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Information sharing is an integral part of human interaction that
serves to build social relationships and affects attitudes and
behaviors in individuals and large groups. We present a unifying
neurocognitive framework of mechanisms underlying information
sharing at scale (virality). We argue that expectations regarding
self-related and social consequences of sharing (e.g., in the form of
potential for self-enhancement or social approval) are integrated
into a domain-general value signal that encodes the value of
sharing a piece of information. This value signal translates into
population-level virality. In two studies (n = 41 and 39 participants),
we tested these hypotheses using functional neuroimaging. Neural
activity in response to 80 New York Times articles was observed in
theory-driven regions of interest associated with value, self, and
social cognitions. This activity then was linked to objectively logged
population-level data encompassing n = 117,611 internet shares of
the articles. In both studies, activity in neural regions associated
with self-related and social cognition was indirectly related to pop-
ulation-level sharing through increased neural activation in the
brain’s value system. Neural activity further predicted population-
level outcomes over and above the variance explained by article
characteristics and commonly used self-report measures of sharing
intentions. This parsimonious framework may help advance the-
ory, improve predictive models, and inform new approaches to
effective intervention. More broadly, these data shed light on
the core functions of sharing—to express ourselves in positive
ways and to strengthen our social bonds.
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uman social interaction is centered on sharing information
with others (1), and this sharing critically affects the reach
and impact of news, ideas, and knowledge over time (2-5). The
more than 4 billion Facebook messages (6), 500 million tweets
(7), and 200 billion e-mails (8) shared daily highlight this phe-
nomenon. However, not all information is equally likely to be
shared (9, 10). Although a growing body of research describes
large-scale patterns of sharing (11-13), the types of data that are
used to describe such patterns cannot speak to the underlying
psychological and neurocognitive antecedents of sharing. Fur-
thermore, extant empirical research on the psychological mecha-
nisms of sharing (2, 5) is limited by social desirability bias, memory
gaps, and the inaccessibility of unconscious, basic processes in-
herent in self-report and other commonly used measures (14-16).
To this end, we assess the neurocognitive processes in indi-
viduals that translate into population-level sharing of health
news articles (i.e., virality, defined as the mass popularity of a
piece of information among those with direct access to that in-
formation). Real-time measurement of brain activity offers a
mechanistic window into the processes underlying sharing deci-
sions, is less biased by the factors noted above (17, 18), and
hence may offer a new way to understand and predict virality.

Value-Based Virality

We tested a parsimonious model of virality centered around the
value of sharing. Value-based virality posits that (i) two types of
inputs—expectations of self-related outcomes and the social
impact of sharing—inform an overall computation of the value
of sharing a piece of information with others, and (if) this domain-
general value signal translates into population-level information
virality. Operationally, we relied on meta-analyses and large-scale
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studies in social neuroscience and neuroeconomics to define theory-
driven brain regions of interest (ROIs) from which to extract
neural activity as a proxy for each of the three psychological
processes central to value-based virality (Table S1).

Information-Sharing Value

Neuroscientists have identified subregions of the ventromedial
prefrontal cortex (VMPFC) and ventral striatum (VS) that
compute value in various contexts (19). Importantly, prior work
has characterized the domain-general nature of the value signal
that is computed in this neural system (20, 21). That is, if a de-
cision maker is faced with different types of value (e.g., primary
and secondary rewards), the brain’s value system enables direct
comparisons by transforming them onto a common scale during
decision making. Value-based virality argues that this same
mechanism enables sharers to compute an overall value of the act
of sharing a specific piece of information based on considerations
of the self-related and social consequences of sharing. Opera-
tionally, the neural valuation system includes VS and VMPFC
subclusters which are linked to preference judgments and valua-
tion in decision making across hundreds of studies (19) and which
have been linked to sharing decisions in individuals (22, 23).

Self-Related Outcome Expectations as an Antecedent of Sharing

Value-based virality suggests that expectations of self-related
outcomes are one primary antecedent to sharing. In line with
work on self-relatedness, this concept assumes thoughts about
how sharing information affects “our self-presentation or mental
concept” (24). This broad definition encompasses various specific
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thought processes, for instance about the effects of sharing on one’s
self-presentation or its potential to support self-enhancement, which
have been studied separately elsewhere (2, 5). Value-based virality
suggests that neural activity in the brain’s self-related processing
system is the greatest common denominator of these broadly self-
related processes, allowing us to capture within one measure a set of
related cognitions that can vary across people and contexts. Similar to
content that enhances such self-related thoughts (2, 5), information
that engages neural activity in regions related to such processes, es-
pecially in medial prefrontal cortex (MPFC) (24, 25), has been linked
to self-reported intentions to share information (22, 23).

Extant observational evidence further suggests that self-relevant
issues are among the most frequent conversation topics (26, 27),
especially in social media (28), and that disclosing information
about the self may be inherently rewarding (29). Value-based
virality suggests that, through this neural mechanism, expecta-
tions of positive self-related outcomes of sharing increase the
perceived value of information sharing, which in turn increases
the likelihood of actual sharing.

Operationally, we focus on a self-related processing ROI con-
sisting of clusters in the MPFC and precuneus/posterior cingulate
cortex (PC/PCC), regions commonly activated by the types of self-
related judgments detailed above (24, 30).

Social Outcome Expectations as an Antecedent of Sharing

In parallel, value-based virality suggests that expectations of social
outcomes of sharing are another primary antecedent of sharing
decisions. Sharing is an inherently social process, and social con-
siderations can strongly impact how content is received and acted
upon (4, 31). In particular, sharers need to consider others’ mental
states (e.g., knowledge, opinions, and interests) to predict the
potential reactions of their audience and to share successfully (32,
33). This type of social cognition is called “mentalizing” and in-
volves cognitions or forecasts about the mental states of others
(34), for instance, predicting what others are likely to think and
feel about the shared information and about the sharer. Value-
based virality suggests that neural activity in the brain’s social
cognition system constitutes the greatest common denominator of
a range of socially relevant thought processes in sharers, including
thoughts about the meaning of the information to receivers and the
potential for positive social interactions with others. Neurally, ac-
tivity in the mentalizing system has been linked to sharing decisions
in individuals (23), and successful persuaders engage brain regions
strongly associated with mentalizing (35) more than unsuccessful
persuaders within two-person propagation chains (22).

Furthermore, sharing information with others has been found to
be rewarding (36). Value-based virality predicts that, by this mech-
anism, thoughts about potential positive social outcomes of sharing
(e.g., having another person know you better or gaining others’
approval) increase the perceived value of information sharing. This
is reflected by positive associations between neural activity in social
cognition and value systems.

We operationalize social cognition as defined above with an
ROI consisting of clusters in the middle and dorsal MPFC, bi-
lateral temporoparietal junction, and right superior temporal
sulcus, regions which are robustly activated by tasks involving
mentalizing (35) and which specifically overlap with consider-
ations of whether others’ mental states are rational and social (37).

Current Study

We tested the value-based virality framework empirically by
combining data from two fMRI experiments with objectively
logged population-level data on the sharing of New York Times
(NYTimes) health news articles that were collected using the
NYTimes’ Most Popular application programming interface (API)
search tool (11). We focused on neural activity in theory-driven
ROIs associated with key psychological processes (positive valuation,
self-related, and social processing) measured while participants
in two samples were exposed to headlines and abstracts of
NYTimes health news articles. fMRI participants also provided
ratings of the likelihood with which they would share each article
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with their Facebook friends. To create a more realistic sharing
context, participants were informed that they would be asked to
act on their self-reported intentions after the fMRI scan by
sharing articles they rated positively with actual Facebook friends.
Furthermore, several article characteristics, such as positivity and
perceived usefulness, were available from a prior content-focused
investigation of the articles used here (11). Participants completed
similar tasks in the two studies (Fig. S1), and parallel analyses
were applied to the two datasets to allow the replication of our
results linking neural and population-level data. The population-
level framework presented here substantially extends orthogonal
analyses of individual-level results based on study 1 data showing
that decisions about information sharing engage more activity in
value, self-related, and social cognition ROIs than do other types
of decisions and that this neural activity scales with self-reported,
individual-level sharing preferences (23).

Results

Based on the predictions made by value-based virality (Fig. 1),
path models were specified to link percent signal change of brain
activity measured in the three theory-driven ROIs while our
participants read headlines and abstracts to the population-level
sharing counts of each article. The 80 NYTimes articles were
shared a total of 117,611 times (mean + SD, 1,470.1 + 2,304.3
times; range, 34-12,743 times) via Facebook, Twitter, and email
by the NYTimes online reader population within 30 d of each
item’s publishing date.

In both samples, we found robust support for value-based virality
(Fig. 1 and Table S2). First, articles that had high sharing value
indicated by stronger neural activity in the valuation ROI in each of
our samples were shared more frequently by NYTimes readers.
This result is in line with the idea that, in the context of sharing, the
brain’s valuation system encodes the value of sharing information
with others. Further, there are commonalities across people in the
extent to which information engages this neural system.

In addition, the effects of neural activity in self- and social-
cognition systems on population-level virality were fully mediated
through value-related activity in both samples. This finding is con-
sistent with the idea that considerations of self-related and social
outcomes of sharing impact the overall perceived value of the act of
sharing, which in turn directly affects sharing behavior.

These results were robust when using unranked variables
(SI Text, Fig. S2, and Table S3). Further, models specifying value-
related neural activity as the mediator of the effects of social and
self-related processing on virality showed acceptable model fit
and outperformed alternative path models (SI Text, Table S4).
Finally, following our planned ROI analyses, a whole-brain

Study 1: R2=0.73
Study 2: R?=0.69

Study 1: B=6.33, SE=2.00 **
Study 2: B=4.82, SE=2.28 *

Study 1: B=0.25, SE=0.09 **
Study 2: B=0.35, SE=0.12**

Study 1: B=0.79, SE=0.10 ***

Study 2: B=0.58, SE=0.12 ***
Social
Cognition
Virality
Self-Related Study 1: n.s. Study 1: R2=0.18
Processing Study 2: n.s. Study 2: R2=0.10

Independent Variable Study 1 Indirect Effects

B=1.59, CI [0.56 — 3.33]

Study 2 Indirect Effects
B=1.67,Cl [0.24 — 4.87]
B=2.81, Cl [0.39 - 6.80]

Social Cognition

Self-Related Processing B=4.97, Cl [2.47 - 8.15]
Fig. 1. Value-based virality path model. The path diagram shows maximum
likelihood estimates (unstandardized coefficients). The table presents in-
direct effect coefficients and bias-corrected, bootstrapped 95% Cls (1,000
replications). As in prior work predicting population-level message effects
from neural data (30), all variables were rank-ordered. n = 80 in study 1 and
76 in study 2; *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not significant.
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search for regions associated with population-level virality did
not reveal widespread activity outside our ROIs (SI Text, Fig. S3,
and Table S5).

We further compared the predictive power of neural activity in
regions predicted by value-based virality with variance explained
by commonly used self-report measures (intentions to share each
article on Facebook) and tested the robustness of the framework
when controlling for the effects of article characteristics that
have been associated with news virality in prior work (11, 38).
For both the study 1 and study 2 samples, self-reported intentions
were significant predictors of population-level sharing (explaining
11.3% and 13.8% of its variance, respectively). Neural activity
alone explained 17.5% and 9.6% of the variance in the virality
outcome in studies 1 and 2, respectively (Fig. 1). When combined,
both self-reported intentions and brain activity remained signifi-
cant predictors, together explaining 19.2 and 19.1% of the vari-
ance in studies 1 and 2, respectively (Fig. S4 and Table S2). In
addition, all effects reported in Fig. 1 were robust, even when
controlling for any of nine content characteristics available for the
article headlines and abstracts (SI Text). Thus, brain activity
measured with fMRI can significantly improve the prediction of
large-scale sharing behavior beyond other commonly used metrics.

Discussion

Information sharing is an integral part of human nature (1) that
enables and accelerates innovation and development in modern
societies (3, 39). We iteratively combined neuroimaging data with
objectively logged population-level data on hundreds of thousands
of shares from the NYTimes API search tool to test a parsimo-
nious, neurocognitive framework of the psychological mechanisms
underlying sharing decisions that translate into population-level
virality. Specifically, we argue that potential sharers consider a
broad range of self-related and social consequences of sharing a
piece of information with others. The resulting self-related and
social-relevance judgments then serve as inputs to the brain’s
valuation system, which converts them to a common scale. This
overall value of information sharing is directly predictive of large-
scale sharing dynamics.

Consistent with this framework, we found that brain activity in
the valuation system (VS and VMPFC) in two groups of par-
ticipants was associated with virality in the larger population
(117,611 total shares of 80 NYTimes articles). That is, articles
associated with higher information-sharing value in the brain
when individuals first read the headlines and abstracts were
shared more frequently by the population of NYTimes readers.
Information-sharing value may be a primary psychological mo-
tivator and central theoretical concept that guides sharing be-
havior at scale. Prior work has shown that neural activity in the
brain’s valuation system is not only associated robustly with per-
sonal preferences (19) but also with the expectation of positive
outcomes (40, 41). Brain activity in response to persuasive mes-
sages in these regions also is associated with message-consistent
behaviors at the individual (22, 42) and population level (30, 43,
44). Our findings show that the predictive validity of neural val-
uation activity extends to the realm of information virality and
highlights the domain-general nature of this brain signal (20, 21).
In the case of sharing, value-based virality suggests that consid-
erations of self-related and social consequences of sharing are key
inputs in the computation of the value of sharing information,
even though the specific nature of the self-related and social in-
puts that inform that value signal may vary depending on qualities
of the information sharer, the receiver, or their relationship.

In line with this argument, we found robust, indirect effects of
brain activity in regions associated with self-related processing
during article exposure on population-level sharing behavior
through value-related activity. Prior evidence has linked a range
of self-related judgments to sharing. For example, the promotion
of a positive self-image (46, 47) is an important goal in social
interactions, and information that allows potential sharers to
appear in a more positive light is more likely to go viral (2, 5),
perhaps because it increases the perceived value of information
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sharing. Further, self-disclosure increases activity in the brain’s
valuation system, suggesting that providing information about or
reflecting about the self might be inherently rewarding (29).
Value-based virality brings together prior findings, arguing that
self-related neural activity is the greatest common denominator
for various self-related thought processes, including reflecting
self-concept and self-presentational concerns, and constitutes a
primary antecedent of sharing value.

Further, our results show an indirect effect of activity in neural
regions associated with social cognition, and in particular men-
talizing, on population-level article virality through value-related
activity. Existing work has shown that the expectation of positive
social outcomes such as positive interactions with others engages
the brain’s valuation system (40, 48), and our ROI overlaps with
brain regions supporting considerations of whether others’
mental states are rational and whether they are social (37). So-
cial belonging is a basic human need and motivation (49, 50), and
relationship maintenance has been suggested as a motivator of
information sharing (2, 5). A range of basic social motives fo-
cused on understanding others’ minds and forecasting their re-
actions, and expectations about positive social outcomes of
sharing information with others may increase the perceived value
of information sharing; in turn, the perceived increase in the
value of information increases the potential that the information
will go viral. Value-based virality brings together prior findings,
arguing that neural activity in areas associated with social cog-
nition is the greatest common denominator for various social
thought processes and informs sharing value.

Although we removed voxels within the VMPFC and PCC [re-
gions commonly associated with both self-related and social pro-
cessing (24, 35, 51)] from our social-processing ROI to ensure
statistical validity, self-related and social thoughts are conceptually
intertwined. Social psychologists have suggested that one’s sense of
self is defined by simple rules that include or exclude an individual
from certain social groups and practices, resulting in a “social self”
concept (52, 53). In the context of value-based virality, it follows
that content that is expected to have positive social outcomes when
shared (e.g., because it is helpful to the receiver or results in a
positive social interaction) will likely reinforce the perceived posi-
tivity of self-related outcomes of sharing (e.g., by making the sharer
look charitable and friendly) and vice versa. Nonetheless, our
analyses demonstrate that when operationalizations of both self-
related and social processing are included in one model, each
concept contributes unique variance to the calculation of overall
sharing value. In the future, explorations of the relative importance
of each cognition and the patterns of their interaction in the cal-
culation of information-sharing value will be valuable.

Finally, in line with prior investigations in other contexts (30,
43-45, 54), we show links between brain activity in small groups
of individuals and large-scale virality, even though the perception
of the sharing value of the same content might vary across
people, and the same content might appear valuable to different
people for different reasons. Although what is personally rele-
vant to the self and useful to share with others might differ
somewhat across individuals, human societies are characterized
by a set of basic common values and social norms that drive
behavior across individuals (55, 56). Sharing decisions rely on
such basic motives, namely, the pursuit of a positive self-image
and social belonging (46, 49). Consequently, similar types of
information are likely to be perceived to have high sharing value
across individuals. Furthermore, expectations of self-related and
social outcomes, two core concepts within value-based virality, are
defined broadly as the greatest common denominators of various
self-related and social thought processes, respectively. In other
words, population-level prediction of virality from neuroimaging of
small groups is likely facilitated by broad societal values, the in-
clusiveness of our theoretical conceptualizations, and the unique
information afforded by neuroimaging. Specifically, neuroimaging
is optimally situated to identify such high-level, hard-to-articulate
cognitions, allowing us to capture relevant cognitions in a parsi-
monious way despite the variability in the thought processes that
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different individuals might associate with the same content. Along
with this strength, however, we relied on functionally defined ROIs
to take optimal advantage of neuroimaging to operationalize these
constructs, which are inherently subject to the limitations of reverse
inference (57).

The results summarized in this article were robust across
several methods of analysis, and the hypothesized model out-
performed alternative path structures, although causal infer-
ences are limited by the cross-sectional nature of our data.
Additionally, a whole-brain analysis did not provide strong evi-
dence for the involvement of neural regions outside our ROIs in
population-level virality. Nevertheless, future work might reveal
other basic processes that could complement the theory, for in-
stance as additional inputs to the value signal or its antecedents.
Further, our effects were robust, even when controlling for self-
reported sharing intentions and various article characteristics. In
sum, our data highlight the value of including neural variables in
the conceptualization of virality in the context of health news and
offer a testable and parsimonious framework that could be ex-
tended to virality in other contexts. This mechanistic account of
sharing decisions complements insights from previous studies
using self-report measures or big data approaches (e.g., 12, 13).

Conclusion

Information that elicits greater brain response in self-, social-, and
in turn value-related systems is more likely to be shared. These
processes may reflect thoughts about the potential outcomes of
sharing to the self and to one’s social relationships. If so, self-
related and social processes could serve as targets for content de-
signers aiming to increase the virality potential of their messages.
Taken together, our data support a parsimonious neurocognitive
model of virality, one of the most prominent social phenomena in
the 21st century, and shed light on the core functions of sharing—
to express aspects of ourselves and to strengthen our social bonds.

Methods

Neural activity was examined while two samples of participants (study 1 and
study 2) completed the article task (Fig. S1) in which participants were ex-
posed to headlines and abstracts of news items taken from the NYTimes website
(https://Amvww.nytimes.com/). We then tested for associations between activity
within functionally defined, theory-driven ROIs associated with self-relatedness,
social processing, and valuation and the number of article retransmissions per-
formed online by NYTimes readers as a population-level indicator of virality.
Similar protocols were administered in both studies, and each group of
participants was presented with the same news items. Differences in data col-
lection and processing between the two studies are detailed below. All models
and results reported here were derived using parallel statistical approaches across
studies. All participants provided informed consent, and all procedures were
approved by the Institutional Review Board at the University of Pennsylvania.

Hypothesis Preregistration. At the onset of study 1, we preregistered our study
design (58), and upon completion of data collection we explored the relationship
between neural data and population-level article retransmission. Based on the
results in study 1, hypotheses specifying the effects of self- and social-processing
on value-related neural activity and of activity in the value-related ROI on pop-
ulation-level virality were preregistered before the analysis of study 2 data (59).

Sample NYTimes Article. During the article task, participants in both samples
were exposed to the original headline and abstract of 80 articles from the
Health section of the NYTimes website (https://www.nytimes.com/). The ar-
ticles were chosen from a complete census (excluding certain article cate-
gories to preserve homogeneity in article format; see ref. 11 for details) of
articles (n = 760) published online in the 7.7 mo between 11 July 2012 and 28
February 2013. Population-level data about the number of retransmissions
of each article through email, Twitter, and Facebook were collected via the
NYTimes API. The 80 articles were chosen to maximize comparability re-
garding topic (healthy living and physical activity) and length (for the word
count of title and abstract, see S/ Text). The 80 articles selected into the
final sample were of comparable lengths, i.e., a word count (mean + SD) of
29.43 + 3.87 words (range, 21-35 words). To control for reading speed in
study 1, we produced audio files in which a female voice read each of the
article headlines and abstracts. Depending on word count, each audio file
was produced to last 8, 10, or 12 s.
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Coded characteristics of each article’s headline and abstract were avail-
able as described by Kim (11).

Population-Level Retransmission. An article’s population-level retransmission
count was measured through the NYTimes’ Most Popular API and defined as
the sum of retransmissions via Facebook, Twitter, and email using sharing
tools available on the NYTimes website within 30 d of the article’s first ap-
pearance on the website (mean + SD, 1,470.14 + 2,304.32 retransmissions;
range, 34-12,743 retransmissions). Retransmission counts for social media
(Twitter and Facebook) and email were highly correlated (r = 0.917) and thus
are not presented separately, although results remain substantively identical
when each type of sharing is considered separately.

Study 1 Participants. From a larger sample of respondents who participated in
a project examining the neural correlates of retransmission and social in-
fluence by filling out a short online survey, we selected 43 participants. These
43 participants completed an online screening process and an in-person
appointment including a 60-min fMRI scan. To be eligible for the fMRI
portion, screened participants had to meet standard fMRI eligibility criteria
including no metal in the body, no history of psychiatric or neurological
disorders, not currently pregnant or breast-feeding, and not currently taking
psychiatric or illicit drugs. All participants were right-handed.

Two participants were excluded from analysis because of data corruption.
One participant saw only three of the four conditions during the article task,
and one participant showed poor normalization to the template brain.
Additionally, for four participants a smaller number of trials was available for
analysis because of the loss of data from one run of the article task (n = 1),
excessive head motion in one run of the task (n = 2), and technical diffi-
culties in which 23 articles were shown twice, resulting in only 57 trials
that qualified as initial exposures to an article (n = 1). The partial data
from these participants were included in the analyses. The age of the final
sample of 41 participants (29 females) was 20.6 + 2.1 y (mean + SD)
(range, 18-24y).

Study 2 Participants. Forty participants were selected from the pool of re-
spondents used to select the study 1 sample using inclusion criteria that
paralleled those in study 1. These participants underwent an fMRI session.

Because of excess head movement during the article task, one participant
was removed from all analyses, and one run of the article task was discarded
for a second participant. The remaining 39 participants (28 female) were
18-24 y old (mean + SD, 21.0 + 2.02 y).

Study 1 Article Task. Inside the fMRI scanner, study 1 participants completed
two runs of the article task consisting of 40 trials each (Fig. S1A). Each trial
lasted an average of 14.7 s without fixation. At the beginning of each trial a
cue screen indicating the current condition was presented for 1.5 s. Then
participants read the article’s title and abstract while considering a condition-
specific question. In the four conditions participants were asked to consider
(i) whether to read the full text of the article themselves, (ii) whether to share
the article via a post on their Facebook wall; (iii) whether to share the article
via a private Facebook message to one friend (5-point Likert-type scales from
very unlikely to very likely), and (iv) whether age/nutrition/fitness/science/
laws/well-being/cancer was the topic of this article (5-point Likert-type scale
from certainly not to certainly yes). Conditions were presented in a pseudo-
random order based on a Latin-square. To control for reading speed, head-
lines and abstracts were also presented in auditory format through scanner-
compatible headphones while the text was presented on the screen. Article
abstracts were categorized in three groups depending on the length of
the text. Consequently, the reading screen was presented for 8 (n = 16), 10
(n =40), or 12 (n = 24) s. Article length was counterbalanced across conditions
and task runs. The reading screen was followed by a randomly jittered fixa-
tion screen that lasted 1.5 s on average (range, 0.5-4.7 s). Participants then
used a button box to indicate their answer to the condition-specific question
(3 s). Finally, there was a randomly jittered intertrial interval with an average
length of 2 s (range, 1-4.7 s).

In this analysis, we focused on reading trials in which participants viewed
the article headlines and abstracts to decide whether they wanted to read the
full text of the article (see S/ Text for results in other conditions). Furthermore,
we only included reading screens within each trial (i.e., periods in which article
headlines and abstracts were visible). This task condition closely mimics natural
situations in which readers are initially exposed to articles online.

Study 2 Article Task. Study 2 participants completed two runs (21 trials each) of a

modified version of the article task (Fig. S1B). First, each article’s headline and a
description of the article were presented on the reading screen for 10 s, and
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participants were instructed to read the text on the screen. Articles were not
presented in auditory format in study 2. Three types of article descriptions were
used: Participants saw the original article headline and abstract that also was
seen by study 1 participants (i) or saw the original article headline and a Tweet-
length message written by a participant in study 1 to be shared either with one
Facebook friend (i/) or on the participants’ Facebook wall (iii). The reading
screen was followed by a randomly jittered fixation period (mean, 1.5 s; range,
0.3-4.8 s). Afterward, participants provided two ratings per trial: (i) the likeli-
hood they would share the article on their Facebook wall and (ii) the likelihood
(on 5-point Likert-type scales paralleling those used in study 1) that they would
share the article via a private Facebook message with one friend. Each rating
screen was available for 3 s. Rating screens were separated by a short, jittered
fixation period (mean, 1.5 s; range, 0.4-4.3 s). Finally, there was a randomly
jittered intertrial interval (mean, 2.9 s; range, 0.5-11.5 s). To parallel study 1
analyses closely, only reading screen periods within each trial (i.e., when article
headlines and descriptions were visible) and only abstract trials that presented
original NYTimes abstracts were analyzed here. The 80 articles used in study 1
were pseudorandomly assigned to experimental conditions for each participant
in study 2; however, because of randomization, only 76 articles were presented
in the relevant abstract condition across all study 2 participants.

A Priori ROIs. Three neural masks were constructed as functional ROIls based
on extensive prior work in each of the respective subject areas (Table S1). The
self-relatedness ROl was defined based on a prior study (30) that collected
neural data using a well-validated self-localizer task (60) in which partici-
pants judge whether personality traits describe them or not (the self-con-
dition) or whether the adjective shown is positive or negative (the valence
condition). Blocks of self-judgments are contrasted with blocks of valence
judgments to isolate neural activity associated with self-relatedness.

The social-processing ROl was defined based on a large-scale study that
used the well-validated false-belief localizer during which participants en-
gage in mentalizing (35). Trials during which participants judged whether
beliefs held by others were true or false were contrasted to trials in which
they judged whether physical representations were true or false to retrieve
the mask used here. To avoid inflated correlations among activity in the
three neural systems, we created a reduced version of the social cognition
mask, excluding the clusters in VMPFC and PCC that overlap with the self
and value ROIs. This mask is used in all analyses presented here. Models
using the full social-cognition ROI instead of the reduced social-cognition
ROl yielded very similar results and support identical conclusions.

Finally, the valuation ROI was defined based on a quantitative meta-
analysis of 206 studies that reported neural correlates of subjective valuation
during decision making. This mask represents the conjunction of several
valuation-relevant contrasts, all of which required some form of value-based
decision making (figure 9 in ref. 23).

MRI Image Acquisition. Neuroimaging data were collected using a 3-T Siemens
Magnetom Tim Trio scanner equipped with a 32-channel head coil was used for
40 participants in study 1 and 33 participants in study 2, and a Siemens Prisma 3T
whole-body MRI with a 64-channel head/neck array was used for one partic-
ipantin study 1 and six participants in study 2. Identical specifications were used
on both scanners, except for the number of slices acquired for T2*-weighted
images (54 at the Tim Trio and 52 at the Prisma scanner). This difference was
accounted for in the slice-time correction step during preprocessing. Standard
parameters used to acquire T2*- (two runs of 500 volumes in study 1 and two
runs of 311 volumes in study 2), T2-, and T1-weighted anatomical image se-
quences are described in detail in the S/ Text.

Imaging Data Preprocessing. For the analysis of data from both studies, we
used SPM8 (Wellcome Department of Cognitive Neurology, Institute of
Neurology, the University of London), incorporating tools from AFNI (Analysis
of Functional Neurolmages) (61) and FSL (FMRIB Software Library) (62) during
data preprocessing. The first five volumes of each run were not collected
to allow stabilization of the blood oxygenation level-dependent (BOLD)
signal. Functional images were despiked using 3dDespike as implemented
in AFNI. Slice time correction was performed using Sinc (Stanford University
ideal bandlimited) interpolation in FSL. Data then were spatially realigned
to the first image and were coregistered in two six-parameter affine stages.
First, mean functional images were registered to in-plane T2-weighted
images. Next, high-resolution T1 images were registered to the in-plane im-
age. After coregistration, high-resolution structural images were segmented
into gray matter, white matter, and cerebral spinal fluid to create a brain
mask used to determine the voxels to be included in first- and second-level
models. The masked structural images then were normalized to the skull-
stripped Montreal Neurological Institute (MNI) template provided by FSL
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(MNI152_T1_1mm_brain.nii). Finally, functional images were smoothed using
a Gaussian kernel (8 mm FWHM). The fMRI data were modeled for each par-
ticipant using fixed-effects models within the general linear model as imple-
mented in SPM8, using SPM’s canonical difference of gamma hemodynamic
response function (HRF). The six rigid-body translation and rotation parameters
derived from spatial realignment were also included as nuisance regressors in
all first-level models. Data were high-pass filtered with a cutoff of 128 s. Ran-
dom effects models for the article task were also implemented in SPM8.

Analysis of Study 1 Imaging Data. We took an itemwise approach to modeling
the article task using procedures similar to those used elsewhere (30, 61). Spe-
cifically, using a single boxcar function for each trial (i.e., each of the 80 articles)
encompassing the 8- to 12-s reading screen, we extracted neural activity in each
ROI during each trial compared with the implicit baseline resting state. Activity
related to cue and all rating screens was pooled into a separate regressor of no
interest each. In addition, the model for one participant who accidentally saw
several articles twice included an additional regressor of no interest for each
second occurrence of an article. Fixation periods were pooled into the implicit
baseline rest.

Analysis of Study 2 Imaging Data. Study 2 data were analyzed using methods
parallel to those applied to study 1 data to yield comparable models. Spe-
cifically, using a single boxcar function for each of the 42 trials per participant,
encompassing the 10-s reading screen, we extracted neural activity observed
during each trial compared with the implicit baseline resting state. A re-
gressor of no interest was included for each of the two rating screens. Fixation
periods were pooled into the implicit baseline rest.

Path Models. For each a priori ROI, average parameter estimates of activity
across all voxels within the region were extracted for each participant and
each article using Marsbar (63). Each set of parameter estimates was divided
by the grand mean to derive estimates of the percent signal change. Percent
signal change vectors for each participant were reduced to those trials
shown in the reading condition for study 1 and in the abstract condition for
study 2. For each participant, these reduced vectors were then z-scored
and ranked across articles. As in prior work (30), we then computed the
mean ranks of each article across participants and linked these data with the
ranked population-level data from the NYTimes API separately.

Specifically, we conducted path analyses using maximum likelihood esti-
mation in lavaan (64) to yield the results presented in Fig. 1. Nonparametric,
bias-corrected 95% confidence intervals (Cls) for indirect effects using 1,000
bootstrap samples were further estimated using the mediation package for
R (65) to test for indirect effects of self-related processing and social pro-
cessing on population-level retransmission through valuation (see Table S2
for relevant correlation matrices).

Robustness Checks. To check the robustness of our results, we fit (/) models using
unranked variables in which population-level retransmission counts were log-
transformed because of the positively skewed distribution (Fig. S2 and Table S3),
(if) models excluding the insignificant direct effects of the exogenous variables
shown in Fig. 1 to obtain model fit statistics (S/ Text), and (iii) alternative structural
models to those estimated in step ii to compare model fit (S/ Text and Table S4).

Whole-Brain Analysis. We conducted exploratory whole-brain searches for regions
associated with population-level retransmission ranks in study 1 and study 2 to
verify the specificity of our results to our ROIs and to explore whether additional
activity outside these ROIs is associated with population-level virality (S/ Text).

Models Including Self-Reported Sharing Intentions and Article Characteristics.
We further tested whether the predictions of value-based virality held above
and beyond the variance explained by self-reported sharing intentions (Fig.
S4 and Table S2) and article characteristics (S/ Text).

Study 1 participants provided one rating (intention either to broadcast or
narrowcast) for 40 articles. For each article, we computed a mean sharing intention
across participants including all available narrowcast and broadcasting ratings.

Study 2 participants provided both narrowcast and broadcasting ratings
for all 42 articles shown to them. For trials shown in the abstract condition, we
first calculated a mean sharing intention across the two ratings for each
article within participants and then computed a mean sharing intention for
each article across participants.

First, ranked population-level retransmission was regressed onto sharing
intentions to estimate the effect of intentions on virality in each sample.
Second, we reestimated the models shown in Fig. 1 with self-reported in-
tentions specified as an additional exogenous variable with a direct effect
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on population-level retransmission. This step was further repeated for each
available article characteristic (S/ Text).
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