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Transcription factors play key roles in cell-fate decisions by
regulating 3D genome conformation and gene expression.
The traditional view is that methylation of DNA hinders tran-
scription factors binding to them, but recent research has
shown that many transcription factors prefer to bind to meth-
ylated DNA. Therefore, identifying such transcription factors
and understanding their functions is a stepping-stone for
studying methylation-mediated biological processes. In this
paper, a two-step discriminated method was proposed to
recognize transcription factors and their preference for meth-
ylated DNA based only on sequences information. In the first
step, the proposed model was used to discriminate transcrip-
tion factors from non-transcription factors. The areas under
the curve (AUCs) are 0.9183 and 0.9116, respectively, for
the 5-fold cross-validation test and independent dataset test.
Subsequently, for the classification of transcription factors
that prefer methylated DNA and transcription factors that
prefer non-methylated DNA, our model could produce the
AUCs of 0.7744 and 0.7356, respectively, for the 5-fold
cross-validation test and independent dataset test. Based on
the proposed model, a user-friendly web server called TFPred
was built, which can be freely accessed at http://lin-group.cn/
server/TFPred/.

INTRODUCTION
Transcription factors (TFs) have prominent roles in 3D genome or-
ganization and transcriptional regulation. During the formation of
3D genome, TFs mediate long-range interactions of DNA sequences
and induce TAD and loop formation, A–B compartment switching,
and nuclear repositioning.1 The 3D genome conformation further
affects transcriptional regulation. Transcriptional regulation of
gene expression plays a critical role in many cellular processes,
including cancer development2 and plant yield.3 Identification of
TFs is essential for understanding 3D genome functions and gene
regulatory mechanisms.4 The traditional view thought that TFs usu-
ally bind to non-methylated DNA motifs, where high-level methyl-
ation of CpG dinucleotides can prohibit the recruitment of TFs.5

However, hundreds of TFs were identified to prefer methylated se-
quences by experimental methods. For example, KLF4,6 TET,7

CEBPA,8 and ZFP579 were identified to bind to methylated DNA
with high affinity. The binding of methylated DNA to TFs is usually
through hydrophobic interactions.10 Moreover, the binding motif in
methylated DNA may be different from that in non-methylated
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DNA.10,11 Study has shown that the methylated DNA-bound
TFs are primarily involved in embryonic and organismal develop-
ment in the human body.5,10,12,13 As a result, the interaction
between methylated DNA and TFs can activate or repress gene
expression, initiate transcription, and regulate RNA splicing.
Furthermore, abnormal interactions may cause diseases.11,14,15

However, the detailed function of the interaction between
methylated DNA and TFs is still unknown. Identification of such
TFs and elucidation of their roles becomes an important step in un-
derstanding methylation-mediated biological processes and related
human diseases.

There are some high-throughput experimental methods5 to identify
the TFs that prefer bind to methylated DNA, such as tandem mass
spectrometry, functional protein microarray, DNA microarray,
ChIP-BS-seq (chromatin immunoprecipitation followed by bisulfite
sequencing) and systematic evolution of ligands by exponential
enrichment (HT-SELEX). However, in the post-genome era, the
number of protein sequences exploded. It is costly and time-
consuming to annotate new proteins by these experimental
methods. The gap between unknown and annotated proteins is
becoming wider and wider. Therefore, it is necessary to develop
computational methods16–19 to recognize the TFs that prefer to
bind to methylated DNA. However, to the best of our knowledge,
there is still not such a tool for the identification of methylated
DNA-bound TFs.

In this paper, we first collected the datasets of TFs and non-TFs from
literatures and database and then built a two-step classifier based on
these datasets. As shown in Figure 1, the first step is to identify TFs
based on support vector machine (SVM), and the second step is to
further predict the TFs that prefer to bind to methylated DNA by
applying XGBoost. Sequence-based feature extraction methods were
used to represent protein sequences, and the analysis of variance
(ANOVA) combined with incremental feature selection (IFS) tech-
nique was applied to obtain the optimal feature set. Finally, for the
convenience of experimental scientists, a user-friendly web server
was built according to the proposed method.
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Figure 1. The Workflow of This Work
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RESULTS AND DISCUSSION
Amino Acid Composition (AAC) of TFs and Non-TFs

The code arrangement from the primary sequence is the most essen-
tial for the formation of protein unique functions. Therefore, the
AAC was used to analyze the preference of different sequences for
specific amino acids. Figure 2 plotted the average AAC of positive
and negative samples in the two datasets, respectively. It can be
seen from Figure 2A that the frequency of A, Q, H, G, P, and S in
TFs are significantly higher than that in non-TF (t test, p < 0.01).
In contrast, the frequency of D, C, E, I, N, L, K, M, F, W, Y, and V
in non-TFs is higher than that in TFs (t test, p < 0.01). These amino
acids may be closely related to the function of TFs that further
studies need to focus on. As can be seen from Figure 2B, the AAC
of the two type of TFs is very similar, so it is difficult to distinguish
them by only AAC.

Model Construction by Applying Sequence-Based Features

Identification of TFs by Applying ANOVA

The ensemble features of composition/transition/distribution
(CTD), split AAC (SAAC), and dipeptide composition (DC) were
used to train the TFs prediction model, so each sample was con-
verted to a 528-dimension vector. SVM was used as the machine
learning algorithm. To get rid of the redundant features, we used
ANOVA combined with IFS was used for feature selection. The ac-
curacy of 5-fold cross-validation test was used to choose the optimal
feature set. Figure 3 showed the corresponding IFS curve. It is
obvious that the optimal feature set including the top ranked 201 fea-
tures could produce the maximum accuracy of 86.54%. Therefore,
the 201 optimal features were used to construct the final classifica-
tion model. Of these 201 features, 28 are from SAAC, 128 are
from DC, and 45 are from CTD. All three kinds of features have a
positive effect on the classification of sequences. We further investi-
gated the top ten features and found they were all derived from CTD,
which are related to the charge, hydrophobicity, van der Waals vol-
ume, secondary structure, and polarizability of the protein sequence.
This indicates that physicochemical properties are very important
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for the recognition of TFs, whichmay be because
the function of a TF is closely related to its phys-
icochemical properties.

Prediction of TFs that PreferMethylatedDNA

by Comparing Different Features

In order to balance the number of positive
and negative samples, 146 positive samples
in the benchmark dataset were randomly
selected for model training. XGBoost was
applied to build a classifier that predict TFs
that prefer methylated DNA. In XGBoost al-
gorithm, there are many hyper-parameters
like the maximum tree depth for base
learners, the learning rate, the booster method, the tree method,
and so on. In order to quickly and efficiently obtain a model
with high classification ability, we focused on four parameters,
including the maximum depth of the tree, the number of boost-
ing iterations, the subsample ratio, and the learning rate. Grid
search was used to get the best classification accuracy. The cor-
responding parameters were listed in Table 1.

In order to compare the impact of different sequence representa-
tion methods on classification performance, we used the three
feature extraction methods mentioned in the previous section,
respectively, to encode the sequences, and obtained the corre-
sponding results of 5-fold cross-validation test, which were re-
corded in Table 2. It was found that although the ensemble features
contained more features, they didn’t always perform better. The
single feature DC achieved the highest value on all of the evalua-
tion indicators except Sp. Its sensitivity (Sn), specificity (Sp), accu-
racy (Acc), Matthew’s correlation coefficient (MCC), and area un-
der the curve (AUC) were 73.29%, 69.86%, 71.58%, 0.4318, and
0.7744, respectively. Therefore, DC was used to predict TFs that
prefer methylated DNA.

It can be seen that the prediction performance in the second step is
lower than it in the first step. The reason might be related to the scale
of problems. TFs are significantly different in function from other
proteins, which is easily observed from the AAC analysis. Therefore,
it is relatively easy to distinguish between TFs and non-TFs. However,
no matter what kind of TFs, they all have a similar function that could
interact with DNA sequences. Their sequence difference is relatively
small, and thus it is difficult to identify TFs that prefer methylated
DNA.

Comparative Performance among Different Machine Learning

Methods

In addition to SVM and XGBoost, manymachine learning algorithms
have achieved excellent performance on sequence classification



Table 1. The Parameters in XGBoost and the Corresponding Value Ranges

Parameter Range Number

Maximum depth of the tree from 1 to 6 6

Number of boosting iterations from 1 to 30 30

Subsample ratio from 0.5 to 1 with step 0.1 5

Learning rate from 0.1 to 1 with step 0.1 10

Figure 3. The IFS Curve for Identifying TFs

It reaches a peak of 86.54% when abscissa is 201.

Figure 2. The 20 Amino Acid Composition in the Two Kinds of Data

(A) TFs versus non-TFs. (B) TFs that prefer methylated DNA versus TFs that prefer

non-methylated DNA.
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problems. We compared the performance obtained in the previous
section with the performance of other machine learning algorithms,
including linear classification algorithms, such as logistic regression
(LR), and non-linear classification algorithms, such as random forest
(RF) and k-nearest neighbor (KNN). In LR, KNN, and SVM,
ANOVA was used for feature selection, whereas no extra feature se-
lection technique was applied in XGBoost and RF because they have
their own feature selection mechanisms. The results of 5-fold cross-
validation test were plotted in Figure 4. From Figure 4A, for predict-
ing TFs, the performances of the five classifiers are similar. Among
them, SVM achieves the best performance and its results on all eval-
uation indicators are the highest. On the contrary, these algorithms
display quite different performances for distinguishing between two
types of TFs. As shown in Figure 4B, the XGBoost achieves the best
prediction performance. Above results suggest that different classifi-
cation algorithms are suitable for different classification problems.

Model Evaluation on the Independent Dataset

The independent dataset was used to evaluate the generalization abil-
ity of the models. The corresponding results were recorded in Table 3.
TFPM and TFPNM in the table refer to TFs that prefer to bind to
methylated DNA and those that prefer to bind to non-methylated
DNA. It can be seen from the table that the accuracies of models
are 83.02% and 68.87%, respectively, in the identification of TFs
and those that prefer methylated DNA, which are almost equal to
the results of the 5-fold cross-validation test. This demonstrates
that the model possesses high stability. In order to show the predic-
tion ability of the model more vividly, we draw the ROC curves of
5-fold cross-validation test and independent dataset test in Figure 5.
It shows that our models are powerful. For predicting TFs that prefer
methylated DNA, 124 samples were not used in the training dataset.
We used the model to predict these samples, and 86 were identified,
which further indicates that the model is robust. In order to know
whether our model is also effective for mouse TFs, 129 TFs that prefer
to bind to methylated DNA5 were used to examine our model. How-
ever, only 66 TFs were identified correctly, suggesting the species
specificity of TFs’ sequences.
Web Server

Based on our proposed models, a user-friendly web server called
TFPred was constructed for the convenience of experimental scien-
tists. A step-by-step guide is given as follows:

Step 1: enter the website http://lin-group.cn/server/TFPred in the
browser. You can see the home page as shown in Figure 6.

Step 2: click the “Web Server” button and type or paste query pro-
tein sequences in the format of FASTA into the input box.

Step 3: select the protein type to be predicted.

Step 4: click on the “submit” button and see the predicted result.
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 1045
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Table 2. The Effects of Different Feature Extraction Methods on Prediction

of TFs that Prefer Methylated DNA

Feature Sn (%) Sp (%) Acc (%) MCC AUC

(1) CTD 63.01 71.23 67.12 0.3436 0.7447

(2) DC 73.29 69.86 71.58 0.4318 0.7744

(3) SAAC 71.92 69.18 70.55 0.4111 0.7459

(1)+(2) 69.86 68.49 69.18 0.3836 0.7565

(1)+(3) 65.75 72.60 69.18 0.3845 0.7245

(2)+(3) 71.23 70.55 70.89 0.4178 0.7666

(1)+(2)+(3) 69.86 70.55 70.21 0.4041 0.7401
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Besides the web server prediction, a stand-alone software package is
also available on the download page, so one can download it and
perform the prediction locally.
Figure 4. The Performance Comparison of Different Machine Learning

Algorithms for Two Classification Problems

(A) TFs versus non-TFs. (B) TFs that prefer methylated DNA versus TFs that prefer

non-methylated DNA.
Conclusions

Recently, researchers have found that many TFs prefer to bind to
methylated DNA, which is contrary to our traditional view. However,
the detailed functions of these TFs are still unknown. Identifying such
TFs and understanding their function is essential for studying
methylation-mediated biological processes.

This paper constructed a two-step classifier to identify TFs and their
preference for methylated DNA. It achieved an encouraging perfor-
mance on both training dataset and independent dataset. This indi-
cates that the protein sequence contains important information for
binding to the target DNA. For the convenience of experimental sci-
entists, we built an online free web server TFPred. We hope the tool
could provide important clues for further study of methylated DNA-
bound TFs. In the future, we will collect more annotated TFs and deal
with TFs of different species.
Table 3. The Performance of the Models on an Independent Dataset

Data Sn (%) Sp (%) Acc (%) MCC AUC

TF versus non-TF 80.19 85.85 83.02 0.6614 0.9116

TFPM versus TFPNM 71.01 64.86 68.87 0.3471 0.7356
MATERIALS AND METHODS
Data Collection and Processing

The TFs that prefer methylated DNA were obtained from the work
of Wang et al.5 They manually collected 601 human and 129 mouse
TFs from the literature. In our study, the human TFs were used to
train models. The TFs that prefer non-methylated DNA were ob-
tained from the work of Yin et al.10 In their study, they systematically
investigated the effects of DNA methylation on TFs and DNA bind-
ing by experimental methods. A total of 286 TFs were confirmed to
prefer non-methylated DNA. In order to build high-quality datasets,
three procedures were performed to further process these sequences.
First, sequences that contain non-standard amino acid residues,
such as “B,” “X,” or “Z,” were excluded because they have multiple
possible meanings and the specific meaning is uncertain. Second,
CD-HIT20 with the cut-off threshold of 25% was used to get rid of
redundant samples.21 Third, sequences with less than 50 amino acids
were removed. As a result, 339 TFs that prefer mCpG DNA se-
quences were extracted as positive samples and 183 TFs that prefer
non-methylated DNA were extracted as negative samples. The
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benchmark dataset STF for the classification of two kinds of TFs
can be formulated by:

STF = STFPMWSTFPNM; (Equation 1)

where STFPM and STFPNM denotes the TFs that prefer methylated DNA
and TFs that prefer non-methylated DNA, respectively.

The TF dataset consists of the two above-mentioned TFs with
different methylated DNA preferences. The non-TFs were obtained
from the Uniprot database release 2019_11 according to the
following criteria: (1) proteins should be reviewed; (2) existence of
proteins was proven by “evidence at protein level”; (3) proteins
should be full length and not fragmented; (4) proteins should have



Figure 5. The ROCCurves of 5-Fold Cross-Validation Test and Independent

Dataset Test for the Two Problems

(A) The classification of TFs and non-TFs. (B) The classification of TFs that prefer

methylated DNA and non-methylated DNA.

www.moleculartherapy.org
more than 50 amino acids; (5) proteins should not have the DNA-
binding TF activity; and (6) proteins should come from Homo sapi-
ens. CD-HIT with cut-off 25% was also performed to remove redun-
dant sequences. Finally, 522 non-TFs were randomly selected. The
dataset for the discrimination between TFs and non-TFs can be
formulated by:

S = STFWSnon�TF; (2)

where STF and Snon�TF denotes the TFs and non-TFs, respectively.

To evaluate the performances of predictors, we further divided each
dataset into a training dataset and an independent dataset according
to a ratio of 8:2. The number of sequences in each dataset was shown
in Table 4. All datasets are available at http://lin-group.cn/server/
TFPred/.
Feature Description

The varying length of protein sequences prevents machine learning
from directly handling such information. They need to be represented
as fixed-length vectors. In order to effectively represent protein se-
quences and preserve the differences between positive and negative
samples, many sequence representation methods have been pro-
posed. They are roughly divided into 3 categories,22 which are
sequence-based methods, such as AAC,23–28 DC,29–33 tripeptide
composition (TC),34 evolutionary-information-based methods, such
as position-specific scoring matrix (PSSM), and annotation-based
methods, like Gene Ontology (GO).35–37 In this study, we used three
sequence-based methods to represent protein samples, including
SAAC, DC,29 and CTD.34

SAAC

In SAAC, each protein sequence was divided into three parts. The
20 amino acid frequencies of each part were calculated respectively,
so the dimension of the final vector was 60 for each sequence.35,38

We tried 5, 10, 15, 20, and 25 N-terminal and C-terminal amino
acid residues and found that 25 and 20 terminal amino acid resi-
dues performed best in the first and second step predictions,
respectively. Therefore, these two forms were used for model
construction.

DC

DC used a sliding windowmode with size 2 and step 1 to calculate the
frequencies of all kinds of amino acid pairs in a protein sequence.29–33

Hence, it describes each protein sequence in form of 400-dimension
vector.

CTD

CTD was proposed by Dubchak et al.39 in 1995. The 20 standard
amino acids were first divided into 3 types according to their phys-
icochemical properties. For each property, three descriptors
including composition (C), transition (T), and distribution (D)
were used to describe the global composition in a protein, the prop-
erty changes along the protein and the distribution pattern along the
sequence, respectively. In this study, eight kinds of physicochemical
properties were used including hydrophobicity, normalized van der
Waals volume, polarity, polarizability, charge, second structure, sol-
vent accessibility, and surface tension. Please refer to Tan et al.34 and
Dubchak et al.39 for more details about how to calculate CTD
features.

Feature Selection

In order to remove redundant features and improve the accuracy of
the classifier, many dimensionality reduction methods have been
used in bioinformatics, such as ANOVA,40 minimal redundancy
maximal relevance (mRMR),41 and maximum relevance maximum
distance (MRMD).42,43 Among them, ANOVA usually performs
well in the field of protein prediction and its calculation speed is
fast, so we used it for feature selection. The main idea of ANOVA
is to divide the variance of the data into intra-class variance and in-
ter-class variance, then to calculate the ratio of each feature, and final
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 1047
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Figure 6. A Semi-Screen Shot for the Top Page of the TFPred Web Server
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to sort them in descending order. By combining with IFS,44 an
approximate optimal feature set can be obtained.
Machine Learning

In recent years, machine learning has been widely used for sequence
classification problems.45–54 Among all machine learning algorithms,
SVM and XGBoost are widely used because of their good perfor-
mance. SVM is a single learning method and has been widely used
in bioinformatics.55–63 It maps samples to a new space by kernel func-
tion and finds a hyperplane to maximize the interval between positive
and negative samples. XGBoost is an ensemble learningmethod based
on boosting tree. Its main idea is to continuously add trees and
perform feature splitting to grow a tree. Each time a tree is added,
it is actually learning a new function to fit the residuals of the last pre-
diction. The impact of XGBoost also has been widely recognized in a
number of machine learning and data mining challenges.64
Performance Evaluation

At present, there are two main evaluation methods for machine
learning models including k-fold cross-validation test and indepen-
dent dataset test.65,66 In this article, both 5-fold cross-validation test
and independent dataset test were used to fully evaluate the perfor-
mance of the classifier.

Four standard statistical indicators were used to measure the perfor-
mance of each model namely Acc, Sn, Sp, and MCC, which are ex-
pressed as67,68
Table 4. The Number of Samples in Each Dataset

Sample

Training Dataset Independent Dataset

Positive Negative Positive Negative

TF versus non-TF 416 416 106 106

TFPM versus TFPNM 270 146 69 37
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Acc =
TP +TN

TP +TN + FP + FN
(3)

Sn =
TP

TP + FN
(4)

Sp =
TN

TN + FP
(5)

MCC =
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp ; (6)

where TP represents true positive, TN represents true negative, FP
represents false positive, and FN represents false negative.

The ROC curve is one of the most important indicators to measure the
performance of a classifier. It can be drawnwith 1-Sp as abscissa and Sn
as ordinate by adjusting the threshold of the classifier, The ROC curve
can be characterized by the AUC, and the higher the AUC value, the
better the performance of the classifier. Therefore, we also used the
ROC curve and AUC to measure the performance of a classifier.
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