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Abstract: Suancai, as a traditional fermented food in China with reputed health benefits, has piqued
global attention for many years. In some circumstances, the microbial-driven fermentation may confer
health (e.g., probiotics) or harm (e.g., antibiotic resistance genes) to the consumers. To better utilize
beneficial traits, a deeper comprehension of the composition and functionality of the bacterial species
harboring enzymes of catalytically active is required. On the other hand, ingestion of fermented
food increases the likelihood of microbial antibiotic resistance genes (ARGs) spreading in the human
gastrointestinal tract. Besides, the diversity and taxonomic origin of ARGs in suancai are little
known. In our study, a metagenomic approach was employed to investigate distribution structures
of CAZymes and ARGs in main bacterial species in suancai. Functional annotation using the CAZy
database identified a total of 8796 CAZymes in metagenomic data. A total of 83 ARGs were detected
against the CARD database. The most predominant ARG category is multidrug-resistant genes. The
ARGs of antibiotic efflux mechanism are mostly in Proteobacteria. The resistance mechanism of ARGs
in Firmicutes is primarily antibiotic inactivation, followed by antibiotic efflux. Due to the abundance
of species with different ARGs, strict quality control including microbial species, particularly those
with lots of ARGs, is vital for decreasing the risk of ARG absorption via consumption. Ultimately, we
significantly widen the understanding of suancai microbiomes by using metagenomic sequencing
to offer comprehensive information on the microbial functional potential (including CAZymes and
ARGs content) of household suancai.

Keywords: Chinese northeast suancai; metagenome; CAZymes; antimicrobial resistance genes;
bacteria; food safety

1. Introduction

The consumption of traditional fermented food is very widespread, with renowned
health benefits [1]. The metabolic activities of microbiota cause fermentation, which con-
verts natural ingredients in food into a diverse range of molecules that constitute the unique
composition of the eventual fermented food [2]. The microbial diversity is unique to each
food type and influenced by the ingredients in the manufacturing process [3]. In homemade
fermented food, various microorganisms that contribute to traditional fermentation come
mostly from the environment, and especially from raw materials of fermented food [4].
Suancai is a traditional fermented food depending on traditional approaches in the north-
east of China, where it is one of the most significant fundamental foodstuffs. During the
preparation of traditional Chinese suancai, spontaneous fermentation without the use of
starter cultures or sterilization results in the proliferation of numerous microorganisms.
On account of the crucial role of the microorganisms in the fermentation process, a thor-
ough comprehension of the functional potential of the suancai microbiota is essential for
improving the flavor and safety of traditional fermented food.
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Metagenomic sequencing is shown to be an effective approach for defining the mi-
crobiota in fermented foods, obtaining species-level taxonomic resolution and predicting
the functional potential [5,6]. Metagenome sequencing aids in the study of biocatalysts
biodiversity in nature. That is to say, metagenomics has propelled synthetic biology study
forward by discovering expression systems, proteins and bioactive compounds with a wide
range of industrial applications [7,8]. It is desirable to investigate traditional homemade
suancai for uncovering the microbial communities harboring biotechnologically important
enzymes that are catalytically active during fermentation.

Due to the misuse or overuse of antibiotics in agricultural, animal husbandry and
human medical situations, ARGs have received a lot of attention around the world as an
emergent environmental genetic contaminant [9–11]. ARGs have been found in a large
number of microbial genomes [12]. Concerns about ARGs in fermented products should be
a priority, given the possibility that certain microbes could shape the gut microbiome via
fermented food supplements [13,14]. That would mean that food (meat and vegetables)
not only acts as a reservoir for ARGs and antibiotic resistance (AR) bacteria, but also as a
mediator for the transmission of ARGs and AR bacteria from the surroundings to humans
via food consumption [15,16]. As a result, it is critical to improve our understanding of
the existence and transmission of ARGs through food consumption [17]. A variety of
ARGs encoding resistance to a wide range of antibiotics have been discovered in foodborne
bacteria [18,19]. Many species-centric studies focused on the relationships between AR
bacteria and the ARGs they hold [20]. The findings revealed that species belonging to
the genera Enterococcus, Lactobacillus, Streptococcus, Lactococcus, Pediococcus and Weissella
harbor genes conferring resistance to tetracycline, vancomycin, macrolide, erythromycin
and streptomycin [21–23]. The ARGs of AR bacteria could be transmitted to bacteria in
the gastrointestinal system through horizontal gene transfer, so it is critical to reduce the
spread of AR through consumption.

Current research on foodborne bacteria primarily focuses on individual pathogens and
identifier microbes [24]. ARGs allow bacteria to survive throughout the face of antibiotics,
and the resistance to antibiotics is reliably evaluated by phenotypic testing of isolates to a
variety of antibiotics in food microbiology labs [25]. Nevertheles, the time required for this
method, which relies on bacterial growth rates, can vary from one day to several weeks,
and a high proportion of microbiota cannot be isolated in standard culture media [26,27].
Furthermore, horizontal gene transfer (HGT) mechanisms have shown that commensal and
beneficial bacteria can acquire antibiotic resistance from pathogenic strains, highlighting
the importance of studying the entire ARGs from the entire bacterial community (resistome)
rather than single isolates [28,29]. Food microbiology is being revolutionized by metage-
nomics, which has resulted in a huge change from phenotype-based to genotype-based
antibiotic resistance identification [30]. Nevertheless, the ARGs distribution may not fully
represent the actual antibiotic resistance phenotypes of the microbial taxa, especially in the
case of dead bacteria [31]. Nonetheless, ARG profiles do reveal the resistance potentials of
microbial species in varying circumstances and with various antibiotic types. More impor-
tantly, a high throughput metagenomic approach can comprehensively provide insights
into the complex community of microbial species (microbiome) as well as the pattern of
antibiotic resistomes carried by those species [24,32].

In this study, three samples were collected at different stages in the suancai fermen-
tation process, and the distribution and phylogenetic patterns of carbohydrate-active
enzymes and ARGs were determined by a metagenomic approach. Our research will
provide a foundation for future function mining of suancai microbiome.

2. Materials and Methods
2.1. Sample Collection and Sequencing

In this study, Chinese northeast suancai was processed and samples were collected
at different time points following the procedure we previously described [33]. Briefly,
the suancai brine was thoroughly mixed before being collected from the upper, middle



Genes 2022, 13, 773 3 of 15

and lower layers of the jar respectively. The samples were collected every day during the
fermentation process for physicochemical index measurement in triplicates. The nitrite
content showed an increasing trend at the beginning of fermentation (before day 3), which
accumulated a nitrite peak at day 3. Afterwards the nitrite content sharply decreased,
finally reaching a stable value at day 7. Based on the nitrite concentration, samples A
(day 3), B (day 5) and C (day 7) during the fermentation were selected for sequencing.
Metagenomic DNA was extracted using the QIAamp DNA Microbiome kit following the
manufacturer’s protocol (QIAGEN Inc., Germany). Sequencing libraries were generated
from metagenomic DNA (1 µg) using NEBNext® Ultra™ DNA Library Prep Kit for Illumina
(NEB, USA) according to the manufacturer’s protocol. Index codes were added to attribute
sequences to each sample. In brief, DNA libraries of fragments (size of 350 bp) were
prepared respectively for each sample. The samples were sequenced on the Illumina
NovaSeq 6000 platform at Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China).

2.2. Metagenome Assembly and Taxonomic Assignment

Raw data was preprocessed in order to obtain clean data for subsequent analysis. The
detailed processing steps for quality control are provided in the Supporting Information.
The clean data were assembled and analyzed by SOAP denovo software V2.04 [34]. The
assembled scaftigs were then disconnected from N connection, leaving the Scaftigs without
N. The samples’ clean data were mapped to each scaffold separately by Bowtie software
V2.2.4 to obtain the reads that were not used, which were then combined and processed
as mentioned above for mixed assembly. Using the number of reads and the length of
the genes on alignment, the abundance of each gene in each sample was calculated. The
equation was shown as follows, r represents the number of reads matched to the genes and
L represents the length of genes [35–37].

Gk =
rk
Lk
· 1

n
∑

i=1

ri
Li

To obtain the taxonomic annotation, the amino acid sequences of the predicted
genes were aligned in the NCBI nr database with DIAMOND (blastp, cut-off E-value
of 1 × 10−5) [38]. Taxonomic abundances were normalized by dividing the number of
reads of a specific taxon by the total number of reads assigned to bacterial 16s rRNA in
the sample.

2.3. Functional Annotation

To gain knowledge of the main functional and metabolic pathway, Kyoto Encyclopedia
of Genes and Genomes (KEGG) [39,40], Evolutionary Genealogy of Genes: Nonsuper-
vised Orthologous Groups (eggNOG) [41] and Carbohydrate-Active enzymes (CAZy) [42]
databases were used for functional annotation of genes. Unigenes were aligned against
these databases by using BLASTP, the mapped contigs were screened with an e-value
threshold of 1 × 10−5. In the case of each sequence’s blast result, the best blast hit was used
for further analysis [43,44].

2.4. ARGs Identification

Antimicrobial resistome analysis was carried out by aligning unigenes to CARD
database v2.0.1 [45] using the blastp, e-value ≤ 1 × 10−30. The ARG abundance was
expressed as fragments per kilobase per million fragments of contigs containing ARGs.
Based on the aligned result by the Resistance Gene Identifier (RGI) tool, the abundance
distribution of resistance genes in each sample, the taxonomic attribution analysis and the
resistance mechanism of ARGs analysis were performed.
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2.5. Statistical Analysis

R-3.5.1 was used for statistical analysis. The heatmaps were transformed into Z values
on the base of relative abundance and were performed with “pheatmap” packages. A
dissimilarity matrix was generated on the basis of the abundance of unigenes using the
Bray–Curtis index [46] with package vegan. To identify the number of shared ARG subtypes
across three samples, a Venn diagram was created by jvenn (a Venn tool).

3. Results and Discussion
3.1. Metagenomic Assembly Revealed CAZymes

Both eggNOG-based and KEGG-based results revealed the richness of functional capa-
bilities in relation to carbohydrate transport and metabolism and amino acid metabolism in
the suancai metagenomic data (Figure S1). Functional domains for synthesis, degradation
and modification of complex carbohydrates are regarded as CAZymes (Carbohydrate-
Active enzymes). The CAZy database is used to annotate CAZyme-encoding genes be-
longing to the six CAZy families: glycoside hydrolases (GHs), glycosyltransferases (GTs),
polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary activities (AAs) and
carbohydrate-binding modules (CBMs). The metagenomic contigs of the suancai samples
were queried against the CAZy database, which revealed the highest number of CAZyme-
encoding genes in sample A at each family (Figure 1). In line with the Bray–Curtis distance
based on CAZy relative abundance, the CAZyme-encoding genes belonging to the six
CAZy families are closer between B and C (Figure 2), which is in agreement with the
eggNOG and KEGG analyses (Figure S2). This reflects that the changes of microbiota com-
position cause different genes functioning at varying time points in suancai fermentation. A
total of 8796 putative CAZymes were discovered in the metagenomic results (Figure 3). To
be specific, the maximum number of contigs were matched to GHs (4306), followed by GTs
(2770) across the three metagenomes. The remaining putative CAZyme hits were assigned
to CBMs (994), CEs (415), PLs (157) and AAs (154). GTs, at high percentages in the metage-
nomic data, are acknowledged to catalyze the glycosidic linkages synthesis by transferring
sugar moiety from phospho-activated sugar donors to saccharide or non-saccharide accep-
tors. The biosynthesis of disaccharides, polysaccharides and oligosaccharides is conductd
by glycosyltransferase reactions [47].
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3.2. Phylogenetic Distribution of CAZymes

Despite CAZymes being distributed throughout the suancai microbiome, phyloge-
netic results of CAZyme encoding contigs demonstrated that a substantial proportion of
CAZymes was contributed by bacteria belonging to order Pseudomonadales, Enterobacterales,
Lactobacillales and Sphingobacteriales. The top 10 CAZymes in our metagenomic data are
shown in Figure 4a. CBMs, with carbohydrate-binding activity, enhance the catalytic
functions of CAZymes via making the carbohydrate-active modules more accessible to
target substrates [48]. The CBM50 family, which comprises various enzymes belonging
to the GH18, GH19, GH23, GH24, GH25 and GH73 families, i.e., enzymes that cleave
peptidoglycan or chitin, was most abundantly present among CBM modules. The presence
of CBMs involved in binding to polysaccharides suggested efficient recognition of a wide
spectrum of carbohydrate polymers by GH family enzymes.
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Catabolic enzymes that catalyze the cleavage of O-glycosidic bonds in carbohydrates
are known as Glycoside hydrolases (GHs). These are high-efficiency catalysts for hydrolysis
of most dominant and prevalent carbohydrates. Metagenome sequences for encoding
β-galactosidases (GH1), β-glucosidase (GH3), lytic transglycosylases (GH23) and other
abundant enzymes were discovered. The heatmap depicted the variations in relative
abundance of the top 35 CAZymes (Figure 4b). One of the dominant GH families was
the GH13, which is subdivided into ~40 subfamilies. Among the key enzymes of the
GH13 family are α-amylase, α-glucosidase, oligo-α-glucosidase, sucrose phosphorylase
and branching enzyme.
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GH70 enzymes are transglucosylases produced by lactic acid bacteria (LAB). Many
LAB strains from fermented vegetables are considered to be potential probiotics with
immunomodulatory activity in vitro and in vivo [49]. CAZymes in Lactobacillus were
known to be important in probiotic function, biomass transformation and vegetable tissue
softening. GH70 enzymes are very interesting biocatalysts with strong applications in
the food, pharmaceutical and cosmetic sectors. Here we unveiled the microbiological
distribution of GH family enzymes in suancai. Notably, GH70 enzymes were all mapped
to Leuconostoc, belonging to species L. mesenteroides, L. fallax, L. citreum, L. gelidum and
L. carnosum (File S1). Some of these species were reported to be able to produce large
amounts of extracellular polysaccharides, which can be employed as prebiotics or for other
purposes in the food industry [50]. The aforementioned species were also frequently found
in fermented vegetables. As a result, we assumed that these predominant microbial LAB
species might play vital roles in determining the functional and sensorial properties of
suancai products. This provides a reference for the identification and characterization of
GH70 enzymes in LAB.

3.3. Occurrence and Characteristics of ARGs during Suancai Fermentation

According to the results based on strict matches, the study characterized ARG occur-
rence and abundance in the suancai fermentation process. By using the CARD database and
RGI tool, there were 65 shared ARGs among a total of 83 ARGs detected in three samples
that were identifiable (Figure 5). Compared with sample B and C, sample A contained a
lower diversity of resistance genes. The diversity abundance of ARGs increased obviously
during suancai fermentation. The top 20 abundant ARGs accounted for over 80% of all the
annotated ARGs and were considered to be representative ARGs (>80%) (Figure 6). This
suggested that the distribution of ARGs was concentrated in suancai.
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Using KEGG, the representative ARG subtypes identified mainly annotated to different
classes (Table 1): multidrug resistance gene (adeF, OXA-141, Erm43, MexS, ErmD, OXA-50,
mdsC, MexB, OXA-388, OXA-351, MexW), lincosamide (lnuA, lmrC, lmrD), aminoglycoside
(APH3-Vla, APH3-VI), peptide (arnA), fosfomycin (fosB), fusidic acid (fusD) and tetracycline
(tetS) resistance genes. Each sample has matched these representative resistance genes.
Across three suancai samples, multidrug resistance was the most frequently assigned gene
category. Microorganisms tend to develop multidrug resistance to counter environmental
pressures. The multidrug resistance genes adeF and OXA-141 are the prevalent ones in
distribution; to be specific, the relative abundance in each sample exceeded 10% (Table S1).
For sample B, the lincosamide antibiotic gene lnuA was the most abundant ARG: it was
significantly increased compared to those in sample A or sample C. The genes discovered
in suancai samples encoded resistance against lincosamides, aminoglycosides, macrolides,
phenicols, fluoroquinolone and tetracyclines etc, whereas the ARGs of the product itself
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might reduce the efficacy of these antibiotics. Figure 7 demonstrates that the relative
abundance of most ARGs become lower during fermentation, and are lowest in sample
C. This phenomenon, together with no additives being used during traditional household
suancai fermentation, suggests that the primary source of ARGs might mainly be a direct
result of raw materials.

Table 1. Representative ARG subtypes and their abundance in each sample.

Items ARG Type Resistance Mechanism Abundance in
Sample A

Abundance in
Sample B

Abundance in
Sample C

lnuA lincosamide antibiotic inactivation× 1.53 × 10−5 0.000109 3.41 × 10−5

adeF Multidrug antibiotic efflux 6.55 × 10−5 7.86 × 10−5 7.56 × 10−5

OXA−141 Multidrug antibiotic inactivation 5.00 × 10−5 5.67 × 10−5 5.74 × 10−5

arnA peptide antibiotic target alteration 4.03 × 10−5 3.20 × 10−5 3.12 × 10−5

APH3-VIa aminoglycoside antibiotic inactivation 3.80 × 10−5 2.05 × 10−5 2.26 × 10−5

Erm43 Multidrug antibiotic target alteration 2.01 × 10−5 1.42 × 10−5 2.80 × 10−5

FosB fosfomycin antibiotic inactivation 3.83 × 10−6 2.02 × 10−5 4.69 × 10−6

MexS Multidrug antibiotic efflux 6.48 × 10−6 2.00 × 10−5 4.52 × 10−6

ErmD Multidrug antibiotic target alteration 1.66 × 10−5 6.00 × 10−6 9.15 × 10−6

fusD fusidic acid antibiotic inactivation 1.39 × 10−6 1.51 × 10−5 4.27 × 10−6

OXA-50 Multidrug antibiotic inactivation 1.50 × 10−6 1.33 × 10−5 6.17 × 10−6

mdsC Multidrug antibiotic efflux 2.09 × 10−6 1.30 × 10−5 7.23 × 10−6

MexB Multidrug antibiotic efflux 3.21 × 10−6 1.29 × 10−5 2.87 × 10−6

OXA-388 Multidrug antibiotic inactivation 1.28 × 10−5 1.16 × 10−5 1.00 × 10−5

OXA-351 Multidrug antibiotic inactivation 3.55 × 10−6 1.11 × 10−5 9.50 × 10−7

MexW Multidrug
resistance-nodulation-cell
division (RND) antibiotic
efflux pump

4.24 × 10−6 9.82 × 10−6 6.88 × 10−07

lmrC lincosamide antibiotic efflux 9.78 × 10−6 2.23 × 10−6 1.39 × 10−6

tetS tetracycline antibiotic target protection 7.24 × 10−6 9.75 × 10−6 1.94 × 10−6

APH3-VI aminoglycoside antibiotic inactivation 8.98 × 10−6 7.35 × 10−6 6.19 × 10−6

lmrD lincosamide antibiotic efflux 8.87 × 10−6 1.96 × 10−6 1.27 × 10−6

3.4. Correlation of ARGs and Their Potential Hosts

To confirm and compare the microbial origin of ARGs with the total microbial genes,
the ARGs and total microbial genes were assigned to different taxa using resistance gene
identifier (RGI) in CARD Resistance Database. The species attribution analysis of resistance
genes was conducted (File S2). Taxonomic annotation revealed that most of the dominant
species that matched with ARGs were assigned to Pseudomonas (P. fluorescens, P. taetrolens
and P. fragi), Serratia (Serratia sp. Leaf51), Erwinia (E. amylovora, E. pesicina), Stenotrophomonas
(S. maltophilia), Rahnella and some LABs, such as Leuconostoc (L. gelidum, L. carnosum),
Lactobacillus (Lactobacillus versmoldensis and Lactobacillus sakei), Lactococcus (Lactococcus
lactis) and Weissella (W. soli). The majority of the ARG-carrying species belonged to the
Pseudomonas genus. They are common inhabitants in fermented vegetables due to the cold
storage and their flexibility in nutritional requirements, which makes suancai a suitable
substrate for them to grow.

Figure 8 shows the taxonomic attribution results at phylum level. In sample A, the
distribution of ARGs and total microbial genes at the phylum level was 67% and 84% for
Proteobacteria, 15% and 10% for Firmicutes, respectively (Figure 8a). In sample B, the
assignment of ARGs and total microbial genes at the phylum level was 65% and 72% for
Proteobacteria, 16% and 19% for Firmicutes (Figure 8b). In sample C, the distribution of
ARGs and total microbial genes at the phylum level was 66% and 80% for Proteobacteria
and 14% and 9% for Firmicutes (Figure 8c). According to the findings, the majority of ARGs
in homemade northeast suancai are found in Proteobacteria and Firmicutes. Somewhat
differently, a previous study characterized the profiles of ARGs in ready-to-eat vegetables
showed that the phylum-level assignment of ARGs and total microbial genes was 62% and
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39% for Proteobacteria, 17% and 31% for Firmicutes respectively [14]. Its result showed that
compared to other genes, ARGs were more likely to be found in Proteobacteria. However,
in our homemade suancai, ARGs were more prone to exist in Firmicutes. The reason
might be that most industrial ready-to-eat vegetable foods were produced by using starter
cultures to initiate the fermentation, which probably contributes to their reduced diversity
compared to spontaneous fermented foods [51]. This is unsurprising, given that homemade
spontaneous fermented suancai has not been sterilized or treated with food additives that
kill pathogenic as well as health-promoting/probiotic organisms. Furthermore, because
homemade raw suancai is more vulnerable to environment and contamination during
handling, its bacterial diversity is likely to be higher. This is in line with previous research
which demonstrated ARGs varied across food substrate and between starter-type and
spontaneous fermentations [51].
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In our study, APH3-Vla and APH3-VI belonging to the APH gene family originated
from Gammaproteobacteria (including Yersiniaceae and Pseudomonadales). The presence
of APH3-Vla and APH3-VI in fermented suancai is consciously worrying as aminoglycoside
3′-phosphotransferases can mediate high-level resistance against a few aminoglycosides.
These genes could be carried on plasmids or encoded on chromosomes; APH3 is the
latter, but a transposon-mediated mechanism for spreading resistance genes has been
proposed [52,53]. Because the gene had previously only been described in P. aeruginosa,
and was recently reported to have allegedly originated from L. mesenteroides in yogurt,
the pathways of resistance gene transfer associated with this gene should be evaluated
further. The result shows that the abundance of APH3-Vla and APH3-VI is highest in
sample A. This phenomenon, together with no additives during traditional household
suancai fermentation, raises the suspicion that the source of the APH may be a direct
result of raw materials. With regard to the analytical data obtained in this study, some
of the recognized ARG hosts were reported previously. For example, the resistance gene
MexVW is commonly carried by Pseudomonas [54], and the resistance gene emrD has been
determined in Enterobacter [55]. In our species attribution results, gene adeF, whose CARD
ontology classifies it as a gene conferring resistance to tetracycline and fluoroquinolone
antibiotics, is only attributed to phylum Proteobacteria (class Gammaproteobacteria). Gene
OXA-141, as a broad spectrum β-lactamase previously detected in P. aeruginosa, is also
only attributed to phylum Proteobacteria (class Gammaproteobacteria). Gene lnuA, a gene
conferring resistance to lincomycin antibiotic, mapped to phylum Firmicutes (class Bacilli).
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3.5. Resistance Mechanisms

The percentage of resistance mechanisms was calculated for each sample based on
the ARG abundances. In our suancai samples, the most dominant mechanism of detected
ARGs was the antibiotic efflux, which included 36 genes, followed by antibiotic inactivation,
which included 30 genes. The remaining resistance mechanisms, such as antibiotic target
alteration and antibiotic target protection, only included 17 genes. Because results at lower
taxonomic levels lack reliability, visual results for resistance mechanisms of microbiome are
presented only at the phylum level (Figure 9). The result shows the ARGs of antibiotic efflux
mechanism are mostly Proteobacteria. The resistance mechanisms of ARGs in Firmicutes
are mostly antibiotic inactivation, followed by antibiotic efflux. Notably, the ARGs involve
both antibiotic target alteration and antibiotic efflux mechanism found is only in P. syringae
at the species level (Table S2), which is known as a plant pathogen. The ARGs mechanism
of antibiotic target protection only involves tetracycline (tetS, tetL, tet32) resistance genes,
and is only detectable in Pseudomonas and Weissella at genus level.
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Compared with previous studies on kefir strains and yogurt products, the only mech-
anism discovered was antibiotic target protection. In one yogurt grain sample, antibiotic
target alteration, antibiotic target replacement (51.28%) and antibiotic target protection
(48.72%) are probable resistance mechanisms [56]. The mechanism differs markedly across
fermented vegetables and dairy products. Microbial diversity and functional changes
(e.g., AR) are driven by fermentation substrates in fermented foods, and the raw material
has a significant influence on the resistance mechanisms of the microbiome in fermented
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foods. Compared to other fermented products, household fermented vegetables with more
abundant microbes require more attention on resistance mechanisms of antibiotic efflux.

Metagenomics analyses in the study depend on shotgun DNA sequencing and cannot
yet be directly linked to the phenotypes of antimicrobial resistance, especially those origi-
nating from dead bacteria. Nevertheless, published studies show that naturally competent
bacteria can take up DNA released by dead microorganisms [57], implying their poten-
tial contribution to the transmission of ARGs. In terms of food security, quality control
for microbial species with abundant and diverse ARGs is essential for minimizing the
risk of ARGs incorporation during the consumption of traditional suancai. The findings
of resistance mechanisms will serve as a guide for further control measures for specific
microbial species.

4. Conclusions

In this study, a metagenome sequencing method was used to investigate the metage-
nomics of suancai, a traditional fermented food in the northeast of China. KEGG-based and
eggNOG-based analysis results revealed a significant potential for carbohydrate transport
and metabolism and amino acid metabolism. The species encoded kinds of CAZymes,
notably GHs and GTs, implying their potential activities in carbohydrate metabolism. Phy-
logenetic analysis of CAZyme encoding contigs showed that a large proportion of CAZymes
was contributed by bacteria belonging to order Pseudomonadales, Enterobacterales, Lacto-
bacillales and Sphingobacteriales. GH70 enzymes were present in L. mesenteroides, L. fallax,
L. citreum, L. gelidum and L. carnosum. Taken together, 8796 putative CAZymes were dis-
covered in the metagenomic data providing a thorough understanding of the presence of
diverse CAZymes in microbial species of suancai.

Although ARGs have been found in a variety of environments, little is known about
their distribution and phylogenetic information in fermented foods. The alignment results
against the CARD database showed the existence of Pseudomonas as the most abundant
Gram-negative genus in fermented suancai bearing ARGs. Most ARGs exist in Proteobacte-
ria and Firmicutes. The most predominant ARG category is multidrug-resistant genes. The
four, mainly microbial, resistance mechanisms in suancai samples are antibiotic efflux, fol-
lowed by antibiotic inactivation, antibiotic target alteration and antibiotic target protection.
Therefore, it would be necessary to discreetly monitor the microbial subpopulation that
holds ARGs and to optimize the sanitation conditions in suancai production processes to
reduce the risk of drug-resistant genes transfer and develop effective strategies to control
AR. This study revealed a wealth of information about carbohydrate-active enzymes and
antibiotic resistance genes in suancai. The knowledge presented here will provide signifi-
cant opportunities for improving suancai production and harnessing the health-promoting
potential in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13050773/s1, Figure S1: Statistical map drawn from uni-
genes annotation results indicated substantial representation of carbohydrate metabolism in the
metagenomes; Figure S2: The cluster tree of CAZy family genes based on Bray–Cutis distance;
Table S1: Percentage abundance of annotated ARGs in three samples; Table S2: Profile of resistance
mechanism and taxonomic distribution of ARGs. File S1: Taxonomic Attribution Information of
All Annotated CAZymes in the Metagenomes. File S2: Taxonomic Attribution Information of All
Annotated ARGs in the Metagenomes.
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