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Host immune components play both beneficial and pathogenic roles in human immunodeficiency virus type 1 (HIV-1) infection.
During the initial stage of viral infection, a complex network of innate immune factors are activated. For instance, the immune
cells express a number of inflammatory proteins including cytokines, chemokines, and antiviral restriction factors. These factors,
specifically, interferons (IFNs) play a crucial role in antiviral defense system by modulating the downstream signaling events, by
inducingmaturation of dendritic cells (DCs), and by activation ofmacrophages, natural killer (NK) cells, andB andT cells.However,
HIV-1 has evolved to utilize a number of strategies to overcome the antiviral effects of the host innate immune system.This review
discusses the pathways and strategies utilized by HIV-1 to establish latent and persistent infection by defeating host’s innate defense
system.

1. Introduction

During the early phase of infection, hosts mount innate
immune response that comprises defense mechanisms to
protect the hosts from invading pathogens in an antigen
independent manner. This immune response is the first and
a rapid response launched against a variety of microorgan-
isms. The innate immune system can distinguish between
self and foreign proteins and responds accordingly. This
nonspecific immune response is activated primarily by the
structural motifs of invading pathogens. The major cell
types that play key roles in innate immune response against
invading pathogens include macrophages, dendritic cells,
neutrophils, natural killer cells, mast cells, eosinophils, and
basophils. Most of the innate effector cells produce inflam-
matory factors that function as chemical messengers. Among
these molecules, IFNs are the most effective in elucidating
antiviral immune responses [1]. Additionally, cytokines and
chemokines also play important roles as chemoattractants
controlling leukocytes trafficking. Innate immune response
operates through the steps of recognition of the pathogen,

signal transduction, and subsequent gene expression to pro-
duce the innate immune effector molecules.

The first step is to recognize a pathogen as a foreign object
and differentiate it from self-components. When pathogens
breach physical barriers such as the skin or oral mucosa,
they are recognized by pattern recognition receptors (PRRs)
expressed either in the cytoplasm or on cell membranes.
PRRs sense and interact with the structurally conserved
motifs of proteins and nucleic acids unique to invading
pathogens known as pathogen-associated molecular patterns
(PAMPs) [2]. The most widely studied PRRs, the toll-like
receptors (TLRs), present either on the cell surface or in
the endoplasmic compartments, are involved in recognizing
microbial PAMPs. For example, TLR2 and TLR4 respond
to specific viral glycoproteins; TLR9, TLR3/7, and TLR8
are involved in sensing viral nucleic acids as well as the
unmethylated CpG sequence in viral DNA molecules [3]. In
addition to TLRs, viral PAMPs are also detected by other
PRRs including RIG-like receptors (RLRs), RIG-I, MDA5,
C-type lectin receptor (CLR), and DC-SIGN. RIG-I and
MDA5 recognize 5󸀠 phosphorylated short and long dsRNA,
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respectively, whereas, DC-SIGN binds to viral envelop gly-
coproteins. Cytosolic receptors such as AIM2 and DAI are
also identified as respondents of dsDNA [4]. The interaction
of viral ligands with host receptors activates the downstream
signaling events that in turn switch on specific transcription
factors regulating the expression of genes responsible for
innate and adaptive immunity interchange. For example,
when TLRs bind to viral PAMPs, the intracellular part of
TLR binds toMyD88 and activates mitogen activated protein
kinase (MAPK) that leads to the activation of NF-𝜅B. Activa-
tion of NF-𝜅B promotes regulation of inflammatory cytokine
genes and activates interferon regulatory factor (IRF) [5,
6]. IRF induces type I IFNs that function as antiviral and
inflammatory agents [7]. Furthermore, IFN is also involved in
maturation of DC and regulates the function ofmacrophages,
NK cells, and T and B cells [8]. However, the efficacy of
host response depends on a rapid and specific recognition
response to invading pathogens. Upon infection, immune
cells are activated to modulate their molecular networks to
eliminate the pathogen.

2. Strategies of HIV-1 to Evade Innate
Immune Response

To overcome these immune effector functions, viruses
including retroviruses are evolved to counteract and subvert
through various mechanisms [9, 10]. Retroviruses are a
diverse family of enveloped RNA viruses that have the ability
to evade immune defense systemand establish long-termper-
sistence in the infected hosts. HIV-1, one of the retroviruses,
utilizes varying strategies compared to other viruses as the
PAMPs exposed by the virus are not easily recognized by the
PRRs, and hence the virus can escape from proinflammatory
and antiviral responses [11]. One possible mechanism by
whichHIV-1manages to avoid immune encounter of the host
is that HIV-1 can modify its PAMPs by altering or hiding its
nucleic acids in the viral capsid in order to mimic the cellular
proteins [12]. The ability of genetic variability of HIV-1 is one
of the major immune evasion strategies for the virus. The
HIV-1 RNA genome can be mutated randomly which helps
the virus to evade immune recognition by the host. Error
prone viral reverse transcriptase lacking the proofreading
activity is responsible for the highmutation rate inHIV-1 [13].
By avoiding the immune recognition, HIV-1 crosses various
checkpoints in innate as well as adaptive immune defense
machineries of the host. This review emphasizes on some
of the mechanisms utilized by HIV-1 to escape host’s innate
antiviral responses.

3. Evasion of HIV-1 through Mucosal Barriers
during Early Infection

HIV-1 enters primarily through the mucosal surfaces of
genital or rectal tissues during sexual transmission. Mucosa
presents the first line of physical defense against invading
pathogens. HIV-1 evades this initial barrier by successfully
crossing the mucosa to reach the susceptible host cells and
establish the infection. One of the proposed mechanisms

is that the virus crosses the mucosal barrier by transcy-
tosis or by capturing dendrites of intraepithelial DCs [14].
Additionally, HIV-1 also utilizes the intercellular spaces to
move through the epithelium and achieve contact with the
underlying mucosal Langerhans cells and CD4+ T cells
[14]. Exposure of HIV-1 or the viral protein gp120 dis-
rupts tight junction proteins and the monolayer integrity
of mucosal epithelium by the upregulating inflammatory
cytokines that leads to the increased permeability of the
virus particles [15]. These studies suggest that HIV-1 may
induce defects at the mucosal epithelial barrier, which could
activate mucosal T cells and increase the production of
inflammatory cytokines [16–18]. A recent study demon-
strated the association of 𝛾𝛿 T cells as a major component
of mucosal immune system with the early HIV-1 induced
events [19]. Breakdown of mucosal barrier is considered as
the most crucial event causing HIV-1-associated immune
activation.

Following mucosal breaching, HIV-1 establishes acute
infection in immune cells present within the mucosa. It has
been suggested that the productive HIV-1 infection starts
from a single infectious virus particle [20, 21], and the resting
CD4+ T cells are the first targets [21–23]. These infected
cells disseminate with the help of proinflammatory cytokines
such as IL-1, IL-8, IL-6, and GM-CSF to the lymphoid
tissues throughout the body including the gut-associated
lymphoid tissue (GALT) containing high numbers of CD4+
T cells where the virus replicates at a very high rate. A
group of freshly infected CD4+ T cells is generated, thus
inducing rapid spread of HIV-1. This results in a peak of
viremia or a viral set point followed by induction of CD8+
T lymphocytes, and dramatic loss of CD4+ T cells. Finally
the viral load is controlled and maintained at a steady level
throughout the chronic phase of HIV-1 infection. Hence,
evading the physical barrier posed by the mucosal tissues
marks the success of the initial stages of viral infection and
spread.

4. Complement System

After penetrating the initial mucosal barrier, complement
system confers a major host defense mechanism contributing
the restriction in viral replication by triggering the recruit-
ment of inflammatory cells and also by rupturing plasma
membranes of undesired cells. Complement system functions
as inhibitor as well as beneficiary for HIV-1 infection and
pathogenesis. Complement pathways lyseHIV-1 particles and
the infected cells to neutralize IgG and IgM-bound viruses.
However, HIV-1 overcomes the complement mediated inhi-
bition of viral spread or pathogenesis by activating the
classical pathway of complement system by binding C1q with
envelope protein gp41 [24]. HIV-1 downregulates expression
of host complement receptors that impair monocyte chemo-
tactic responses to inflammatory stimuli (exposure of gp120
decreases C5a expression) [25]. Deposition of C3 and C5a
facilitates HIV-1 interaction with complement receptor CR3
and CR4 containing cells including monocytes/macrophages
and DCs. HIV-1 gp41 interacts with CR3 and this interaction
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enhances both viral entry and viral spread in the cells [26].
HIV-1 also binds to CR1 on erythrocytes and CR2 on B cells
and exploits these cells to generate C3d-opsonized infectious
HIV-1 reservoirs and to spread infection to the uninfected
organs [27–29]. In addition to increasing viral infectivity,
HIV-1 gp41 and other viral proteins also stimulate the
synthesis of C3 in neurons and astrocytes [30].This increased
production of complements is another means of contributing
HIV-1-induced neuropathogenesis. Also, gp41 and gp120
recruit factor H, which is responsible for protecting self-
cells from complement mediated lysis to multiple binding
sites [31, 32]; thus, in turn, it causes decreased complement
dependent lysis of infected cells and virus in vitro [33].
Another complement regulatory factor CD59 present on
HIV-1 envelope prevents complement mediated neutraliza-
tion of antibody bound viruses [34]. Together, these studies
indicate that HIV-1 has evolved to override the complement
system induced innate antiviral response to increase viral
spread.

5. HIV-1 Induced Changes in Cytokine and
Chemokine Profiles

Cytokines and chemokines have the most influential role
in HIV-1 pathogenesis, and the virus exploits the network
throughout its life cycle. HIV-1 infection results in the activa-
tion of immune cells, altered functions of macrophages, NK
cells, andDCs, and the activation of B cells [35–41]. Overacti-
vation of immune cells leads to increased production of pro-
inflammatory anti-inflammatory cytokines and chemokines
including IFNs, tumor necrosis factor (TNF)-𝛼, interleukin-
(IL)-1, -2, -4, -8, -6, -10, -15, interferon gamma-induced pro-
tein (IP)-10, andmonocyte chemotactic protein (MCP)-1 [42,
43]. These cytokines/chemokines either enhance or inhibit
HIV-1 replication. With disease progression—a shift from
stimulatoryTh1 (IL-2, IFN) to inhibitoryTh2 (IL-4, IL-10, IL-
1, IL-6, IL-8, and TNF), cytokine production takes place [44].
Attachment of HIV-1 envelope protein, gp120, triggers pro-
duction of CC chemokines CCL2, CCL3, CCL4, and CCL5
that are chemoattractants for DCs, macrophages, and lym-
phocytes.The expression of theseCC chemokines is regulated
by cytokines including IL-6, TNF-𝛼, IL-1𝛽, and IL-10, which
are also regulated by HIV-1 infection [45]. HIV-1 utilizes
different mechanisms to override host cytokine/chemokine
networks; for example, HIV-1 transactivator of transcrip-
tion (Tat) protein mimics 𝛽-chemokines and functions as
chemoattractant of monocytes/macrophages that leads to
increased activation and infection [46]. A previous study
has shown which HIV-1 negative regulatory factor (Nef)
increases the production and the stimulatory function of
proinflammatory cytokines such as IL-1𝛽, IL-12, IL-15, and
TNF-𝛼 and chemokines such as macrophage inflammatory
protein (MIP)-1𝛼, -1𝛽 and IL-8 when it interacts with imma-
ture DCs [47, 48]. HIV-1 accessory protein viral protein R
(Vpr) also alters the level of proinflammatory cytokines [48].
Hence, HIV-1 either by mimicking or by modulating certain
cytokines exploits the cytokine network for its replication and
survival.

6. Interferons and Signaling Events

Among the cytokines, IFNs play the major role in virus
infection and confer the first defense. Type I IFNs (include
IFN-𝛼, -𝛽, -𝜀, -𝜅, and -𝜔), the innate cytokines produced by
innate immune stimuli, have multiple properties including
induction of immune activation, enhanced antigen presen-
tation, and antiviral activity [49]. IFNs are mainly produced
by IFN regulatory factors (IRFs) especially IRF3 and IRF7
[50]. They bind to IFN receptor IFNAR1/IFNAR2 at the cell
surface and form STAT1/STAT2 dimer, which translocates
into the nucleus and triggers downstream signaling pathways
that result in activation of interferon-stimulated genes (ISGs).
Cellular factors, ISGs, generated from type I and type II IFN,
induce signaling events that inhibit HIV-1 replication [51, 52].
Recognition of PAMPs stimulates activation of IFN-induced
signaling pathways triggering activation of transcriptions
factors including NF-𝜅B, activator protein (AP)-1 and IRF3,
which in turn leads to production of proinflammatory
cytokines and chemokines and antiviral type I IFN. The
innate immune response largely depends on virus-induced
signaling pathways to induce IFN response. A recent study
indicated the role of tripartite motif containing 22 (TRIM22)
induced by IFN-𝛽 as an inhibitor of HIV-1 replication [53].

Since IFN has the most potent role in preventing viral
replication and eliminating infection, HIV-1 blocks and/or
minimizes the IFN production as well as the downstream
signaling pathways to prevent immune responses. However,
the mechanism(s) by which HIV-1 can manage to escape
IFN induced anti-HIV-1 activity is not fully understood.
It was documented that HIV-1 gp120 blocks cytokines
including IFN and the cytolytic activity of NK cells by
interfering with TLR9 activation in pDCs [54]. In a SIV
model of central nervous system, it has been shown that SIV
infected astrocytes produce monocyte chemotactic protein
(MCP)-1 or CCL2 that binds to the CCR2 receptors on
macrophages resulting in suppression of specific ISGs such
as TRAIL [55]. In macrophages, HIV-1 exploits another
cellular factor, suppressor of cytokine signaling (SOCS) 3 to
facilitate its replication. SOCS3 inhibits IFN-𝛽 signaling in
macrophages, and hence it prevents antiviral gene expression
that helps HIV-1 replication [56]. Studies also indicated
that cellular 3󸀠 repair exonuclease 1 (TREX1) helps the
virus to hide from immune activation [57]. The exonuclease
activity of TREX1 degrades excess ssDNA of HIV-1 and
thus prevents activation of IFN by this excess HIV-1 DNA.
Mutation or dysfunction of TREX1 results in accumulation
of HIV-1 DNA and triggers DNA sensors. This activates
STING, TBK1, and IRF3 transcription factors. Activated IRF3
translocates into nucleus and enhances IFN response by
activating the respective promoters in different cell types
[57–59].

The release of IFNs leads to the induction of ISG through
JAK/STAT pathways. ISGs induce antiviral response. One
of the first ISG linked to antiviral response is the IFN-
induced protein kinase R (PKR). It plays an important role,
when it binds to dsRNA of viral replication product, forms a
dimer by autophosphorylation, and blocks viral replication
by inhibiting translation of alpha subunit of elongation
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initiation factor 2 (eIF2𝛼) in infected cells. HIV-1 infection
does not activate PKR. Virus replicates in cells where a
high level of TAR binding protein (TRBP) is present. TRBP
functions as a strong inhibitor of PKR and eIF2𝛼 [60, 61].
TRBP also binds to and serves as a cofactor of Dicer,
which is required for biosynthesis of microRNA (miRNA) or
RNA interference (RNAi) [62], inhibitors of viral replication.
HIV-1 overrides the PKR mediated innate response via two
different mechanisms. First, HIV-1 Tat RNA binds to TRBP
and inhibits PKR activation; also TRBP becomes unavailable
for Dicer binding [63]. Thus HIV-1 exploits TRBP as a
link between IFN and RNAi mediated antiviral response.
Second, HIV-1 Tat also functions as a substrate homologue of
eIF2𝛼 and competes for PKRmediated phosphorylation. PKR
phosphorylates HIV-1 Tat, and the phosphorylation of Tat is
necessary for HIV-1 LTR transactivation [64]. This prevents
phosphorylation of eIF2𝛼 and enhances viral replication
[65]. Another protein adenosine deaminase acting on RNA
(ADAR1) is also reported to inhibit PKR activation [60].
Together, these reports support that HIV-1 proteins play a
major role in combating IFN responses, thus blocking innate
antiviral activity.

7. Plasmacytoid Dendritic Cells (pDCs)
Function as Major Source of IFN

After HIV-1 entry into the system, the immediate IFN
response is primarily from pDCs. pDCs play the central role
in innate immune response against viral pathogens through
the secretion of enormous amount of IFN. It expresses TLR7
and TLR9 in addition to CD4, CCR5, and CXCR4 receptors.
TLR7 and TLR9 on pDCs bind to ssRNA and unmethylated
CpG DNA motif, respectively, and signal through MyD88
that in turn leads to the activation of IRF7 for IFNproduction.
Compared to other blood cells, these cells produce several
times more type I IFNs that function as immunostimulatory
cytokine to drive mDC maturation [66]. HIV-1 inhibits the
innate immune response of pDCs by reducing pDC cell
counts in peripheral blood. HIV-1 infected individuals are
reported to have lower levels of pDCs compared to uninfected
individuals [39]. HIV-1 gp120 exposure suppresses pDC
activation and production of proinflammatory cytokines
mediated through TLR9 [54]. Other studies have demon-
strated that HIV-1 blocks pDC function by suppressing
TLR7 and TLR8 [67] and also by inhibiting IFN-𝛼 [68].
However, before undergoingHIV-1-induced cell death, pDCs
upregulateCCR7production, accumulate in lymphnode, and
produce high level of IFN [69]. High plasma level of IFN has
been observed during acute HIV-1 infection and also during
the late stage of the HIV-1 disease. It has also been reported
that IFN enhances disease progression to AIDS [70]. HIV-1
induced production of IFNby pDCs leads to the expression of
TNF-related apoptosis inducing ligand (TRAIL) [71], which
is involved in triggering apoptosis of uninfected CD4+ T
cells [72]. Through TLR7, TRAIL turns pDCs into IFN-
producing killer pDCs (IKpDCs) that produce high level
of TNF-𝛼 [73]. It has also been shown that in addition to
IFNs activation of pDCs, HIV-1 also stimulates production of

inflammatory cytokines/chemokines including TNF-𝛼, IL-6,
CXCL10, CCL4, and CCL5 [74, 75].

8. Functional Dysregulation of Natural Killer
(NK) Cells by HIV-1

The immunomodulatory and cytotoxic activities of NK cells
are impaired in HIV-1 infected individuals, diminishing
the innate and detrimentally affecting the adaptive immune
response [76–79]. Analysis of frequency, phenotypes, and
function of peripheral bloodCD3-CD56+NKsubsets inHIV-
1+ individuals revealed significantly reduced numbers of
total NK cells and a striking shift in NK cell subsets. More
specifically, CD56dim populations of HIV-1 infected subjects
were markedly diminished (and exhibited functional abnor-
malities) when compared to IFN-𝛾 producing CD56bright
NK cell fractions from the same individuals [79]. HIV-1
infection is characterized by a dramatic increase in inhibitory
receptors and loss of activating receptors, particularly, NKp30
on NK cells, resulting in loss of NK cell activity and defective
crosstalk with DC [80, 81]. Involvement of HIV-1 in the
impairment of NK cell function in vivo has also been
bolstered indicating an association between NK cell ligand
HLA-B Bw4-801 and its receptor; the killer immunoglobulin-
like receptor (KIR) 3DS1; expression of HLA/KIR subtypes
can be linked to efficient NK cell mediated inhibition of HIV-
1 replication and killing of infected targets [82, 83].

The observed NK cell dysregulation is attributed to HIV-
1 viral proteins [84, 85]. HIV-1 Nef functions as a potential
regulator of NK cell cytotoxicity due to its involvement in
MHCclass I downregulation onCD4+ cells [86].The selective
downregulation by Nef of HLA A and HLA B but not HLA
C or HLA E molecules in infected target cells inhibits NK
cell cytotoxicity which confers an additional evasion strategy
targeting the antiviral activities ofNK cells [87–89].HIV-1 Tat
inhibits LFA-I-mediated Ca2+ influx through the binding of
L-type Ca2+ channel and thereby impairs NK cell cytotoxicity
[90, 91]. A linear motif of HIV-1 gp41 induces expression
of NKp44L on CD4+ T cells and results in their depletion
by selective lysis by NK44+ NK cells [37]. Azzoni et al.
showed that virally suppressed children had normal levels
of circulating pDCs, mDC, and total NK cells, yet they had
sustained depletion of mature NK cell subsets along with
diminished IFN-𝛼 production by pDC, which is required
to enhance NK cell cytolytic responses [92]. HIV-1 treated
target cells exhibit selective upregulation of NKG2D receptor
on NK cells, and this upregulation is contact dependent
and reversible [93]. Expression of these molecules is directly
correlated with efficient killing of infected targets as well as
controlling viremia, suggesting that innate immune cells play
a critical role in immune control.

9. Antiviral Host Restriction Factors

In addition to other innate antiviral factors and innate
immune cells, host restriction factors have also been shown
to restrict HIV-1 infection in multiple ways. For instance,
apolipoprotein B editing catalytic polypeptide (APOBEC3)



ISRN AIDS 5

Table 1: Role of HIV-1 viral proteins in innate immune evasion.

HIV-1 accessory proteins Function in innate immune evasion

gp41

(i) Activates classical pathway of complement system
(ii) Enhances viral entry and spread through interaction with complement receptor CR3
(iii) Stimulates synthesis of C3 in neurons and astrocytes
(iv) Recruits factor H responsible for protecting from complement dependent lysis
(v) Induces expression of NKp44L on CD4+ T cells and results in their depletion

gp120
(i) Recruits factor H
(ii) Induces production of inflammatory cytokines and the CC chemokines
(iii) Suppresses pDC activation and produces IFN and other cytokines
(iv) Inhibits cytolytic activity of NK cells by interfering with TLR9

Tat
(i) Substrate homologue for eIF2𝛼 and competes for PKR mediated phosphorylation
(ii) Mimics 𝛽-chemokines and functions as chemoattractant for monocytes and macrophages
(iii) Inhibits LFA-I mediated Ca2+ influx and impairs NK cell cytotoxicity
(iv) Interacts with Dicer and inhibits its activity, suppresses miRNA synthesis

Nef
(i) Increases expression of proinflammatory cytokines
(ii) Downregulates HLA-A, HLA-B on target cells and inhibits NK cell cytotoxicity
(iii) Helps in budding of HIV-1
(iv) Produces viral miRNA in HIV-1 persistently infected cells

Vpr (i) Alters the levels of proinflammatory cytokines
(ii) Upregulates NKG2D receptor on NK cells

Vpu (i) Causes detachment of viral particle from cell membrane through interaction with tetherin

Vif (i) Inhibits the packaging of APOBEC3G in virus producer cells causes proteosomal degradation of
APOBEC3G

is a member of cytidine deaminase family that has specific
anti-HIV-1 property. APOBEC3G incorporates into HIV-1
through interacting with Gag and restricts HIV-1 infection
[94, 95]. It mutates cytidine to uridine in negative sense
single stranded DNA by deamination resulting in guanosine
to adenosine hypermutation in positive sense viral cDNA
and thereby makes it vulnerable to nuclease degradation
[96, 97]. Current studies show that APOBEC3G functions
in deaminase independent manner [98]. However, HIV-1
viral infectivity factor (Vif) protein inhibits the packaging
of APOBEC3G in virus producer cells by functioning as an
adaptor molecule that links a cullin-5-based E3 ubiquitin lig-
ase complex with APOBEC3G leading to polyubiquitination
and targeting APOBEC3G and APOBEC3F to proteosomal
degradation [99–101].

Another restriction factor implicated in early steps of
HIV-1 replication is tripartite motif-containing 5 (TRIM5).
TRIM5 functions as E3 ubiquitin ligase and recognizes the
motifs in viral capsid in the cytoplasm of an infected cell.
TRIM5 prevents reverse transcription and transports viral
genome to the nucleus [102]. Although the exact mechanism
of TRIM5 inhibition is unknown, it has been suggested
that TRIM5 promotes innate immune signaling, which is
enhanced by interactionwith viral capsid lattice [103]. TRIM5
binds to the viral capsid and activates the protein’s ubiquitin
ligase activity resulting in the synthesis of ubiquitin chains.
These chains stimulate TAK1 (also known as MAP3K7)
phosphorylation followed by expression ofNF-𝜅B-dependent
genes. In primates, TRIM5 expression regulates expression of
genes by AP-1 and NF-𝜅B activation [103, 104].

Tetherin is another intrinsic restriction factor involved in
innate antiviral response. Tetherin/BST2, a glycosylated type

II transmembrane protein, prevents budding of newly formed
virus particles from plasma membrane of HIV-1 infected
cells. Tetherin restricts HIV-1 transmission from one cell to
another [105]. Its expression is upregulated by type I IFN.
HIV-1 viral protein unique (Vpu) induces detachment of
virus particles from cell membrane [106, 107]. Vpu interacts
directly or indirectly with tetherin and reduces its expression
at the surface. Viruses that are defective in Vpu expression
remain tethered to the cell surface [11]. These tethered
virus particles are subjected to endocytosis and degraded in
lysosomes [12]. Recent studies indicated that the Vpu-like
activity has been reported for other viral proteins including
Env and Nef [13, 108, 109].

10. Other Regulatory Factors

Studies have shown that HIV-1 infection as well as innate
immune response to viral infection could be controlled by
host miRNAs [110]. miRNAs are short ∼20–22 nucleotide
long small noncoding RNA molecules expressed in most
organisms [111]. These miRNAs control gene expression by
binding to the 3󸀠 UTR region of the target mRNAs. They can
regulate the expression of both cellular and viral genes. For
example, miR-26a, -34a, 145, and let-7b have been reported
to regulate IFN-𝛽 in human and macaque cells [112]. Distinct
differences in miRNA profiles have been reported in PBMCs
infected with HIV-1 compared to control [113]. HIV-1 repli-
cation involves downregulation of specific cellular miRNAs
(e.g., miR-29), which plays a significant role in controlling
HIV-1 life cycle. Hsa-miR-29 binds to the conserved sequence
of Nef 3󸀠-LTR, transports HIV-1 mRNA to P-bodies and
inhibits translation of viral mRNA [114]. Other miRNAs
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including miR-150, 223, 198, and 382 have been shown to
be downregulated in HIV-1 infected macrophages and are
known as anti-HIV-1 miRNAs, as they exert negative effect
on the viral replication [115]. Treatment of macrophages with
IFN-𝛼 and -𝛽 increases the expression of these miRNAs
confirming their role in HIV-1 replication [56]. Alternatively,
HIV-1 has also evolved viral miRNA to counterattack the
host machineries. HIV-1 Tat interacts with Dicer, inhibits
its activity, and suppresses the miRNA synthesis [116]. HIV-
1 also blocks RNA silencing pathways by TRBP [62, 63].
Some viral miRNAs such as TARmiRNA, Nef miRNA (miR-
N367), and miR-H1 are expressed, and regulate viral as well
as host gene expression to facilitate virus replication and
establishment of latency [117].

11. Conclusion

The interaction between host and HIV-1 is complex. The
host system utilizes its machinery to defend HIV-1 infection,
whereas the virus uses the host’s tools as means of its
own propagation. Starting at the transmission site (mucosal
barrier) to immune activation site (lymph node), HIV-1
utilizes very unique strategies such as modification of its
PAMPs, rapid mutation in its RNA to escape immune recog-
nition, downregulation of complement receptors, increased
secretion of inflammatory factors, and downregulation of
NK cell function to overcome the innate immune response.
The role of HIV-1 viral proteins to overcome host innate
immunity is specified in Table 1. Current research focuses
on understanding how HIV-1 overrides the innate immune
system at multiple levels. The understanding of how HIV-
1 prevails the host innate immune defense will increase
our knowledge that could improve developing therapeutic
approach to resist HIV-1 infection and spreading.
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