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The caudate-putamen, nucleus accumbens core and shell are important striatal brain

regions for premotor, limbic, habit formation, reward, and other critical cognitive

functions. Striatal-relevant behaviors such as anxiety, motor coordination, locomotion,

and sensitivity to reward, all change with fluctuations of the menstrual cycle in humans

and the estrous cycle in rodents. These fluctuations implicate sex steroid hormones,

such as 17β-estradiol, as potent neuromodulatory signals for striatal neuron activity.

The medium spiny neuron (MSN), the primary neuron subtype of the striatal regions,

expresses membrane estrogen receptors and exhibits sex differences both in intrinsic

and synaptic electrophysiological properties. In this mini-review, we first describe sex

differences in the electrophysiological properties of the MSNs in prepubertal rats. We

then discuss specific examples of how the human menstrual and rat estrous cycles

induce differences in striatal-relevant behaviors and neural substrate, including how

female rat MSN electrophysiology is influenced by the estrous cycle. We then conclude

the mini-review by discussing avenues for future investigation, including possible roles of

striatal-localized membrane estrogen receptors and estradiol.

Keywords: female, estradiol, estrous cycle, spiny projection neurons, caudate-putamen, dorsal striatum, nucleus

accumbens, aromatase

INTRODUCTION

Sex differences in brain structure and function have been described at all levels of biological
analysis, from differences in neuronal gene expression to the output of the nervous system, behavior
(McCarthy, 2010; Forger, 2016; Arnold, 2017; Grabowska, 2017). Sex is a compelling biological
variable thatmust be considered from single neuron analysis all the way to clinical trials. The striatal
regions, including the caudate-putamen and nucleus accumbens core and shell (Figure 1A), are
sensitive to biological sex and sex steroid hormone fluctuations and signaling in both animals and
humans. Although striatal sex and hormone-specific differences have long been documented, the
mechanisms by which hormones and sex influence caudate-putamen and accumbens physiology
remain active research areas. In this mini-review, we first describe the known sex differences in the
physiology of the output neuron of the striatal brain regions, the medium spiny neuron (MSN), in
prepubertal rats. We then broaden the discussion to address aspects of how the menstrual cycle in
adult female humans and estrous cycle in adult female rats influences striatal-relevant behaviors,
and feature select studies providing mechanistic insight. This includes recent data demonstrating
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that the estrous cycle modulates MSN physiology. We then
end the mini-review by presenting two challenge hypotheses
for future investigation, namely, the possible roles of striatal-
localized membrane estrogen receptors and neuroestrogen
production.

CAUDATE-PUTAMEN AND NUCLEUS
ACCUMBENS CORE MSNs EXHIBIT SEX
DIFFERENCES BEFORE PUBERTY

MSNs (or alternatively, spiny projection neurons) consist of
∼95% of striatal neurons (Kemp and Powell, 1971; Graveland
and DiFiglia, 1985; Gerfen and Surmeier, 2011) and are the
major efferent projection neurons. MSNs do not exhibit gross
sex differences in soma size or neuron density (Meitzen et al.,
2011), and the overall volume of the striatal brain regions does
not robustly differ betweenmales and females (Wong et al., 2016).
MSNs do exhibit functional electrophysiological properties that
differ by striatal subregion and developmental period (Table 1).
Before puberty, sex differences are present in both intrinsic and
synaptic properties of MSNs that is specific to striatal region in
rats. Here we define intrinsic properties are those being related
to single action potential properties such as threshold, multiple
action potential properties such as action potential firing rate as
evoked by excitatory current injection, and passive membrane
properties such as input resistance. All of these properties are
unified in that they help determine how a neuron responds
to synaptic input, in other words, the input-output process
of the individual neuron. Regarding synaptic properties, here
we focus on properties that have been directly investigated
in MSN with regards to sex, such as miniature excitatory
postsynaptic currents (mEPSC), which provides insight into the
strength, number, and sensitivity of glutamatergic synapse. In
rat caudate-putamen, MSN excitability is increased in females
compared to males, as indicated by an increased evoked action
potential to excitatory current injection slope, hyperpolarized
threshold, and decreased after hyperpolarization magnitude in
females compared to males. There are no differences in mEPSC
properties, including frequency, amplitude, and decay (Dorris
et al., 2015). Conversely, in the nucleus accumbens core, mEPSC
frequency is increased in prepubertal females compared to males
and this sex difference exist both pre-puberty and in adults
(Cao et al., 2016). This sex difference is organized during
the postnatal critical window (P0–P1) and in females can be
eliminated by postnatal 17β-estradiol (estradiol) or testosterone
exposure (Cao et al., 2016). Estradiol is a type of estrogen, which
binds to estrogen receptors. Testosterone can either bind to
androgen receptors or be metabolized via the enzyme aromatase
into estradiol to in turn act on estrogen receptors. Prepubertal
recordings from nucleus accumbens shell did not show any sex
differences in MSN electrical properties (Willett et al., 2016),
however environmental influences such as stress engender sex
differences in synapse markers in adult rodents (Brancato et al.,
2017). Together, these studies illustrate heterogeneity of sex-
specific mechanisms across the subregions of the striatum (Cao
et al., 2018b). Interestingly, sex differences in MSN properties
detected in prepubertal rat are different than those detected in

prepubertal mouse nucleus accumbens core (Cao et al., 2018a),
indicating that sex differences in the development of MSN
electrophysiological properties can be species-specific or perhaps
mouse strain-dependent. It is also unknown how sex differences
and sex steroid sensitivity present across MSN subtypes. This
question is an important avenue for future investigations, as
differential sensitivity to biological sex across MSN subtypes may
have important functional consequences.

THE MENSTRUAL AND ESTROUS CYCLES
INFLUENCE STRIATAL-RELATED
BEHAVIORS AND DISORDERS IN ADULT
FEMALES

In adult female humans, the cyclical fluctuation of estradiol,
progesterone, and other hormones is called the menstrual cycle
and is ∼28 days long. Plasma estradiol levels peak during the
follicular phase, while progesterone levels peak during the luteal
phase (Sherman and Korenman, 1975). In adult female rats
and mice, this cycle is called the estrous cycle and likewise
features repeated hormone changes, but across a∼4–5 day period
(Cora et al., 2015). In rats, plasma estradiol levels rapidly peak
during proestrus, after which progesterone levels peak, leading to
ovulation and a resulting estrus phase. The diestrus phase, during
which hormone levels are generally low, follows the estrus phase
(Figure 1B).

Regarding behaviors associated with the striatal regions,
changes in motor coordination and severity of Parkinson’s
symptoms, which are controlled by the caudate-putamen, have
been associated with the menstrual cycle. The luteal phase,
when estradiol and progesterone are high, is associated with
more coordination, manual skills, and less L-DOPA-induced
dyskinesia (Quinn and Marsden, 1986; Hampson and Kimura,
1988; Hampson, 1990). These findings in menstrual cycle-related
behavioral changes generalize to other movement disorders with
worsening of symptoms occurring just before and during menses
when estradiol and progesterone are lowest (Castrioto et al.,
2010). Additionally, changes in anxiety-related behaviors and
anxiety-related symptoms which are controlled, in part, by the
nucleus accumbens, also occur across the menstrual cycle (Nillni
et al., 2011). In general, the extent of documented changes in
motor skills and cognitive functions across the human menstrual
cycle differs across population characteristics and sampled task-
type (Souza et al., 2012).

DOPAMINE AND ESTRADIOL ARE PART OF
THE MECHANISM UNDERLYING FEMALE
CYCLE-DEPENDENT DIFFERENCES

Animal studies have provided more controlled designs and
techniques to understand the mechanisms underlying these sex
differences. It has long been documented that the dopamine and
estrogen systems interact to influence striatal function (Yoest
et al., 2018b). Here we highlight some select pieces of evidence. In
female monkeys, during the luteal phase, D2 receptor availability
is increased in the caudate-putamen and nucleus accumbens
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FIGURE 1 | Map of the striatal subregions and female hormone cycling. (A) Schematic of a coronal section of one hemisphere of the rat brain depicting the striatal

subregions, including the caudate-putamen, nucleus accumbens core, and shell (Interaural ∼10.92–10.80mm, Bregma ∼1.92–1.80mm). Acronyms: AC, anterior

commissure; Acb, nucleus accumbens; LV, lateral ventricle. The extensive afferent and efferent circuitry of the striatal subregions is not depicted in this schematic, and

we refer the reader to the following articles for a review of this topic (Russo and Nestler, 2013; Scofield et al., 2016) (B) Graphical depictions of the adult female rat

estrous and human menstrual cycle. Purple line indicates progesterone levels and the green line estradiol levels. Over a span of about 4–5 days, rats exhibit a diestrus,

proestrus, and estrus phase. There is also a metestrus phase between estrus and diestrus (not pictured). In rats, estradiol levels peak the morning of proestrus, as

progesterone levels are rising, and behavioral estrus begins roughly when progesterone levels peak. The human cycle lasts about 28 days, and exhibits a follicular and

luteal phase. In humans, estradiol peaks during the follicular phase, and progesterone peaks during the luteal phase.

(Czoty et al., 2009) suggesting that gonadal hormones may
influence dopamine (DA) transmission and sensitivity which
can promote movement coordination. In rats, females during
proestrus and estrus (comparable to luteal phase in humans
and monkeys) have higher extracellular DA concentrations than
diestrus and ovariectomized females (Xiao and Becker, 1994).
Estrous cycle-dependent changes in dopamine signaling have
also been observed in mice (Calipari et al., 2017). This may
be a mechanism that contributes to changes in locomotion
(Becker et al., 1987) and anxiety (Marcondes et al., 2001; Sayin
et al., 2014) across estrous cycle in rodents. Gonad-intact and
castrated males do not differ, indicating that gonadal hormone
influences on striatal release of dopamine are sex-specific (Xiao
and Becker, 1994). Estradiol has been proposed as a major
hormone to facilitate sex differences. Specific to the caudate-
putamen, estradiol promotes motor coordination (Becker et al.,
1987; Schultz et al., 2009) and its enhancement of dopamine
action is specific to females (Becker, 1990; Xiao and Becker, 1994;
Yoest et al., 2014, 2018a). The role of dopamine in regulating
MSN electrical properties suggests that MSN properties would
likewise differ between males, females, and across the adult
female hormone cycle (Nicola et al., 2000).

CYCLICAL FEMALE HORMONE
FLUCTUATIONS INDUCE SEX
DIFFERENCES IN ADULT MSN
ELECTRICAL PROPERTIES

Intrinsic and synaptic electrophysiological properties of MSNs
of the caudate-putamen and nucleus accumbens core change

with the estrous cycle (Arnauld et al., 1981; Tansey et al., 1983;
Proaño et al., 2018). In the caudate-putamen, classic experiments
first demonstrated that spontaneous action potential firing
rates recorded in vivo increased in ovariectomized female rats
exogenously exposed to estradiol compared to vehicle-exposed
females and males (Arnauld et al., 1981). Later on, using in
vivo extracellular recording, it was found that nigrostriatal MSNs
increased spontaneous action potential generation in female rats
during the phases of the estrous cycle associated with high levels
of estradiol, or in ovariectomized females exposed to exogenous
estradiol compared to animals with low levels of estradiol (Tansey
et al., 1983). Other MSN subtypes and striatal interneurons
were not tested in this study. The exact electrophysiological,
endocrine, and molecular mechanisms driving these changes
in electrical activity in the caudate-putamen remain to be
elucidated, although this is an area of active research. More
detailed data is available for MSNs in the adult female rat
nucleus accumbens. In the nucleus accumbens core, during
diestrus, when both progesterone and estradiol are low, MSN
excitatory synaptic input properties decrease in magnitude while
intrinsic excitability increases (Proaño et al., 2018). Specifically,
mEPSC frequency and amplitude are decreased compared to
other estrous cycle phases, while properties such as action
potential rheobase, action potential threshold, input resistance,
and resting membrane potential change to increase cellular
excitability. Conversely, during proestrus and estrus, which
are when estradiol and progesterone increase, and females
are sexually receptive, excitatory synaptic input increases and
intrinsic excitability decreases. mEPSC frequency and amplitude
are increased compared to other estrous cycle phases, aligning
with previous work examining excitatory synapse anatomy in
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TABLE 1 | Sex differences of electrophysiological properties of medium spiny neurons across striatal subregions in rats.

Electrophysiological property Developmental stage Caudate-putamen Nucleus accumbens core Nucleus accumbens shell

Intrinsic excitability Prepubertal F > M F = M F = M

Adult ?d Cycle determines sex

differencea
?

Excitatory synaptic input Prepubertal F = M F > Mb F = M

Adult ? Cycle determines sex

differencea
?c

Gray fill indicates sex and/or cycle dependent differences. Inequality signs indicate relative differences between sexes. “?” indicates complex or no evidence.
aEstrous cycle stage determined directionality of sex difference and difference between female estrous stages. Gonadectomy eliminates sex differences.
bThis sex difference has been shown to be organized by estradiol during masculinization window.
cExamination of synapse properties shows divergent evidence of sex differences in non-stressed animals, but an electrophysiological approach in adult animals has not yet been done to

our knowledge (as reviewed by Cao et al., 2018b). The adult nucleus accumbens shell exhibits variable sex differences, likely indicating interactions with other environmental influences

such as stress (i.e., Brancato et al., 2017).
d In adult caudate-putamen, estrous-cycle induced differences in select rat medium spiny neuron action potential generation rates have been reported in vivo, but the underlying cellular

electrophysiological mechanisms are not yet documented.

females in these estrous cycle phases solely compared to males
(Forlano and Woolley, 2010; Wissman et al., 2012). In contrast,
cellular properties such as action potential rheobase, action
potential threshold, input resistance, and resting membrane
potential change to decrease cellular excitability. When analyzing
these properties in gonadectomized males and females, all sex
differences disappear (Proaño et al., 2018). This study indicates
that adult female hormone cycles are necessary to induce sex
differences in adult MSN properties, including excitatory synapse
function. Changes in excitatory synaptic properties are consistent
with previous anatomical studies in adult rats (Forlano and
Woolley, 2010; Staffend et al., 2011; Wissman et al., 2011, 2012;
Martinez et al., 2016; Peterson et al., 2016). Whether these
properties differ by MSN subtype is still unknown. Given that
accumbens core MSNs exhibit divergent sex differences across
development, sexual differentiation of MSNs likely occur across
multiple developmental periods. Puberty may be one such period
(Ernst et al., 2006; Kuhn et al., 2010; Manitt et al., 2011; Matthews
et al., 2013; Staffend et al., 2014; Kopec et al., 2018).

CHALLENGE HYPOTHESIS #1: HOW DO
MEMBRANE ESTROGEN RECEPTORS
INFLUENCE STRIATAL NEURON
PHYSIOLOGY?

Although there is ample evidence that estradiol is an important
and sex-specific hormonal regulator of striatal behavior,
dopamine systems, and MSN function, the exact mechanisms
by which estradiol exerts its actions requires further research.
An increasing body of work strongly implicates membrane
estrogen receptor action. Adult female rats exclusively express
membrane estrogen receptors (GPER1, membrane-associated
ERα, and membrane-associated ERβ) in MSNs of the caudate-
putamen and accumbens (Almey et al., 2012). However, to
our knowledge a thorough analysis of estrogen receptors
across development, MSN subtype, and species has not been
accomplished and nuclear estrogen receptors may be expressed at
early developmental stages. Sex-specific differences in membrane
estrogen receptor facilitation of changes in neuronal activity

have been reported in other brain regions (Oberlander and
Woolley, 2016; Krentzel et al., 2018). Importantly, sex differences
in function can exist even when receptor expression is similar
between males and females (Krentzel et al., 2018), indicating that
the sex-specific sensitivity and functionality of estrogen receptors
are more complicated than indicated by anatomical analyses
alone.

Membrane estrogen receptors are expressed both on axon
terminals, MSN somas and dendritic spines (Almey et al., 2012,
2015, 2016), and there is evidence that estradiol has both
pre- and post-synaptic mechanisms for altering dopaminergic
signaling which promotes locomotion (Becker and Beer,
1986). Estrogen receptors associated in the membrane with
metabotropic glutamate receptors have also been shown to
facilitate locomotor sensitization to cocaine (Martinez et al.,
2014), involved in drug addiction (Tonn Eisinger et al.,
2018), and change dendritic spine morphology in the nucleus
accumbens (Peterson et al., 2015). Application of estradiol
increases dopamine (DA) rapidly in the accumbens and caudate-
putamen (Becker, 1990; Pasqualini et al., 1996), as well as
decreases GABA production (Hu et al., 2006). This suggests
that estradiol may indirectly act on dopamine signaling by first
releasing inhibition from GABAergic signaling, and perhaps also
directly upon dopamine-producing regions. In striatal MSNs,
estradiol acting through ERα, ERβ, and mGluR rapidly decreases
L-type calcium currents and phosphorylates the transcription
factor CREB (Mermelstein et al., 1996; Grove-Strawser et al.,
2010).

One proposed model for estradiol actions on striatal
networks builds upon these and other findings, positing that
estradiol binds to membrane estrogen receptors on MSNs
to decrease neuronal excitation, therefore leading to less
GABA release and a “disinhibition” of dopaminergic signaling
either through a collateral synapse upon dopamine fibers
from the substantia nigra pars compacta or the VTA (Yoest
et al., 2014, 2018b). Direct evidence that estradiol rapidly
acts on MSNs to decrease intrinsic neuronal excitability or
excitatory post synaptic currents remains unknown, although
this is an active area of research. This model also predicts
that MSNs synapse upon either dopaminergic fibers from the

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 December 2018 | Volume 12 | Article 492

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Krentzel and Meitzen Sex, Estradiol and Medium Spiny Neurons

substantia nigra pars compacta, the VTA, or perhaps tyrosine-
hydroxylase positive striatal interneurons. Alternatively,
estradiol may potentially act on striatal interneurons, such as
the cholinergic subtype, which synapses upon both dopamine
terminals and MSNs (Chuhma et al., 2011). Cholinergic
interneurons express membrane estrogen receptors and
have been implicated in estradiol-induced shifting between
hippocampal and striatal-based learning behaviors, suggesting
interactions been estrogen, cholinergic, and dopamine-
systems (Euvrard et al., 1979; Davis et al., 2003; Almey
et al., 2012). These models are not necessarily mutually
exclusive. They also do not exclude direct actions of estradiol
on MSNs independent of dopaminergic signaling, perhaps
instead targeting glutamatergic systems. Consistent with this
speculation, glutamatergic systems have been implicated in sex
differences in psychiatric diseases such as anxiety (Wickens et al.,
2018).

WHAT IS THE RELATIONSHIP BETWEEN
MEMBRANE ESTROGEN RECEPTORS
AND THE ESTROUS CYCLE?

Gonadal hormone fluctuations related to the estrous cycle
correlate with changes in both caudate-putamen and accumbens
dependent behaviors and with the electrical properties of
MSNs. This conclusion raises questions regarding the potential
relationship between the estrous cycle and the actions of rapid
estradiol signaling to modulate striatal neuron activity. To date,
one study has shown that after 3 days of estradiol priming to
artificially mimic estradiol-high proestrus of females, locomotion
and DA release is potentiated after an acute estradiol injection
and amphetamine (Becker and Rudick, 1999). This work is one
piece of evidence that females may exhibit cycle-dependent rapid
estradiol mechanisms. Estradiol-mediated signaling in MSNs
may alter depending on estrous cycle phase, though little work
has tested this hypothesis, much less uncovered the mechanistic
details of how this may occur. It is unknown how cycle stage
changes sensitivity to estradiol, estrogen receptor expression,
and synapse functionality. However, proestrus (higher estradiol
and progesterone) females exhibit more and larger dendritic
spines than males (Forlano and Woolley, 2010; Wissman et al.,
2011). Other estrous cycle phases were not examined. This
anatomical work from Woolley and colleagues is consistent
with electrophysiological findings which indicate strong sex
differences during the proestrus phase (Proaño et al., 2018).

CHALLENGE HYPOTHESIS #2: DOES
LOCAL PRODUCTION OF ESTRADIOL
INFLUENCE CAUDATE-PUTAMEN AND
NUCLEUS ACCUMBENS FUNCTION?

Another component of rapid estradiol signaling is the dynamic
production of localized estradiol. Evidence of aromatase activity
and fluctuations in local estradiol content have been shown across
vertebrate brains (Callard et al., 1978) especially in songbirds

(Saldanha et al., 2000; Remage-Healey et al., 2008, 2012; Ikeda
et al., 2017). Low levels of aromatase, the enzyme that synthesizes
estradiol from testosterone, has been observed in processes and
cell bodies of rat striatum (Jakab et al., 1993; Wagner and
Morrell, 1996; Horvath et al., 1997) but a thorough analysis
and comparison across subregions has not been performed. It is
unknown how aromatase expression differs based on age, sex, cell
compartment, or cell subtype, thus overly-definitive statements
regarding striatal aromatase should be avoided. It is still
speculative exactly what role aromatase plays in striatal neuron
physiology. For the caudate-putamen, there is evidence that
inhibition of aromatase prevents the induction of LTP in male
rat MSNs (Tozzi et al., 2015) suggesting that local production of
estradiol plays a role in striatal neuronal physiology. Inhibition
of aromatase in the caudate-putamen of males proceeding a
chemical lesion is neuroprotective (McArthur et al., 2007). To
our knowledge, central administration of aromatase inhibitors
has not been performed in females in studies examining striatal
function.

Thus, the evidence for estradiol action in the striatal
subregions is robust, but the source of that estradiol has not
been directly tested in both sexes. One major question is the
relationship between gonadal/peripheral vs. brain production of
steroid sex hormones. The precursor to estradiol, testosterone,
can increase the presence of aromatase expression and activity in
rodent male brain (Roselli et al., 1984; Roselli and Klosterman,
1998), which is compelling evidence for the relationship of
gonads and brain estradiol production in males. In male
rats, long term testosterone exposure can influence MSN
dendritic spine density (Wallin-Miller et al., 2016), and the
nucleus accumbens is known to regulate the rewarding-aspects
of testosterone exposure in males (Frye et al., 2002). It is
unclear how castration and testosterone directly affect striatal
aromatase activity and expression in males. For females, one
study measuring estradiol content in both brain and blood
of rodents across estrous stages found that estradiol content
in the striatum was highest during late proestrus and far
exceeded blood concentration (Morissette et al., 1992). However,
at this point there remains a lack of corroborating evidence,
especially when considered in light of the lack of differences in
aromatase activity detected in other rat brain regions (Roselli
et al., 1984). Continued research into how hormonal state
and sex interact with possible aromatase activity is essential
to grasp how steroid signaling modulates striatal neuron
function.
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