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A B S T R A C T   

Fat mass and obesity-associated (FTO) protein, the first m6A demethylase identified in 2011, regulates multiple 
aspects of RNA biology including splicing, localization, stability, and translation. Accumulating data show that 
FTO is involved in numerous physiological processes and is implicated in multiple cancers including renal cell 
carcinoma (RCC). However, the exact role of FTO in RCC remains controversial. Some studies demonstrated that 
decreased FTO expression was associated with aggressive clinical features and shorter overall survival in clear 
cell RCC (ccRCC) patients, while others found that FTO inhibition selectively reduced the growth and survival of 
VHL-deficient ccRCC cells in vitro and in vivo. Here, we review the evidence supporting either a promoting or 
suppressive role of FTO in kidney cancers, the mechanisms of action of FTO, and recent progress in developing 
FTO inhibitors.   

Introduction 

The global prevalence and mortality rate of renal cell carcinoma 
(RCC) has significantly increased over the past decades. In the U.S., it is 
estimated that 79,000 people will be diagnosed with cancers in the 
kidney and renal pelvis resulting in 13,920 deaths in 2022 [1]. Targeted 
therapies, including tyrosine kinase inhibitor-based anti-angiogenic 
therapies and immune checkpoint inhibitor-based immunotherapies, 
have been the mainstay for RCC [2]. However, metastatic RCC remains 
incurable not only because of its insensitivity to conventional radio- and 
chemo-therapies, but also due to its intrinsic and acquired resistance to 
targeted therapies [3]. Moreover, the efficacy, response rate, and 
adverse event rate of first-line therapies are not satisfactory, under-
scoring the urgency to develop new therapeutic targets and strategies for 
metastatic RCC [4]. Only through improving our understanding of the 
underlying molecular mechanisms involved in the disease process will 
we be better equipped to fight the global burden of kidney cancer. 

Fat mass and obesity-associated (FTO) gene, so-named after genome- 
wide association studies established a strong correlation between single- 
nucleotide polymorphisms in FTO and human obesity almost a decade 
after FTO was first cloned [5], has recently been implicated in multiple 
RCC subtypes, with clear cell RCC (ccRCC) being the most well studied. 

N6-methyladenosine (m6A), one of the most abundant epitranscriptomic 
modifications of messenger RNA (mRNA) and non-coding RNA (ncRNA) 
in eukaryotic cells, is its main substrate, making FTO the first m6A 
demethylase identified [6]. m6A modifications regulate almost every 
stage of RNA metabolism [7], which in turn affects many biological 
processes including metabolism [8], innate immunity [9], DNA repair 
[10], and programmed cell death [11], as well as various diseases 
including obesity [12] and many types of cancers [13]. Not surprisingly, 
FTO, as one of only two known m6A erasers [14], plays an important role 
in all of these biological processes and human diseases, particularly in 
cancers [15]. The protein structure, molecular targets, and biological 
functions of FTO across cell lines and tissues, especially its 
context-dependent specificity toward its substrates, have been reviewed 
in detail [16]. 

FTO plays context-dependent tumor-suppressive or oncogenic roles 
in various solid cancers, usually in an m6A-dependent manner, through 
modulating a variety of cellular processes including metabolism, cancer 
stem cell self-renewal, epithelial-mesenchymal transition, immune 
response, and drug resistance [15,17]. In diverse cancer types, FTO can 
either promote or suppress tumor progression; however, in a subset of 
cancers including RCC, its exact role is still controversial (Table 1). 

We will focus mainly on studies pertaining to ccRCC, as it is the most 
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prevalent subtype of RCC (80% of diagnoses), while briefly highlighting 
the available data relating to less common subtypes, papillary RCC 
(pRCC) and chromophobe RCC (chRCC). To date, 9 studies on the role of 
FTO in ccRCC have been published, and all within the last three years. 
Out of the nine studies discussed in detail in the next sections, six 
indicated that FTO is tumor-suppressive [18–23], while three suggest it 
is oncogenic [24–26]. Here, we summarize current evidence supporting 
a promoting or suppressing role of FTO in RCC progression in 
pre-clinical models, as well as its value as a prognostic marker in RCC 
patients. Finally, we will discuss the ongoing efforts to develop selective 
and potent FTO inhibitors and their potential as therapeutic agents in 
RCC. 

FTO expression and prognostic value in RCC 

FTO expression in ccRCC 

We and others have analyzed 539 ccRCC samples and 72 normal 
kidney samples from The Cancer Genome Atlas (TCGA) and found that 
FTO mRNA expression was significantly increased in ccRCC with VHL 
deletions/mutations or intact VHL compared to normal kidney tissue 
[25,26]. Examination of the E-MTAB- 6692 dataset, a meta-dataset 
comprising a total of 347 samples including both primary tumors and 
tumor-free renal tissues from six independent GEO datasets, confirmed 
FTO overexpression in ccRCC compared to normal renal tissues [25]. 
Additionally, analysis of transcriptomic and proteomic data of 

treatment-naive ccRCC and paired normal tissues in the Clinical Prote-
omic Tumor Analysis Consortium (CPTAC) containing 110 
treatment-naive ccRCC and 84 matched normal samples revealed that 
FTO is overexpressed at both the transcriptomic and protein levels in 
tumor tissues relative to normal tissues [25]. Immunohistochemical 
analysis of FTO expression in a tissue microarray containing 30 pairs of 
ccRCC and adjacent tissue further confirmed that FTO protein levels are 
increased in ccRCC compared to normal tissue [25]. Finally, in another 
six pairs of fresh ccRCC specimens and adjacent tissue, FTO expression 
was increased in ccRCC compared to normal tissue as determined by 
qPCR and western blot [25]. These studies concur that FTO expression is 
increased in ccRCC relative to normal kidney tissue. 

However, Zhuang et al. reported that FTO transcript levels were 
decreased in ccRCC by qRT-PCR in a cohort of 35 ccRCC and adjacent 
normal tissues, and FTO protein level was reduced in 4 pairs of ccRCC 
tissues compared with adjacent normal tissues by western blot [22]. 
Moreover, Strick et al. observed decreased FTO protein expression in 
147 ccRCC compared to 30 normal renal tissues by immunohisto-
chemistry, while FTO transcript levels were similar between 166 ccRCC 
and 106 normal renal tissues by qRT-PCR [19]. The basis of these 
divergent findings regarding relative levels of FTO transcripts and pro-
tein in ccRCC compared to normal kidney is unclear, although most 
point to increased expression of FTO in ccRCC. Consistent with these 
findings, Hua et al. reported that in 402 Wilms tumor patients and 1198 
healthy controls, the rs8047395 A allele polymorphism in FTO was 
significantly correlated with elevated FTO expression and increased risk 

Table 1 
The role of FTO in different cancer types.  

Cancer Role Expression in 
cancer 

Proliferation/ 
apoptosis 

Migration/ 
invasion 

Tumor 
growth 

Metastasis Survival Target 

BC Pro[28, 
29] 

↑  ↑  ↑ shorter, and higher 
grade 

miR-181b-3p 

BlaC Pro[13, 
30] 

↑ ↑ ↑ ↑  shorter, and higher 
stage 

miR-576, PYCR1 

CerC Pro[31, 
32] 

↑ ↑ ↑    HOXC13 

EC Pro[33] ↑  ↑ ↑ ↑  HOXB13 
ESCC Pro[34, 

35] 
↑ proliferation↓/ 

Apoptosis↑  
↑   LINC00022, SIM2 

GC Pro 
[36–39] 

↑ proliferation↑ ↑   shorter ITGB1, CAV1 

Glioma Pro[40]  proliferation↑     MYC 
HNSCC Pro[41] ↑ proliferation↑ ↑   shorter CTNNB1 
LC Pro 

[42–46] 
↑ proliferation↑/ 

Apoptosis↑ 
↑ ↑ ↑ shorter E2F1 

Melanoma Pro[47] ↑ proliferation↑ ↑ ↑   PD-1, CXCR4, SOX10 
OSCC Pro 

[48–52] 
↑ proliferation↑ ↑ ↑  shorter PD-L1, MYC, YAP1, 

eIF4G1, CCND1 
PCa Sup 

[53–55] 
↓ proliferation↓ ↓ ↓  NC, but lower grade 

and stage 
MC4R 

PTC Sup[56] ↓ proliferation↓  ↓ ↓  APOE 
CC Sup 

[57–59] 
Pro[60, 
61] 

↓ 
↑ 

proliferation↓ 
proliferation↑ 

↓ ↑ ↓ longer PGC-1α, MTA1 
MZF1/c-MYC, PD-L1 

HC Pro[62] 
Sup 
[63–65] 

↑ 
↓ 

proliferation↑ 
proliferation↓/ 
Apoptosis↑ 

↑ 
↓  ↓   ↓  

shorter, and higher 
grade 
longer 

GNAO1 

OC Pro[66] 
Sup[67] 

↑ 
↓ 

proliferation↑/ 
Apoptosis↓ 
proliferation↓  

↑ 
↓    

AKT 
PDE1C, PDE4B 

PC Pro[68] 
Sup[69] 

↑ 
↓ 

proliferation↑ 
proliferation↓ 

↓   longer, and lower 
stage 

PJA2 

ccRCC Pro[24- 
26] 
Sup 
[18–23] 

↑ 
↓ 

proliferation↑ 
proliferation↓/ 
Apoptosis↓ 

↑ ↑ 
↓ 

↑ longer SLC1A5, BRD9 
PGC-1α 

OSCC-Oral squamous cell carcinoma GC-Gastric cancer PCa-Prostate cancer PTC-Papillary thyroid cancer BlaC-bladder cancer BC-Breast cancer CC-Colon cancer HC- 
hepatocellular carcinoma HNSCC-Head and neck squamous cell carcinoma CerC-Cervical cancer ESCC- Esophageal squamous cell carcinoma OC-Ovarian cancer 
ccRCC-Clear cell renal cell carcinoma LC-Lung cancer PC-Pancreatic cancer EC-Endometrial cancer NC-no correlation Pro: proliferation; Sup: suppression. 
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for Wilms tumor, the most common pediatric renal malignancy [27]. 
Although the expression level of FTO in ccRCC tissues remains divisive, 
these results suggest FTO might play an important oncogenic role in 
kidney cancer in both children and adults. 

FTO as a prognostic marker in ccRCC 

In the TCGA ccRCC dataset, we found that FTO mRNA expression 
levels, while elevated, did not vary significantly across stages I-IV VHL- 
deficient ccRCC tumors [25]. Chen et al. reported that 5 of the 16 m6A 
RNA methylation regulators were prognostic in the TCGA ccRCC data-
set; however, FTO expression was not associated with overall survival 
(OS) [26]. In contrast, two other studies described a positive correlation 
of FTO transcript levels with both OS and disease-free survival using the 
TCGA ccRCC dataset [18,22]. Similarly, Wen et al. showed that FTO 
mRNA expression in the lower quartile of the TCGA ccRCC cohort was 
associated with poor prognosis [20]. Moreover, Strick et al. revealed 
that lower FTO transcript levels were correlated with shorter OS and 
cancer-specific survival (CSS) in 166 ccRCC patients, while FTO protein 
levels did not predict OS in 147 ccRCC patients [19]. It is difficult to 
resolve the underlying reasons why different results can come from 
analysis of the same TCGA dataset of >500 ccRCC samples, because 
several of these studies have not included information on how patients 
were stratified into comparison groups. Unfortunately, only a single 
study has investigated FTO protein levels and their association with 
disease outcomes, meaning that additional study of protein and RNA 
levels will be necessary to test whether FTO can serve as a prognostic 
biomarker in ccRCC. 

FTO expression and clinical significance in pRCC and chRCC 

pRCC and chRCC show varying FTO mRNA and protein expression 
levels in the few studies published on these subtypes. Analysis of the 
TCGA dataset showed pRCC had significant upregulation of FTO mRNA, 
though not as high as ccRCC, while chRCC expressed the lowest FTO 
mRNA levels out of the three subtypes [31]. However, in a separate 
cohort utilizing primary RCC tumor tissue with 40 patients representing 
each subtype, pRCC and chRCC both had significantly lower FTO mRNA 
levels than ccRCC, with pRCC displaying the lowest FTO expression 
[31]. Immunohistochemistry staining showed chRCC had the lowest 
FTO protein expression, while pRCC showed high protein levels [18]. 
Thus, while transcript levels of FTO in pRCC are low, its protein levels 
are high, pointing towards the involvement of post-transcriptional 
modifications in FTO expression in pRCC. In concordance with these 
results, Strick et al. found pRCC had the highest FTO protein levels of the 
three main subtypes, whereas chRCC showed a lower FTO protein level 
compared to benign tissue [19]. As the studies of FTO expression in 
non-ccRCC are limited, there is currently no decisive conclusion that can 
be drawn regarding differential gene or protein expression in these 
subtypes. 

Xiang et al. generated in silico models of pRCC and chRCC based on 
m6A methylation patterns and pathological tissue typing. Their study 
showed pRCC, which had the highest FTO expression of the subtypes in 
the model, yielded poorer prognosis than chRCC [48]. Yet, in a TCGA 
analysis, increased FTO expression at the mRNA level led to a greater 
progression free survival and OS in pRCC [18]. Although pRCC and 
chRCC are less common than ccRCC, as the global incidence of RCC 
continues to rise, so too do the diagnoses of these subtypes. Further 
investigation into the role of FTO in these subtypes will prove necessary 
to better understand their disease mechanisms. 

Role of FTO in ccRCC progression 

Additional controversy surrounds the role of FTO in the biology of 
ccRCC progression. One study, published in 2018, demonstrated that 
ectopic overexpression of FTO inhibited growth and induced apoptosis 

in 786-O and 769-P, two commonly used ccRCC cell lines, by increasing 
oxidative stress [22]. FTO-overexpressing ccRCC cells also grew signif-
icantly slower in vivo in a subcutaneous xenograft model, suggesting a 
tumor-suppressive role of FTO in ccRCC [22]. Later, the same group 
found that miR-155 knockdown attenuated cell proliferation and 
induced apoptosis in 786-O cells by upregulating FTO, confirming the 
tumor-suppressive role of FTO in ccRCC [23]. However, we recently 
showed that inhibition of FTO either genetically or pharmacologically 
selectively reduced the growth, survival, and clonogenic capability of 
VHL-deficient 786-OM1A cells, but not isogenic VHL-reconstituted cells, 
in a HIF-independent manner in vitro and inhibited orthotopic xenograft 
growth in vivo, suggesting that FTO plays an oncogenic role only in the 
context of VHL-deficient ccRCC cells [25]. Consistent with our findings, 
Zhang et al. reported that FTO knockdown significantly inhibited 786-O 
cell proliferation and clonogenic capability, albeit the magnitude of 
inhibition was smaller in HIF2α wild type cells than in HIF2α knock-
down cells, suggesting the oncogenic function of FTO is more significant 
in the absence of than in the presence of HIF2α in ccRCC cells [24]. 
Clearly, FTO plays a vital role in ccRCC progression which appears to be 
affected by loss of VHL, and its exact role will be defined as more data is 
available. 

Targets of FTO in ccRCC 

As one of the two m6A erasers, FTO affects the expression of several 
important genes involved in RCC development and progression. We 
performed an integrated analysis of transcriptome-wide m6A-seq and 
mRNA-seq analysis and identified the glutamine transporter SLC1A5 as 
a FTO target that promotes metabolic reprogramming and survival of 
VHL-deficient ccRCC cells [25]. Our study further confirmed that 
SLC1A5 mRNA and protein levels were decreased upon FTO knockdown 
in VHL-deficient 786-O and UMRC2 ccRCC cells, and the level of m6A at 
the 5’ UTR and 3’ UTR of SLC1A5 was increased in these cells [25]. 
Moreover, SLC1A5 knockdown recapitulated the phenotype of FTO 
knockdown including decreased glutamine consumption in 
VHL-deficient ccRCC cells, suggesting that FTO regulates metabolic 
reprogramming of VHL-deficient ccRCC cells by targeting SLC1A5 [25]. 
In another study, overexpression of FTO reduced the level of m6A 
PGC-1α mRNA and upregulated PGC-1α protein expression in 769-P 
cells, suggesting PGC-1α is another direct target of FTO [22]. Over-
expression of FTO restored mitochondrial activity, induced oxidative 
stress and reactive oxygen species (ROS) production, and impaired 
tumor growth through increasing expression of PGC-1α that was largely 
reversed by PGC-1α knockdown, indicating PGC-1α is a functionally 
important target of FTO that facilitates its tumor-suppressive activity 
[22]. This is consistent with a recent PAN-cancer study mining 102 
transcriptomic datasets for the expression of 29 m6A-RNA methylation 
regulators, including FTO, in 41 diseases and cancers, which demon-
strated that 40 out of 165 ROS regulators were modulated by FTO [70]. 
BRD9 has also been identified as a direct target of FTO. In the Caki-2 
ccRCC cell line, which expresses low levels of HIF2α, RNA immuno-
precipitation revealed direct binding of BRD9 pre-mRNA with FTO [22]. 
In these HIF2α-low but not HIF2α-high ccRCC cells, FTO knockdown 
stabilized BRD9 mRNA and increased its protein expression level, in turn 
facilitating Caki-2 cell growth and rendering the cells sensitive to BRD9 
inhibitors. These results indicate that BRD9 is an effective target for 
treating HIF2α-low ccRCC [22]. Additional targets of FTO will likely 
emerge as candidate genes identified by large-scale screening, such as 
transcriptome-wide m6A-seq and mRNA-seq analysis, are validated 
experimentally. 

Regulation of FTO expression in ccRCC 

How FTO expression is regulated in cells is largely unknown, and 
only two studies have investigated regulation of FTO expression in 
ccRCC. FTO belongs to the family of Fe(II)–α-ketoglutarate (αKG)– 
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dependent dioxygenases that require iron and ascorbate for enzymatic 
activity. Zhang et al. showed that an increased intracellular α-ketoglu-
tarate–to-succinate ratio in HIF2α-low Caki-2 ccRCC cells led to acti-
vation of FTO, which in turn demethylated and stabilized BRD9 mRNA 
[24]. In addition, Yang et al. used a bioinformatic approach to identify 
miR-155 as a negative regulator of FTO expression through direct 
binding to the 3′UTR of FTO mRNA [23]. They also showed that over-
expression of miR-155 increased global mRNA m6A levels, enhanced 
tumor cell proliferation in vitro and in vivo, and decreased apoptosis in a 
FTO-dependent manner, demonstrating the functional importance of 
miR-155 in regulating FTO expression and global mRNA m6A levels in 
ccRCC [23]. In normal human kidney HEK293 cells, FTO mRNA and 
protein levels are dramatically downregulated by essential amino-acid 
deficiency but not by deprivation of nonessential amino acids [71]. It 
will be interesting to determine whether these regulation mechanisms of 
FTO expression are employed by ccRCC cells. 

Therapeutic inhibition of FTO 

Given the important clinical applications that effective FTO in-
hibitors could have in human diseases, particularly in obesity and cancer 
[5,72], efforts have been made to identify and develop selective FTO 
inhibitors. This work has been facilitated by the resolution of the crystal 
structure of FTO in 2010 which showed strong Fe2+- and 
αKG-dependent activity as a dioxygenase at its N-terminal and, later, as 
an m6A demethylase [6,73]. The structural insights into FTO, strategies 
to achieve selective inhibition of FTO, methods of screening FTO in-
hibitors, and currently known inhibitors of FTO as well as their mode of 
action have been reviewed in detail [72]. Most FTO inhibitors show 
some off-target effects due to non-selective inhibition of related en-
zymes. For instance, rhein, a natural product that inhibits FTO by 
competitively binding to the substrate binding site of FTO, also inhibits 
αKG-dependent dioxygenase B (AlkB) by binding to its 2-oxoglutarate 
(2OG) binding site [74]. Moreover, the efficacy of the known FTO in-
hibitors is sub-optimal with an IC50 in the micromolar range. However, 
two small molecule inhibitors, CS1 and CS2, have been identified using 
an in silico structure-based screen and were validated as showing efficacy 
in inhibiting the growth of human leukemic cell lines. These inhibitors 
have an IC50 ranging from 22 to 410 nM depending on the cell line 
tested [75]. Whether these candidate inhibitors are effective against 
solid tumors is unknown, and their mechanisms of action have not been 
defined. Clearly, additional work will be necessary to identify novel 
potent and selective FTO inhibitors with low toxicity. 

Several FTO specific inhibitors have been developed in recent years, 
including FB23-2, one of the most potent and selective FTO inhibitors 
that has shown efficacy in mouse models of cancer [72]. Three newly 
identified FTO inhibitors were reported in the past two years. In 2021, 
using information from crystal structures of FTO complexed with 2OG 
and substrate mimics, Shishodia et al. designed and synthesized two 
series of FTO inhibitors, including a highly potent inhibitor 14a (IC50 80 
nM). With a selective binding interaction spanning the FTO 2OG and 
substrate binding sites, this compound warrants further optimization for 
in vivo studies to determine its activity in combating FTO-mediated 
diseases [76]. In a second study, Prakash et al. used a novel approach 
of merging fragments of previously reported FTO inhibitors and syn-
thesized compound 11b with an IC50 of 87 nM. Treatment of AML cells 
with a prodrug of 11b decreased cell viability, increased global m6A 
levels, and induced downregulation of MYC and upregulation of RARA, 
two known FTO target genes [77]. Huff et al. combined structure-based 
drug design and molecular docking using the Schrödinger software suite 
to target the MA binding site of FTO. They identified 20 small molecules 
with low micromolar IC50s and significantly higher specificity toward 
FTO compared to ALKBH5, a Fe(II)–α-ketoglutarate (αKG)– dependent 
dioxygenase family member [78]. One of these competitive inhibitors, 
FTO-04, increased m6A and m6A(m) levels in glioblastoma stem cells 
(GSCs) and prevented neurosphere formation in patient-derived GSCs 

without inhibiting the growth of healthy neural stem cell-derived neu-
rospheres, suggesting FTO-04 is a potential new lead for treatment of 
glioblastoma [78]. In 2022, Xie et al. developed two small molecule 
inhibitors of FTO (18077 and 18097) by conducting virtual screenings 
and structural optimization. Specifically, 18097 (IC50 0.64 μM) bound 
to the active site of FTO, resulting in an increased m6A level of sup-
pressor of cytokine signaling 1 (SOCS1) mRNA. This led to the recruit-
ment of IGF2BP1 to increase mRNA stability of SOCS1, activating the 
p53 signaling pathway. Activation of p53 inhibited cell cycle progres-
sion and decreased the migration of breast cancer cells in vitro and tumor 
growth and lung metastasis in vivo. In addition, 18097 suppressed 
cellular lipogenesis via downregulation of peroxisome proliferator 
-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein 
alpha (C/EBPα), and C/EBPβ, suggesting 18097 modulates multiple 
FTO-regulated cellular processes in breast cancer [79]. Whether these 
novel inhibitors will serve as potent anti-cancer agents in RCC needs to 
be investigated. 

Conclusions 

FTO plays an important but controversial role in RCC, and additional 
work will be necessary to precisely define its function in this disease. 
FTO has been implicated as both oncogenic and tumor suppressive in 
multiple RCC subtypes, even when the same dataset or model systems 
are used, which may be attributed to differences in data analysis 
methods and experimental procedures. Very likely, the differences in the 
effects of FTO are context-specific, such as the synthetic lethality 
observed in VHL-null ccRCC. FTO is aberrantly expressed and associated 
with clinical prognosis in ccRCC. Its dysregulation in ccRCC is associated 
with altered cell proliferation, invasion, and metastasis both in vitro and 
in vivo. Mechanistically, FTO exerts its activity through the regulation of 
m6A levels of target genes including SLC1A5, BRD9, and PGC-1α in 
ccRCC. Significant progress has been made in the development of FTO 
inhibitors, however, novel strategies such as molecular degrader- 
induced targeted protein degradation [80] have not been tested in 
therapeutic inhibition of FTO. Further investigations are needed to 
better understand the role of FTO in RCC to help determine the potential 
of developing FTO inhibitors as novel therapeutic agents to treat RCC. 
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