class I, retrotransposon type. Nearly, all
human TEs have lost the ability to fully mobilize [7–9], with the human-specific
LINE-1 element (L1HS) being the only fully autonomous TE with the ability to
generate new transposition events to date. However, most TEs have retained
some level of functionality, including the ability to direct their own transcrip-
tion. Thus, transcriptome-wide sequencing assays, like RNA-seq, frequently
include transposon-derived transcripts among the set of expressed sequences.
Moreover, some transposon transcripts have been co-opted to play a role in
host function, particularly during early development, such that some expressed
transposon transcripts have been shown to be necessary for proper cell differ-
entiation and maintenance of identity [10–14]. In addition to their roles in
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general cellular function, several types of transposons have
become intricately entangled within gene regulatory net-
works [15], contributing both to cis-regulatory sequences
[16–18] as well as general chromatin environments [19–21].
For this reason, it is paramount, we consider the contribution
of repetitive elements as we unravel the genomic and
epigenomic landscapes that control gene expression.

Properly accounting for repetitive regions in most geno-
mics analysis settings requires special considerations for the
challenges presented by the number of nearly identical trans-
poson sequences dispersed throughout our genomes. Thus,
reads derived from these regions are frequently discarded
in most sequencing data analysis protocols owing to the dif-
ficulty in properly assigning TE-derived reads to the correct
locus of origin. Few packages explicitly support inclusion of
repeats and some intentionally discard reads from these
regions, as discussed in a recent review [22]. Of the packages
designed to address TEs, many tools focus on the detection of
novel TE insertions or TE-associated genomic rearrange-
ments. Few tools are developed specifically to address
regulatory and transcriptional activity of TEs in common
assays, such as RNA-seq, chromatin immunoprecipitation
sequencing (ChIP-seq), cross-linking immunoprecipitation
sequencing (CLIP-seq) and small RNA-seq (sRNA-seq). In
this review, we seek to provide an overview of the packages
that explicitly support the inclusion of TE sequences in differ-
ential expression and binding analyses, and the strides which
have been made to improve our ability to resolve ambiguously
mapped reads in genomics analysis.
2. Annotation and de novo detection
A well-assembled and annotated genome is the foundation
for effective analysis, as all subsequent analyses discussed
below require a reference genome as well as a map of gene
and TE positions. While many genomes have near-complete
assemblies, and extensive annotation, the quality of both
tends to drop over repeat-rich regions for the same reasons
discussed above: ambiguity in placing near-identical
sequence reads from highly similar copies of related transpo-
sons. This ambiguity leads to non-contiguous and erroneous
chromosomal assembly, which will feed forward into any
genomics analyses using these assemblies [23]. Genome
assembly has benefitted immensely from long-read sequen-
cing technologies, particularly in the context of highly
repetitive centromeric regions and in nested repeating
elements [24,25]. While these long-read technologies are
improving the reference genomes used to map new datasets,
one caveat is that transposons are often polymorphic within
populations, such that each new sample sequenced is
expected to have many non-reference transposon-associated
insertions, deletions and other structural variants that may
be rare or private [26,27].

Once a high-quality assembly is constructed, the process
of annotation may begin. Many curated annotation databases
have been developed for identifying repeat elements. For an
in-depth review of annotation practices and existing reposi-
tories, please refer to the review by Goerner-Potvin et al.
[22]. Here, the distinction between TE-, genome- and poly-
morphism-focused annotation repositories is emphasized in
addition to a list of software for de novo insertion detection.
The most widely used database of TE consensus sequences is
RepBase [28], which provides the sequences with which
genome-specific annotation files are constructed. These annota-
tion files are available through the University of California Santa
Cruz Genome Browser (UCSC) and RepeatMasker [29]. While
new RepBase consensus sequences require a subscription, sev-
eral open databases for repeat annotation are available in
addition to UCSC including: RepetDB [30], ERVdb [31], Dfam
[32], TREP [33], SPTEdb [34], ConTEdb [35] and mips-REdat
[36]. The ideal database for analysis will vary depending on
the model organism and TEs of interest, as some databases
are species and TE type-specific.

3. Mapping
After the construction of a well-annotated reference genome,
one is faced with the task of mapping experimental data to
the appropriate reference. Even with a perfectly annotated
and constructed genome, ambiguously mapped sequencing
reads still present a challenging problem. One of the first
approaches to address this problem, designed for RNA-seq
analysis, was to probabilistically assign multi-mapped reads
to regions that also show a higher density of uniquely
mapped reads, i.e. reads with a single best genomic alignment
under the mapping software’s heuristics [37]. However, this
was a highly gene-centric model that was primarily focused
on host gene expression, and was not explicitly intended for
estimating expression from TE loci. Moreover, this approach
is biased towards regions that have some uniquely mappable
content. Unfortunately, the most recently integrated TE inser-
tions are also the least likely to be uniquely mappable, and
are thus the most likely to be lost or underestimated by
these methods. To highlight this, figure 1 displays the esti-
mated mappability of several different types of TEs in the
human genome, with a specific emphasis on younger types
of TEs shown to be active in the human genome [38]. Mapp-
ability in this plot was defined as the inverse of the number
of times a simulated 76 bp paired-end read mapped to the
genome, allowing three mismatches. Mappability was scored
per nucleotide with the score assigned to the first nucleotide
of the read. This track was procured from an in-depth analysis
performed by Sexton and Han which considers the many par-
ameters that contribute to the mappability of a particular
sequence, including the mapping software chosen and the
length of the sequenced read [39]. These analyses still return
to the same basic theme displayed in figure 1: mappability
rates vary for different types of transposons, and the most
recently inserted transposons are the most likely to be dis-
carded by standard analyses that rely on uniquely mapped
reads. In other words, the transposons that present the most
problems in genomics analyses are precisely those that are
more likely to be functional in terms of: carrying fully
functional promoters, encoding for functional proteins,
and, rarely, mobilizing within the genome. In addition,
many older elements with degraded versions of these com-
ponents have been recycled to play roles in cis-regulatory
architecture [40].

Most genome alignment software is aware of the difficul-
ties posed by ambiguously mapped reads, and thus provide
extensive parameter sets designed to allow the user to choose
the number of alignments considered for each sequenced
read. This includes standard genome mapping software
applicable to genome resequencing studies as well as ChIP-
seq-based studies of protein-DNA binding, such as BWA
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Figure 1. Estimated mean mappability for different types of TEs in the human genome. Mappability tracks from the analysis by Sexton and Han for hg38 were used
to construct mean mappability estimates (average probability that a pair of 76 bp reads would map uniquely to a genomic instance of that TE). These were then
aggregated by subfamily (L1HS is a human-specific subfamily of the LINE class). Some TEs have accumulated enough mutations across each locus that nearly all
copies are uniquely mappable. Very recently inserted, and/or still active TEs, show the lowest mappability rates with many copies still very close to the consensus
sequence (e.g. Alu and SVA types). By contrast, many older SINE and LINE TEs have high mappability rates and can easily be assessed using only uniquely aligning
reads with standard analysis procedures. Mappability was calculated by counting number of times a 76 bp paired end read (242-mer with an internal gap of 100 nt)
would map within the genome at a particular nucleotide where that nucleotide was the beginning of a 242-mer.
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[41], BOWTIE [42] and NOVOALIGN (http://novocraft.com/). For
RNA-seq aligners, there are two approaches, those that align
to reference transcriptomes and those that align to genomes.
Transcriptome methods like kallisto [43] and SALMON [44] per-
form pseudoalignments with transcript derived k-mers and
can attempt to build the reference transcriptome from the
RNA-seq data itself. SALMON can be specified to report
unmapped reads, kallisto does not include this option.
While pseudoalignment is very fast, computationally less
intensive, and helpful in organisms without a reference
genome, it can be complicated in the context of repetitive
elements, where all of the caveats that make genome assem-
bly difficult (discussed above) would also apply to de novo
transcriptome assembly. With regard to genome-based
RNA-seq aligners, there are a number of packages available
including: STAR [45], HISAT2 [46], GSNAP [47], NOVOALIGN,
RUM [48], MINIMAP2 [49] and others [50]. In the context of
sRNA-seq data, short-read genome-based aligners (BWA
[41], BOWTIE [42] and SCRAM [51]) that do not consider
splice junctions tend to work as well or better than RNA-
seq tailored algorithms, with SCRAM being specifically
designed for small RNA analysis pipelines. Another
approach to improve mappability would be to incorporate
long-read sequencing methods, as longer reads contain
more information and can serve as a way to reduce ambiguity
in the context of RNA-seq. Many of the previous aligners like
STAR, HISAT2 and GSNAP have been applied to long-read
sequencing data after error correction [52] and have been
shown to work well. In addition, algorithms like BLASR
[53], GRAPHMAP [54], rHAT [55], LAMSA [56], KART [57],
NGLMR [58] and LORDFAST [59] have been developed
specifically to address the increased length and error rates
associated with long-read technologies.

Some tools designed to improve mapping rates for
repetitive regions work after an initial analysis with one of
the tools listed above. These standalone tools can use align-
ment files as input and then attempt to statistically
redistribute the ambiguous reads based on distributions of
neighbouring alignments. One such algorithm is MMR [60]
which iteratively redistributes ambiguously mapped reads
across their respective loci to maximize smoothness of multi-
mapped read distribution in the context of unique reads, or
reduce the variance in coverage. Another is a Gibbs sampling
method [61] which uses stochastic redistribution of multi-
mapped reads, normalized to the background distribution,
in order to iteratively search for the most likely locus of
origin. This type of iterative statistical technique for optimal
assignment of reads to the correct loci has been picked up
and elaborated on by several different groups, and represents
a theme throughout the review. While it does not employ the
statistical redistribution of reads, COCO [62] is a package
which corrects and salvages multimapped reads by taking
into consideration nested genomic architecture, a common
feature associated with TEs.

http://novocraft.com/
http://novocraft.com/
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4. Analysis
The next step in a general next-generation sequencing (NGS)
sequencing analysis pipeline is to annotate and quantify those
reads which mapped to the genome. The mapping profiles
will vary widely based on molecular context of the sequencing
library. Each type of NGS data comes with its own challenges
in the context of highly repetitive elements. The remaining sec-
tions will go through analysis strategies for each of the most
common NGS data types in detail. The tools in these sections
are listed for reference in figure 2, where they are grouped by
the experimental assays used to generate the data. Electronic
supplementary material, table S1 gives references and links to
the software for all tools described.
hil.Trans.R.Soc.B
375:20190345
5. RNA-seq
RNA-seq for expression analysis is one of the most well-
studied areas in genomics, and this is also reflected in the
diversity of tools available for analysis of transcripts from
repetitive regions. RNA-seq data derived from short-read
sequencing platforms is comprised of small fragments,
derived from short single- or paired-end reads tiled across
the region of a transcript of origin. Of the tools which have
been developed to facilitate transcriptional analysis of repeti-
tive elements, here we will focus on those which take into
consideration ambiguously mapped reads. How to address
ambiguously mapped reads is an old problem in genome
science particularly when using older sequencing technol-
ogies from which reads were much shorter (approx. 36 nt)
than what we currently consider a short read (approx.
150 nt). These early RNA-seq packages were largely gene-
centric, as investigation of repetitive elements with these ear-
lier technologies was (and remains) a challenge. However, the
basic principles for probabilistic redistribution of ambigu-
ously mapped reads emerged at this time. The first
strategies employed a single-step multimapped read redistri-
bution based on the number of uniquely mapped reads at
each locus. [37] This was followed quickly by an expec-
tation-maximization (EM) algorithm to iteratively estimate
the most likely expression levels of gene transcripts based
on relative counts of unique and multimapped reads [63].
In addition to probabilistic redistribution of reads, packages
like CUFFLINKS [64] and HTSEQ [65] have multimapper
modes where ambiguously mapped reads are weighted by
the relative number of genomic alignments (as 1/n, where
n is the number of potential alignments in the genome).
The package SCAVENGER [66] considers multimapped reads
and uses an intermediate consensus assignment with
remapping to rescue unmapped reads. Differences in strat-
egies used to address multimapped reads and their
associated limitations are outlined in detail by Treangen &
Salzberg [23].

As interest broadened to begin investigating transposon
expression through RNA-seq explicitly, several packages
were developed to handle transposons separately from the
rest of the transcriptome. Among the first TE-centric
packages was REPENRICH [67] which functions by creating
repetitive element pseudochromosomes, which are a series
of contigs that represent all of the genomic instances of
each transposon subfamily annotated in RepeatMasker,
concatenated onto a single region. These subfamily
pseudochromosomes were then used to identify reads that
mapped only to one subfamily of transposons, such as the
human-specific LINE element L1Hs, even if the exact gener-
ating locus was still ambiguous. This was able to separate
the level of uncertainty to finer detail, such that reads could
be described as: unique in the genome, unique to a particular
subfamily or ambiguously mapping to multiple types of
transposons. Similar to REPENRICH, TETOOLS [68] is another
transcript quantification method which uses a detailed
annotation file or ‘rosette’ to facilitate quantification from
TE-derived reads, and which again aggregates reads at the
subfamily level. TEXP [69] is a package which focuses on
LINE-1 elements specifically and models spurious
genome transcription to more accurately quantify LINE-1
expression. TETRANSCRIPTS [70] was the first TE-centric algor-
ithm to implement statistical read redistribution to handle
multimapped reads. TETRANSCRIPTS uses an expectation maxi-
mization algorithm to find the most likely distribution of
ambiguously mapped TE-derived RNA-seq reads, and also
includes expression estimates for both host genes and TEs
in the output. After TETRANSCRIPTS, other packages have
been developed to expand the methods used for statistical
read redistribution including MMR [60] and SALMONTE, [71]
with SALMONTE being unique in its use of a pseudoalignment
strategy from the authors of the original SALMON [44]
package in order to bypass the mapping step typically used
in RNA-seq analysis. YANAGI [72] expands on this pseudoalign-
ment strategy by mapping to a segmented version of the
transcriptome to reduce ambiguity of mapping.

In the packages described above, quantification was per-
formed at the subfamily level, as determining the specific
expressed genomic loci within a subfamily is quite difficult
for TEs that are close to the consensus sequence. However, sev-
eral newer packages have been released to address the need for
locus-specific quantification of TE-derived transcripts. TE-cen-
tric packages include SINESFIND [73], and ERVMAP [74] which
are specialized for their respective TE family of interest.
Two pipelines used genome-guided de novo transcriptome
assembly with TRINITY [75] to quantify TE expression at a
locus-specific level: TECANDIDATES [76] and a pipeline described
by Guffanti et al. [77] More recently, SQUIRE [78] (software for
quantifying interspersed repeat expansion), and TELESCOPE [79]
adapted the EM-based read redistribution strategies described
above to infer originating loci of ambiguously mapped reads,
using uniquely mapped reads surrounding the locus to guide
the EM read redistribution.

One of the motivating reasons to study TEs is for their
influence over regulatory networks in our genome. To address
this specifically, a final type of RNA-seq analysis package has
been released at the interface of gene-centric and TE-centric
models. LIONS [80] is a novel package which detects novel
fusion events that connect TE promoter sequences to down-
stream coding gene sequences. These chimeric TE/gene
transcripts represent one of the many ways that TE promoter
elements might affect regulation of adjacent genes.
6. Small RNA-seq
Cells regulate TE expression using multiple strategies. The
most potent silencers of TEs in germline cells are small
RNAs (sRNAs) of the PIWI-interacting RNA (piRNA) class
[81]. In somatic tissues, two additional classes of small
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RNAs contribute to TE silencing: short interfering RNAs
(siRNAs) derived from expressed transposon transcripts
[81] and the more recently described 30 tRNA derived
fragments (30 tRFs) [82]. Therefore, it is integral to the study
of transposon biology to consider sRNAs and accurately
quantify their production. To this end, several packages
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have been released to investigate sRNA species, which prove
particularly challenging when derived from repetitive loci in
the genome as they are short in length, typically between 18–
36 nucleotides. Packages like MIRDEEP2 [83], SHORTSTACK [84],
PIPIPES [85], CHIMIRA [86], sRNATOOLBOX [87], OASIS 2 [88] and
MANATEE [89] have been developed to detect specific types of
sRNA loci in the genome and quantify their differential
expression. While microRNAs (miRNAs) are not known to
play a large role in transposon regulation, a large fraction
of miRNAs and other known TE regulatory sRNAs are pre-
sent in multiple copies in the genome, making TE-focused
strategies for multimapped read resolution useful, even for
non-TE-derived sRNAs. Statistical techniques, including
machine learning, have already been extensively employed
in the arena of piRNA prediction, a critical step for the ulti-
mate quantification of piRNA reads accumulation in
packages like piRNAPREDICTOR [90], PIANO [91] and a k-mer-
based method described by Zhang et al. [92] SHORTSTACK
after publication was updated to include BUTTER [93] which
now performs statistical redistribution of multimapped reads.

These methods described above have largely considered
sRNA classes separately, however, several packages including
UNITAS [94] and TESMALL [95] have strived to consider sRNA
classes comprehensively to facilitate proper normalization of het-
erogeneous sRNA libraries, and to facilitate differential
expression analysis across classes while taking into consideration
ambiguously mapped reads.

While several iterative statistical methods have been
employed in the study of sRNAs for annotation and target pre-
diction [96], there is still much room for improvement in the
handling of ambiguously mapped reads for small RNA
expression analysis. Many of these issues have been nicely
reviewed by Bousios et al. [97] particularly in the context of
plants whose genomes are highly enriched in TEs and where
sRNAs form a large component of the TE silencingmachinery.
Briefly, the chief challenge for applying probabilistic read
redistribution algorithms for sRNA loci is that many types of
sRNAs accumulate as very short transcripts cut from larger
precursors. Often the precursors are rapidly processed and/
or would not be caught by sRNA library preparation proto-
cols. For miRNAs, for example, typically only the guide and
passenger strands are detected in sRNA-seq libraries, leaving
only two short approximately 22 nucleotide sRNAs and
few surrounding reads from the precursor transcript to help
guide decisions about the true originating locus. Thus, some
loci may be more amenable to statistical inference algorithms,
while others need additional assays in order to determine the
precise source of sRNA biogenesis.
7. Immunoprecipitation-sequencing (ChIP, CLIP
and RIP)

In this section, we have grouped together multiple disparate
genomics data types that all involve immunoprecipitation-
based steps in order to find protein binding sites in nucleic
acids. These data can be derived from chromatin-bound
factors (ChIP-seq) or RNA-binding proteins (CLIP-seq/
RIP-seq), but are grouped here as IP-seq because of the simi-
lar challenges these data types present for computational
analysis pipelines. Typically, the published pipelines for
IP-seq data analysis begin by discarding multimapped
reads in order to achieve higher specificity and resolution
for the protein binding sites. This can be troublesome when
studying proteins which bind to regions rich in repetitive
elements. For example, H3K9me3 histone markers are
known to be enriched in constitutive heterochromatin [98],
a region of the genome highly enriched in repeat elements.
Therefore, when calling H3K9me3 peaks using only uniquely
mapped reads, the actual enrichment above background
levels may be significantly higher thanwhat is reported, skew-
ing the estimates of background levels and discarding many
truly bound regions. While this is a known issue for hetero-
chromatin binding proteins, recent surveys of DNA- and
RNA-factors have shown that transposon-derived regulatory
elements form a significant fraction of both transcription
factor binding sites [18,99] as well as RNA-binding protein
recognition elements [100,101].

For ChIP-seq-based datasets, it is important to acknowl-
edge the differences and difficulties associated with
attempting to detect binding elements for chromatin binding
factors and marked histones that typically bind broadly over
large areas (broad peaks) when compared with transcription
factors, which typically display sharp, narrow peaks.
H3K9me3 typically shows a broad peak profile, as these his-
tone marks are found on nucleosomes spread across wide
stretches of chromatin. This distribution warrants a different
detection strategy than that used for a typical transcription
factor, such as MYC, which might occupy narrow binding
regions, on the order of approximately 50–150 nucleotides
in a typical assay. This is particularly relevant when these
different peaks occur in repetitive genomic regions. The
larger the bound region, the more likely it is that some of
that genomic sequence will be uniquely mappable, which
can guide the inference about read accumulation in adjacent
sequences.

To address multimapped reads specifically, packages like
the peak caller CSEM [102] have used expectation maximiza-
tion to redistribute ambiguously mapped ChIP-seq reads
based on the distribution of surrounding uniquely mapped
reads. Owing to the reliance on uniquely mappable reads,
these methods function best on broader peaks because they
query a larger region, which may be more likely to contain
uniquely mappable content. LONUT [103] calls a set of
unique peaks and a set of non-unique peaks, then aggregates
both call sets together to remove any redundancy. MOSAICS
[104], while not specifically developed to handle repetitive
regions, recommends using the CSEM algorithm as a pre-
processing step in order to include multimapped reads.
DROMPA [105] and CRUNCH [106] take into account multi-
mapped reads using a simple 1/n fractional distribution
strategy. CRUNCH subsequently places a large emphasis on
motif prediction and annotation. The analysis pipeline
MAPRRCON [107] uses unique and multimapped reads, but
resolves the issue of multimapped read ambiguity by calling
peaks on the consensus sequence of transposon subfamilies.

There is still significant room for progress in the arena of
ChIP-seq analysis in repetitive regions. It is still difficult to
call narrow peaks in repetitive regions, owing to the lack of
sufficient reads surrounding the locus of interest to guide
the inference algorithms. PERM-SEQ [108] addresses this issue
by using the orthogonal dataset of DNAase hypersensitivity
profiling for better resolution in repetitive regions of the
genome. As sufficient reference datasets become available
in multiple cell types and conditions, this may make this
strategy feasible as a general method. By contrast, while
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broad peak callers tend to include more information within
the locus of interest to help guide inference across repetitive
regions, the data from these methods tend to have a lower
signal-to-noise ratio, such that improvement of broad peak
callers generally is still an active area of computational
development.

The problems described above in the context of ChIP-seq
analysis are compounded in the context of CLIP- and RIP-seq
datasets, where one must also normalize for differences in the
expression level of the bound transcript substrates. If the
bound transcripts contain repetitive regions, or are entirely
composed of repetitive elements, one must first find a way
to accurately distribute ambiguous reads among the input
transcriptome dataset before calling enriched binding sites
in particular transcripts. CLIPPER [109] was one of the first
CLIP-seq pipelines, but was restricted to uniquely mapped
reads only. CLIPSEQTOOLS [110] is a CLIP-analysis pipeline
which randomly assigns ambiguously mapped reads to one
of their candidate mapping loci. CLAM [111] uses expectation
maximization algorithms, as described above, to redistribute
ambiguously mapped reads between expressed transcripts,
but the algorithm works only on the alignment file and
does not include information about enriched peaks in its stat-
istical weights. PROBER [112] has been developed as a
general-purpose algorithm for detecting sites of RNA bind-
ing or modification (termed ‘toeprint’ profiling) and
includes an algorithm for handling multimapped reads
using a Gibbs sampler approach to iteratively infer a single
‘best’ alignment for each read. While PROBER does include
steps to handle multimapped reads, it was not developed
specifically for TEs, and thus has not been tested on highly
repetitive regions, such as TEs that are very close to the
consensus.
8. DNA methylation-sequencing
We have detailed several methods to asses differential
expression, and protein binding in the context of repetitive
elements. However, a critical component to the understand-
ing of transposon biology is the analysis of DNA
methylation as it is the main mechanism by which transpo-
sons are transcriptionally silenced long term [113]. To assess
DNA methylation, particularly the 5-methylcytosine (5-mC)
modification, several techniques have been developed and
compared [114]. In brief, the most common method to
assess DNA methylation is bisulfite sequencing: whole-
genome DNA sequencing following bisulfite conversion of
all non-methylated cytosine residues to uracil. Bisulfite
sequencing-based methods can be non-directional [115], or
directional [116] allowing one to reduce the ambiguity of
strand of origin. One of the first analysis pipelines developed
for high-throughput bisulfite sequencing was in Arabidopsis
[116] and analysis was performed in conjunction with
sRNA-seq datasets. In this pipeline, ambiguously mapped
reads were discarded by mapping to a repeat masked version
of the genome, a technique once commonly used in animal
systems to reduce mapping ambiguity in the context of bisul-
fite induced C > T conversions [117]. Bisulfite sequencing
analysis differs significantly from other analysis pipelines in
that often two reference genomes are used, one which con-
tains converted cytosines in addition to the original
reference genome. In this context, what are considered
ambiguous reads are those reads which map to both the con-
verted and unconverted reference genomes. This compounds
the difficulty of assigning multimapped reads, such that
many published bisulfite sequencing software packages
choose not to include multimapped reads to avoid this con-
founded ambiguity (electronic supplementary material,
table S1). The most commonly used pipelines for bisulfite
sequencing reads including BSMAP [118], BISMARK [119],
MOABS [120] and BS-SEEKER3 [121], none of which include
probabilistic handling of multimapper reads. For a more
comprehensive list of non-TE-specific methylation pipelines,
please see the review by Adusumalli et al. [122] and the sup-
plemental material of a recently published pipeline, BICYCLE

[123]. Here, confounding between ambiguity in bisulfite
conversion rates, non-reference polymorphisms and read
non-uniqueness can complicate the statistical tests used to
determine if a site in the genome is differentially methylated.
Thus, this represents an area of computational genomics that
could benefit greatly from further development.

Because DNA methylation is a critical mechanism by
which transposons are silenced, several groups have used
new methods to improve methylation analysis for TEs.
TEPID [124] and EPITEOME [125] were designed to improve
analysis of TE methylation levels by including the analysis
of split reads that cross junctions between TEs and uniquely
mappable genome regions. An approach employed to asses
the low mappability of young TEs, like L1-Ta, in the
human genome was repurposed to align bisulfite reads to a
consensus sequence as described in Shukla et al. [126]. One
interesting method to improve methylation analysis is to first
rigorously determine the average bisulfite conversion rates
genome-wide, then use this as a parameter to tease apart map-
ping ambiguities from differences in conversion rates, as done
by Noshay et al. [127]. Despite these improvements, DNA
methylation analysis is still a difficult bioinformatic challenge
that would benefit from further study.
9. Single-cell RNA-sequencing
All of the software described above has been geared towards
genomics datasets generated from bulk tissue samples. How-
ever, bulk profiling of heterogeneous cell populations only
provides averages that obscure underlying variability of TE
expression across cell types, as illustrated in figure 3. This
problem is further amplified when aggregating transcrip-
tional signal across numerous loci within high copy-
number TE families. It remains largely unknown how TE
de-repression varies between individual cells, what factors
drive such differences, and how this variability might affect
cellular phenotypes. Single-cell RNA-sequencing (scRNA-
seq) promises to answer some of those questions and has
already redefined our knowledge about tissue composition
and gene regulatory networks [128]. While its broad appli-
cation has so far been largely restricted to the study of gene
activity patterns, a few pioneering studies have used first-
generation protocols to identify TE expression dynamics
across single pre-implantation embryonic cells [129,130].
Those early efforts were largely limited by small cell num-
bers, high sequencing burden per cell, and lack of
molecular barcode counts to estimate true transcriptional
output, thus preventing broad-scale adaptation. Since then,
the increasing demand in single-cell transcriptome data has
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Figure 3. Comparison of bulk RNA-seq versus single-cell RNA-seq. Heterogeneity in expression profiles across cell types is masked by bulk sequencing methods.
Transposable element (TE) expression may vary across cell types, between cells of the same type, and within the same cells across time. Single-cell methods are
necessary to reveal this heterogeneity, but software for single-cell data analysis is not currently optimized for handling TEs.
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to barcode individual mRNA molecules. 50- and 30-based protocols allow for barcodes that enable mRNA molecule counting, with 50 protocols also offering
the ability to detect TE transcripts originating from proper TE promoters.
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seen an unprecedented expansion of available scRNA-seq pro-
tocols with considerably improved throughput, robustness,
and error-rates [131]. One such publication was by Guo et al.
[132], where the number of cells were scaled up allowing for
investigation into TE dynamics in spermatogenesis.

Despite such experimental advancements, inherent
design principles of scRNA-seq protocols that cooperate
with the well-known challenges of TE transcriptome analysis
have so far prevented their common application for the study
of TE expression at single-cell resolution (figure 4). For
example, many popular methods quantify RNA molecules
at the 30 end of polyadenylated mRNAs [133–137] and there-
fore depend on accurate reference models to bridge the gap
between polyadenylation sites and the corresponding
transcript isoform and/or promoter. This is problematic for
TE-derived transcripts, which are generally poorly annotated
in many species. While protocols with full-length transcript
coverage might alleviate some of those problems, the naive
assignment of reads to the nearest TE interval can still lead
to erroneous assignment, misattribution of intronic reads
from unprocessed pre-mRNAs, and hence misinterpretation
of TE de-repression. Full-length protocols additionally
suffer from higher sequencing burden, often lack of unique
molecular identifiers to account for PCR duplicates, and
potentially higher background TE read coverage owing to
intronic signal originating from pre-mRNAs [138,139].

A potential solution to minimize misattribution problems
are 50 end based scRNA-seq protocols that incorporate a tem-
plate switch oligo (TSO) towards the start of transcription
initiation [140,141]. Although incomplete processing and pre-
mature TSO incorporation during library preparation might
vary between transcripts and cells, such protocols have
already been successfully used to map alternative transcrip-
tion start sites between individual cells [142]. Importantly, a
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recent study also demonstrated its utility to quantify unex-
pected variability in TE promoter activity between
thousands of single cancer cells following epigenetic therapy
[143]. However, the problem of premature TSO incorporation,
combined with the pervasive nature of TEs, and technical
noise inherent to all current scRNA-seq protocols requires
dedicated strategies to mitigate the danger of spurious esti-
mates of TE cell-to-cell variation. To the best of our
knowledge, no peer-reviewed computational pipeline cur-
rently combines such features with the reliable
quantification of TEs at single-cell resolution, but unpub-
lished efforts already aim to facilitate TE single-cell analysis
for a wide array of available scRNA-seq protocols (https://
tanaylab.github.io/Repsc/). With the continuous methodo-
logical advancements and the increasing interest in TE
biology, we anticipate a rapid progress towards the routine
quantification of TEs in individual cells that will be
accompanied by the discovery of unprecedented heterogeneity
in TE transcription patterns.

10. Conclusion
(a) What is now doable?
The last years have seen a general improvement in sequen-
cing read length, making it possible to study the majority
of TEs in a genome-wide fashion. For particularly young
and less diverged families, we have discussed at length the
strides made in genome biology to address the difficulties
of treating ambiguously mapped sequencing fragments for
differential expression and binding analyses. In the context
of highly repetitive regions of the genome, these difficulties
are compounded, particularly for the most active TEs,
which remain close to their consensus sequence and thus
are the most difficult to map. The greatest progress has
been made with RNA-seq data analysis, as we have pro-
gressed from using simple fractional assignments of
multimapped reads within genes to approaching true locus-
specific resolution in the most repetitive regions of the
genome—such as the L1HS subfamily, active Alu families
and composite SVA elements. Progress has been made in
the realm of sRNA analysis as these improved algorithms
for RNA-seq analysis have now been incorporated into
sRNA-seq data analysis pipelines. In immunoprecipitation
based assays, for ChIP- and CLIP-seq datasets, efforts have
been made to use probabilistic read redistribution for peaks
within repetitive regions, but challenges remain.

(b) What is still hard?
sRNA-seq data contains a large proportion of multimapped
reads, and while significant effort has been put forth to lever-
age advanced iterative statistical methods for novel sRNA
discovery and target prediction, these methods have not
been as widely applied to sRNA-seq transcript quantification.
This may be attributed to the tight distribution of sRNA reads
across their mapping loci, making it difficult to garner locus-
specific information from adjacent reads. Moreover, these
much shorter reads (18–30 nt) are intrinsically less unique
in the genome than longer sequences.

In ChIP-seq data, the expected profile of read distri-
butions can vary widely from the typically tall, narrow
peaks associated with most transcription factor profiles or
RNA-binding proteins to the broader, shorter and noisier
peaks associated with some marked histones, such as
H3K9me3. Algorithms have been developed to address
both types of ChIP-seq profiles. Yet the lines between these
categories can be blurred, and there is a large trade-off
between the window size in peak calling and the ability to
use uniquely mapped reads to probabilistically reassign all
other reads to a particular locus. One area of active research
for broader regions would be to incorporate multimapped
reads into segmentation models which allow for the detection
of changes in peak landscape, as opposed to simply calling
the absence or presence of individual peaks.

scRNA-seq represents one of the newest genomic assays to
be used for TE expression profiling, and as such, remains an
area of greatest need for improvements in software packages
specifically designed to handle the complexities inherent in
TE genomics. Efforts are already underway, but as yet no pub-
lished software packages for scRNA-seq are available. That
said, many standard scRNA-seq packages could be adapted
for this use, as in the example protocol described above. How-
ever, as discussed in detail, differences in the experimental
protocols used to generate scRNA-seq libraries will have a
large impact upon the interpretability of the data, and this is
particularly problematic for TE expression analysis.

Two types of analysis which largely do not include multi-
mapped reads are assays for transposase accessible chromatin
using sequencing (ATAC-seq) [144] and Hi-C [145], an exten-
sion of chromosome conformation capture (3C). The read
distributions for ATAC-seq data greatly resemble those of
ChIP-seq and this analysis encounters similar computational
difficulties when studying repetitive regions of the genome.
Fortunately, as this analysis is similar to ChIP-seq there has
already been significant effort which could be incorporated
into ATAC-seq analysis. Adapting Hi-C pipelines to take
into account multimapped reads is still a difficult task as
this type of analysis already requires the resolution of chi-
meric reads representing genomic proximity. mHiC [146]
has been developed to address this issue, but the relative sen-
sitivity to highly repetitive transposon regions is unclear.
Significantworkhas beendoneusing thesemethods to address
the role of transposons in genome architecture and the tran-
sition from the embryonic cell state to early embryonic-like
cells [99,147,148]. These analyses can only improve as better
methods for handling repetitive reads are included.
(c) What new technology needs to be developed?
Long-read sequencing technologies promise to solve many
issues inherent in the assays described above. Once the
issues with throughput and error rates can be solved, long-
read sequencing would enable the isolation of entire tran-
scripts and, if correctly barcoded, would also allow for
accurately calibrated expression estimates. These technologies
could also be combined with antibody-based pulldowns and
endonuclease-based footprinting assays, to accurately call
cis-regulatory regions derived from TEs. Finally, long-read
genome resequencing assays that sequence through highly
repetitive genome regions may allow for better genomic
annotations that will benefit all of the applications described
above. To this end, not only must new experimental protocols
be developed which emphasize longer reads but new compu-
tational pipelines must also be developed to ensure that these
long read analysis pipelines properly handle and account for
the complications inherent in addressing TE genomics.

https://tanaylab.github.io/Repsc/
https://tanaylab.github.io/Repsc/
https://tanaylab.github.io/Repsc/
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